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Abstract: Acquiring computational resources dynamically, in response to demand, and only paying for the resources
used, is the main benefit cloud computing may bring for cloud customers. However, this benefit can only be
realized when customers can determine the right size of the resources required and allocate such resources
in a cost-effective way. While resource over-provisioning can cost users more than necessary, resource under
provisioning hurts application performance. To leverage the potential of clouds, a major concern, hence is
optimizing the monetary cost spent in using cloud resources while ensuring the quality of service (QoS) and
meeting deadlines. Unfortunately, there is still a lack of a good understanding of such cost optimization. The
resource provisioning, from the cloud-user perspective, is a complicated optimization problem that consists of
much uncertainty, as well as heterogeneity in its parameters. The variety of pricing plans further complicates
this problem. There has been little work on solving this problem as it is in the real world and from the end
users view. Most works relax the problem by not considering the dynamicity or heterogeneity of the envi-
ronment. The aim of this paper, however, is optimizing the operational cost whilst guaranteeing performance
and meeting deadline constraints, by taking into account parameters’ uncertainty and heterogeneity, as well as
considering all three available pricing plans, i.e. on-demand, reservation, and spot pricing. The experimental
implementation using a real cloud workload shows that, however the proposed model has not the perfect fore-
sight of future; results are very close or in many cases similar to, the full knowledge model. We also analyse
the results of various users with different workload pattern, based on a k-means clustering.

1 INTRODUCTION

The key advantage of cloud computing is the dynamic
scalability of resources, because of its pay-as-you-go
model. Cloud computing providers rely on virtual-
ization techniques to manage the dynamic nature of
their infrastructure. Virtualization technologies help
cloud providers pack their resources into different
types of virtual machines (VMs) with different con-
figurations to satisfy the computing resource needs of
a wide variety of application types. Table 1 illustrates
a number of VM types and prices available at Ama-
zon Elastic Compute Cloud service (Amazon EC2,
2017). Cloud computing users must use this informa-
tion to determine the appropriate subset of resource
configurations that could run an application cost ef-
fectively, while also meeting the Quality of Service
(QoS) goals, such as performance. Therefore, the cost
effectiveness of cloud computing highly depends on

how well a customer can optimize the cost of renting
resources from cloud providers.

Table 1: Amazon EC2 instance types, and hourly prices.
Hourly price($)

VM Type CPU Memory On-demand Reservation
t2.micro 1 EC2 Compute Unit 1 GB 0.012 0.008
t2.small 1 EC2 Compute Unit 2 GB 0.023 0.017
c4.large 2 EC2 Compute Unit 3.75 GB 0.1 0.063
c4.xlarge 4 EC2 Compute Unit 7.5 GB 0.19 0.126

c4.2xlarge 8 EC2 Compute Unit 15 GB 0.39 0.252

With regards to pricing, three pricing plans have
been introduced for VMs: on-demand, reservation,
and spot pricing. On-demand is offered by all cloud
providers, in which the user is only charged for the
time the VM is running. Reserved VM is provided by
only some (big) cloud providers that establish a long-
term commitment between the user and the provider
with a significant discounted price. On the other
hand, spot is a new pricing scheme introduced by few
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providers and brings more cost saving for the end-
users by enabling them to bid on unused instances.
However, the instances may be terminated by the
cloud provider if their prices increases above the bid-
ding price, which makes this pricing plan unreliable.
Choosing the right number of VM with appropriate
type and pricing plan is a barrier the end user faces
for renting cloud resources. Since future workload
is often not known a priori and the on-demand and
spot VM prices vary over time, this problem cannot
be simply solved by deterministic approaches.

Although the resource provisioning problem can
be viewed from different perspectives, like the Infras-
tructure as a Service (IaaS) provider, the Software as a
Service (SaaS) provider, and the cloud end-user view.
There is little attention from the end users view, so we
focus on this problem from the end-user perspective,
and tackle the main issues and complexity a user faces
during the resource selection phase.

The main contributions of our research are: firstly,
modeling the problem such that deals effectively with
the uncertainty of demand and price. Secondly, con-
sidering the heterogeneity of pricing plans and VM
types. Thirdly, our previous proposed work (Tajvidi
et al., 2017) is extended by an enhanced model, which
optimizes cost and satisfy the deadline constraints, at
the same time. unreliability of spot could hurt the ap-
plication performance by not finishing the tasks on
time; therefore, the optimization model is improved to
deal with both cost and deadline, simultaneously. An-
other improvement we made in this extended model is
supporting more hourly time steps (696) ,rather than
having only one time step to capture the whole year
data (Tajvidi et al., 2017), in order to get more ac-
curate results. More details such as a more realis-
tic reservation pricing plan are also introduced in our
current work. Finally, to make the evaluation more
valid and reasonable, a real cloud workload demand,
Google Cluster Trace (John Wilkes, 2011), is applied
in the experiments.

We model the problem as a stochastic cost opti-
mization problem that does not allow the execution
time of a particular application goes beyond its spec-
ified deadline. We divide it into two phases, each di-
vided into 696 time steps. In the first phase, the num-
ber of reserved VMs is determined and in the second
phase number of spot and on-demand VMs, based on
all constraints, is specified. Our experimental results
show that our model outperforms the state of the arts
by 20%. Comparing the proposed model with a sim-
ilar model that has the perfect knowledge of future,
we observe that our solutions are close to, and of-
ten exactly the same as, the solutions that are based
on perfect foresight. To understand user-specific jobs

results, we perform K-mean clustering on users at-
tributes of Google trace (John Wilkes, 2011), and find
out that different workload patterns affect the final re-
sults.

The rest of this paper is organized as follows. In
section II we provide an insight into the problem de-
scription and model overview, followed by formula-
tion of the problem in section III. Then in IV the
model implementation is discussed. The experiments
and the experimental results are reported in section V.
A brief survey of related work is provided in VI, and
finally, in section VII, conclusions is stated.

2 PROBLEM DESCRIPTION

The cloud end-user needs to rent a combination of
cost-effective VMs available by cloud providers and
various pricing schemes, for a specific period. Since
they are not aware of the exact price of spot and on-
demand VMs as well as their application workload
demand in advance, they need to solve an uncertain
optimization problem. The problem is to find the op-
timal number of reserved VMs for the whole problem
time period and the optimal number of on-demand
and spot VMs in each time slot (every hour) to ful-
fill the requested demand and tasks’ deadline.

2.1 Pricing Plans

Cloud Providers generally offer various types of VMs
with different pricing plans. Amazon is one of the
dominant providers that support all three pricing plans
of reservation, on-demand, and spot. In experimental
evaluation, we use Amazon EC2 VMs data (pricing
and configuration). We explain more details in the
following sections.

Standard reservation pricing refers to the advance
reservation of resources for a specific time, while se-
curing a lower usage charge (up to 75% discount over
on-demand instance pricing). It offers consumers
three purchasing variants, “all upfront”, “partial up-
front”, and “no upfront” to purchase reserved in-
stances. With the all-upfront variant, users pay for
the entire reserved instance with one upfront payment.
This variant provides the largest discount. With the
partial-upfront variant, users make a low upfront pay-
ment and are then charged a monthly rate for their
instances, even for instances that are not utilized in
this period. The no-upfront variant does not require
any upfront payment and provides a monthly rate for
the duration of the term.

Convertible reservation pricing, on the other hand
is a new reserved instance type recently introduced
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Figure 1: Amazon EC2 spot instance pricing history; c4.2xlarge (us-east regions, Linux/Unix).

by Amazon. It provides customers with additional
flexibility for still a very significant discount (around
45% discount over on-demand instance pricing), that
can be purchased for a 3-year term. Customers have
the option at any time to change the instance fam-
ily, OS, or tenancy associated with their reserved in-
stance. However, we use standard reservation pricing
in our model, since our implementation is running for
less than 3 years.

On-Demand pricing lets customers pay for com-
pute capacity by the hour, with no long-term com-
mitments or upfront payments. Depending on the de-
mand of their application, users can simply increase
or decrease their compute capacity and only pay for
the specified hourly rate for the instances used. Al-
though this pricing model provides convenient flexi-
bility and reliability, it charges customers higher rates
than other plans. The on-demand price is not a fixed
price and the cloud provider can change it at any time.

Spot pricing enables users to bid for unused Ama-
zon EC2 capacity. This price fluctuates periodically,
depending on the supply and demand for spot in-
stances. To acquire spot instances, the users place
a spot request, specifying the instance type and the
maximum price they are willing to pay per hour per
instance. If the customer’s bid price meets or exceeds
the current spot price, the requested instances are
granted and they will run until either the user chooses
to terminate them or the spot price increases above the
maximum bid price. In the latter case, the instances
are terminated by the cloud providers with 2 minutes
notice. The actual price users pay for their instances
is the spot market price, regardless of their bid price.
See Fig 1 for spot price history of a typical VM type.
Due to the uncertain availability of spot instances, and
the potential interruptions they may bring, the spot
instance plan is not reliable and is only practical for
fault tolerant applications. In other words, applica-

tion’s downtime or even failure should not adversely
impact the operations.

When it comes to spot instances, a big challenge
is choosing a good bidding strategy. There are vari-
ous strategies proposed in the literature (Tang et al.,
2012), but generally one can bid high as a means
of ensuring to obtain instances with less volatility or
bid lower to optimize costs and send any overflow
to on-demand or reserved instances. The most com-
mon strategy, however, is to bid on-demand price,
called “always bidding on-demand price”(AO). With
this strategy, customers ensure that they will get a dis-
count over on-demand; in addition, they have a lower
chance to be interrupted. The main motivation of this
strategy is that if the current spot price is lower than
the bid price, customers will be charged the current
spot price regardless of their bid. The AO strategy
guarantees 1) minimum completion time because the
spot price rarely goes beyond on-demand price and
2) being at most 10 percent more than the spot min-
imum cost (Tang et al., 2014). In our model, we use
this simple and effective bidding strategy.

2.2 Model Overview

Having uncertainties in our model, one of the most
appropriate techniques to solve it, is stochastic pro-
gramming (Birge and Louveaux, 2011). In this ap-
proach, uncertainty is usually characterized by a prob-
ability distribution on the parameters. In practice, it
can range in detail from a few scenarios (possible out-
comes of the data) to specific probability distributions
(Shapiro and Philpott, 2007). The general idea is to
divide the problem into at least two stages. In the first
stage, a decision is made and the expected cost is op-
timized, then in the next stage, the consequences of
that decision is compensated by a new decision, or
the recourse function.
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This problem is divided into two phases. In the
first phase, we generate some scenarios for the un-
certain cost and workload demand to find the optimal
number of reserved VMs for the reservation period
(the reservation period is one year). The scenarios are
generated based on a prediction of the actual work-
load. Then, in the second phase, which is also called
the rolling phase, the actual prices and workload de-
mand become known. So the optimization model run
every hour (the billing period of on-demand and spot
instances is calculated hourly by the cloud provider)
to determine the optimal number of on-demand and
spot VM in that time slot. The aim is to minimize the
operational cost while the execution time is the short-
est possible time. The main constraints of this opti-
mization problem are firstly being capable of giving
enough performance to serve the load for each time
slot, and not exceeding the deadline specified by the
user to complete a task.

Spot instances are not reliable resources, conse-
quently, if a VM terminate, an extra hour (at most) is
required to complete a task. Therefore the execution
time may extend more than expected if no arrange-
ment for such situations is introduced. In order not
to hurt the reliability, the task’s deadline is consid-
ered as a constraint. Such that the tasks with deadline
length of 1 hour or less cannot be assigned to spot
VMs. Also, we introduce a limitation that if a task
terminates once, spot VMs can no longer be allocated
to it because we are trying to greedily minimize exe-
cution time with minimum interruption of tasks.

3 PROBLEM FORMULATION

Both the first and second phase of the model have
common parameters and constraints, the only differ-
ence is the decision variables. The decision variables
are the number of each VM type provisioned under
different purchasing variants and pricing plans. See
Table 2 for notation. The decision variable xR

ik is the
number of reserved VM type i, subscribed to purchas-
ing variant k in the first stage, while xO

ik denotes the
number of operating VM type i with purchasing vari-
ant k. However, for the second phase model, xR

ik con-
verts to a parameter instead of a variable, and its value
is assigned by the first phase outcome.

Also decision variables xD
i and xS

i , respectively,
are the number of on-demand and spot VMs of type
i in the second phase. We have three provisioning
costs, formulated as follows:

• The total Reservation Cost, or the upfront cost of
reserving resources, where cR

ik is the price of VM

type i with purchasing variant k:

CR = ∑
i

∑
k

xR
ikcR

ik (1)

• The total On-demand cost, where cD
i is the price

of VM type i:

CD = ∑
i

xD
i cD

i (2)

• The total Spot cost, where cS
i is the price of VM

type i:
CS = ∑

i
xS

i cS
i (3)

The objective function z is the total expected pro-
visioning cost.

Min z = ∑
i

∑
k

cR
ik.x

R
ik + IEΩ[Φ(xR

ik,ω)] (4)

subject to:
xR

ik ∈ N (5)

where IEΩ[Φ(xR
ik,ω)] is the expected cost under

uncertainty Ω, which is a combination of all scenar-
ios. Φ is the recourse optimization problem, the ob-
jective of Φ(xR

ik,ω) is to minimize the cost under un-
certainty given scenario ω:

Minimize [∑
ω

(CD +CS)]+CR (6)

subject to (∀ ω) :

z≤MaxBudget (7)

TotalCPU ≥∑
t

ReqCPU
t (8)

TotalMemory≥∑
t

ReqMemory
t (9)

NonSpotCPU ≥ ∑
t:Lt≤1

ReqCPU
t

+∑
t

UrgentReqCPU
t

(10)

NonSpotMemory≥ ∑
t:Lt≤1

ReqMemory
t

+∑
t

UrgentReqMemory
t

(11)

xO
ik ≤ xR

ik (12)

The first constraint (7) states that the total provi-
sioning cost, or the objective function z, cannot be
greater than the maximum budget the customer spec-
ified for running their application.

Constraints (8) and (9) both ensure that the
amount of required resources for all tasks is satisfied
by the VMs acquired in the second stage. The in-
stance types comprise varying combinations of CPU
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Table 2: Notation of the problem.

Symbol Description

I set of VM Types
R set of VM resources or features; CPU and Memory
T set of Tasks
CapCPU

i CPU Capacity of VM type i
CapMemory

i Memory Capacity of VM type i
ReqMemory

t Amount of memory required for completing task t
ReqCPU

t Amount of CPU required for completing task t
UrgentReqMemory

t Amount of memory required for completing task t where t is terminated in the previous stage
UrgentReqCPU

t Amount of CPU required for completing task t where t is terminated in the previous stage
Lt time (hour) required for completing task t
K Set of reservation purchasing variants, all-, partial-, or no-upfront
MaxBudget User’s maximum budget
cR

ik Reservation Cost of VM type i subscribed purchasing variant k
xR

ik Number of reserved Vms type i subscribed purchasing variant k
xO

ik Number of Operation VM type i, subscribed purchasing variant k
cD

i On-demand Cost of VM type i
xD

i Number of on-demand VM type i
cS

i Spot Cost of VM type i
xS

i Number of Spot VM type i

and memory, and give the customer the flexibility to
choose the appropriate mix of resources for their ap-
plications. Therefore, each task can be run on mul-
tiple VMs simultaneously, just as each VM can host
multiple tasks of a particular application. TotalCPU
and TotalMemory are the available CPU and Memory
in stage i, and are defined as follows:

TotalCPU = ∑
ki

xO
ikCapCPU

i

+∑
i
(xD

i + xS
i )CapCPU

i

(13)

NonSpotCPU and NonSpotMemory are the CPU and
Memory of available reserved and on-demand VMs:

NonSpotCPU = ∑
ki

xO
ikCapCPU

i

+∑
i
(xD

i )CapCPU
i

(14)

Number of reserved and on-demand VMs should
be enough to fulfill the demand of two type of jobs,
constraints (10) and (11). First, jobs that have been
terminated in the previous stage, their requirement
is defined by UrgentReqMemory

t and UrgentReqCPU
t .

Second, tasks that are submitted in the current stage,
but their deadline time is less than an hour, as spot
termination can hurt the application’s performance.

The last constraint (12), limits the number of op-
erating reserved VMs (xO

ik) of each type to be less
than or equal to the number of reserved VMs (xR

ik).

As discussed earlier, the customer reserves a number
of VMs in the first stage and pays an upfront fee for
them, then in the second stage, these reserved VMs
can be used by the customer. So the number of used
VMs (operating VMs) in the next phase cannot be
greater than the number of reserved VMs in the first
phase.

4 MODEL IMPLEMENTATION

4.1 Data Set

Google cluster dataset (John Wilkes, 2011), released
in 2011, is measured on a heterogeneous 7000-
machine server cluster on a 29-day period involving
672,075 jobs and more than 48 million tasks. Work-
load demand arrives in the form of jobs. A job is com-
prised of one or more tasks, each of which is accom-
panied by a set of resource requirement. The dataset is
partitioned into six families, namely, machine events,
machine attributes, job event, task event, task usage,
and task constraints. Our focus on this paper is on the
task and job-related information from the job event
and task event categories. The workload dimensions
we take into account are task duration and deadline in
hour, CPU usage in core, memory usage in Gigabyte,
and the associated users to them. The duration of the
tasks is calculated as the difference of the time when
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it submitted and the time when it finishes the execu-
tion (Chen et al., 2014). The trace we utilize does
not contain information about task deadlines. Thus,
we assigned deadlines based on the time the task state
change to “dead” (task completed normally, fails, or
killed by the user or provider).

The Google Trace data has been obfuscated to
hide exact machine configuration. The resource sizes
have been linearly transformed (scaled) by dividing
the largest capacity of the resource on any machine in
the trace, both CPU and memory are normalized by
the same constant value (Reiss et al., 2011). These
normalized values are not themselves suitable for our
model, firstly because the resource usage values are
too small with multiple floating point values, which
slows down the optimization execution time. Sec-
ondly, this little demand makes the solver to choose
one or zero number of reserved VMs, that doesn’t al-
low us to precisely find the correlation of number of
VMs with other parameters. Since the absolute val-
ues are not available, a reasonable ratio is used. We
multiply both CPU and memory by 32, based on an
analysis of the largest VM size in Google and Ama-
zon EC2.

In this dataset, each job is associated with a partic-
ular user, and since we are viewing this problem from
the end-user perspective, we divide the data set into
multiple users with different workload demands and
attributes. User names are hashed and provided as an
opaque base64-encoded string; therefore, we have no
information about who the actual users are. Hence,
we assign a number to each user to more easily iden-
tify them in our analysis. Users with zero task sub-
mission during the one-month period in question, are
completely ignored in our analysis.

4.2 Minizinc Model

Our stochastic model is implemented in the MiniZ-
inc modeling language (Nethercote et al., 2007), us-
ing the COIN-OR CBC solver. We model the prob-
lem in two separate MiniZinc models. The first model
solves the problem of determining the number of re-
served VM before the unknown parameters become
known.

To represent the uncertainty of parameters, 20
workload scenarios are generated pseudo-randomly,
such that the workload for each hour was randomly
chosen from all 29 days at the same exact hour from
Google cluster data (John Wilkes, 2011). Similarly,
20 cost scenarios for on-demand and spot prices were
generated, based on the extracted data of April to
June 2017, from Amazon EC2 official website (Ama-
zon EC2, 2017). The 1-month (29 days) data was

split into 696, 1-hour stages, and the scenarios con-
tain the demand and price data for every stage. The
reason the stage length is chosen as 1 hour, is be-
cause the minimum VM prices are calculated hourly
by the cloud providers. The optimization model of the
first phase minimizes the operational cost while ful-
filling the performance of each task and meeting the
deadline for task’s execution time. The outcome of
this model is hence the optimum number of reserved
VMs, thereby allowing a user to guarantee resource
availability in advance for an extended period (e.g. 1
year).

In the second phase (rolling phase), the real work-
load and real prices of on-demand and spot VMs
become known. A single set of real workload de-
mand from our Google data set (John Wilkes, 2011)
is used with the VM prices of the prevalent IaaS cloud
provider, Amazon EC2 (Amazon EC2, 2017) over
May 2017. Based on these data and the determined
number of reserved VMs from the first phase, the out-
come of the second phase is the optimal number of
spot and on-demand instances and the actual cost in
every single stage, as well as the actual total cost over
all stages.

The model contains some approximations. Firstly,
not all instances of a particular type, in general, per-
form to exactly the same standards, because of vari-
ations in the physical hardware that is allocated for
them and possible multi tenancy (Mao and Humphrey,
2012). We use the minimum guaranteed performance
of EC2 instances as the baseline to ensure that suffi-
cient resources are available for each job. Secondly,
VM startup is not the same for all VMs and can affect
the execution time, however, (Mao and Humphrey,
2012) shows that in EC2, the VM startup time is rel-
atively constant across all instances, 100 seconds in
average, where requesting a pool of VMs to start. Al-
ternatively, in (Ali-Eldin et al., 2012) the start-up time
for all VMs is considered to be less than 1 minute. In
either case, because these times are a small fraction
of the 1-hour decision steps, we ignore this factor. Fi-
nally, the data transferring cost is not included in our
operational cost, because we use VMs from the same
regions, and there is no data transfer charge between
Amazon EC2 and other Amazon web services within
the same regions (Amazon EC2, 2017).

5 EXPERIMENTS

We need to investigate if the proposed model enables
end-users to create precise and cost effective provi-
sioning for jobs running in the cloud. To do that, we
will pursue and evaluate the following objectives. The
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first objective is to show that the results we get in an
uncertain environment are very close to the results if
the model has the perfect knowledge of future. Sec-
ond, we show that our model’s results are better than
other available options. Third, we cluster users and
show that our model works better for users with spe-
cific workload patterns.

5.1 Experimental Settings

In this case study, we address two popular type of
VMs, c4large and c4xlarge within the same region,
US-east. The c4 instances are the latest generation of
Compute-optimized instances, featuring the highest
performing processors and the lowest price/compute
performance in EC2 (Amazon EC2, 2017). However,
our approach can easily be extended to further VM
types.

The model runs 10 times for each user, and the av-
erage results are discussed in the next section. A Java
program is automating the runs and the time it takes
to complete each run, including (i) generating differ-
ent scenarios of the price and demand for the first
phase, (ii) running the first phase Minizinc model, (iii)
repeating the rolling phase Minizinc model for 696
time, and (v) writing the output results in an appro-
priate file, is 5-15 minutes for each individual user.

5.2 Experimental Results

We repeated our experiment for three different op-
tions, that are various combinations of Amazon EC2
pricing plans. The options are:

• Reservation-OnDemand-Spot option: This is the
main focus of this work. It considers all three pric-
ing plans.

• Reservation-OnDemand (RO): Using only reser-
vation and on-demand instances, a common trend
for most related work (Dı́az et al., 2017). There-
fore, it provides us with a basis comparison with
state-of-the-art.

• On-demand (O): The only pricing plan in this op-
tion is on-demand, the most expensive and flexi-
ble one.

For the ROS model, we consider two alternatives; one
is the main model that consists of uncertainty and ran-
dom scenarios, as explained in the previous section.
Another one is an omniscient ROS, which has the full
knowledge of the future, i.e. it is similar to the main
ROS option, but instead of having multiple uncertain
scenarios, its scenarios represent the actual price and
workload demand. Therefore, it has an extraordinary
advantage of knowing the exact future demand and

price. Although it is not a realistic model, it can be
used as an evaluation guidance tool that demonstrates
the optimal number of VMs and cost.

Figure 2 shows the total cost comparison between
the options for individual users. The highest total op-
erational cost belongs to the O and RO options, while
ROS and omniscient-ROS have the lowest total op-
erational cost, and the difference between their re-
sults is either zero, or very small. The omniscient-
ROS only gets around 1.5% better results on aver-
age, over all users, than ROS. Based on this compari-
son, two user categories can be recognized. One with
the exact same results for ROS and omniscient-ROS
and another with slight differences in the results. We
name the first category, perfectly-fitted (around 63%
of all users), and the second, imperfectly-fitted users
(around 37% of all users). Table 4 provides more de-
tails. In the imperfectly-fitted category, the difference
between ROS and omniscient-ROS ranges from 9%
(e.g. user 51) to 0.09% (e.g. user 86), and is around
3%, on average.

This indicates that although ROS does not know
the real future workload and makes a decision based
on random scenarios, it is still a reliable model, since
its results are very close to the optimal results.

More information can be seen in Table 3, which
shows number of VMs, over-provisioned and under
provisioned VMs, and total cost on average for all
users. Number of over-provisioned is the average
number of unused reserved VMs that are paid for but
are idle in some stages. On the other hand, number of
under-provisioned VMs is the sum of on-demand and
spot VMs that are allocated, because the number of
reserved instances is not enough to satisfy the work-
load demand.

Furthermore, ROS outperforms O and RO by
about 50% and 20%, on average over all users. This
indicates that choosing cloud providers with spot in-
stances, beside on-demand and reservation, can make
big cost savings for users. However for some users,
this difference is very little or even zero.

By investigating users with a lower than aver-
age difference in RO and omniscient-ROS, we find
that they have similar steady state workload patterns
(Varia, 2012). For such workload patterns, the opti-
mal number of reserved VMs covers all or most of
the demand, rather than on-demand and spot, and
because these two flexible pricing plans are not in-
volved, we see little difference in RO and omniscient-
ROS options. However, no uniform workload pattern
for users with differences above the average has been
identified.

A similar spiky workload pattern (Varia, 2012) is
found in common among users that have a below av-
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Figure 2: Total costs (USD) for each pricing option, for each user.

Table 3: Comparison of the average number of VMs, number of over/under provisioned VMs, and the total cost for all users
during the 696 stages.

Option Average number of VMs over all users Average Total Cost
Reserved Operating On-demand Spot Over-provisioned under-provisioned

Omni-ROS 7 5319 739 1490 23 2229 545.2
ROS 5 4073 746 2076 24 2823 553.39
RO 10 7170 1589 0 76 1589 651.02
O 0 0 6036 0 0 6036 1207

Table 4: Comparison of user characteristics.
User Category Average over all users

Memory Variance CPU variance Submission frequency
Perfectly-fitted 8.06 116.1 11.3

Imperfectly-fitted 40.9 142.9 6.5

erage difference between O and omniscient-ROS op-
tions. For spiky demand, it seems that the optimal so-
lution reserves no VMs and, instead, rents short-term
spot and on-demand VMs for completing tasks. How-
ever, this is strongly related to the availability and
price of spot instances in the spiked stages. No par-
ticular common workload pattern was found for the
users with above average difference.

Figure 3 shows two example users with steady
state (user 68:a) and spiky (user83:b) workload pat-
terns. The diagrams show the resources requested in
each stage during the one-month time slot for each
user.

One important observation is the tight correlation
of the total cost differences and the number of re-
served VM differences, which is 95% for ROS and
omniscient-ROS. Figure 4 shows the number of Re-
served VMs of different options, divided into the per-
fectly and imperfectly-fitted categories. The number
of reserved VMs for the users in the perfectly-fitted
category are very small, and are equal or very close to
the reserved VMs by omniscient-ROS.

Evidently, the number of reserved VMs chosen
by omniscient-ROS is the optimal numbers for this

problem, so when other options reserve the same
number, they get the exact same results. However,
when the solver reserves more or less VMs than
omniscient-ROS, the final total cost increases. This
is because reserving less VMs results in more oc-
currence of under-provisioning, while reserving more
VMs brings more over-provisioning incidences, and
therefore more cost. In Table 3, ROS reserves less
VMs than omniscient-ROS, on average, and therefore
has more under-provisioned VMs, while RO reserves
more VMs, and so has more over-provisioned VMs in
comparison to other options.

Another observation, indirectly related to the pre-
vious correlation, is that in the imperfectly-fitted cat-
egory, the resource usage variation is much higher,
while the task submission frequency is lower, com-
pared to the perfectly-fitted category. See Table 4.
This indicates that variation in CPU and memory
demand is an important factor in our optimization
model. The reason behind this, is that because uncer-
tain workload is generated randomly in the first stage,
and more variance is likely to bring less similarity be-
tween random and the real workload, so the first stage
decision is less accurate. In other words, the number
of reserved VMs are less close to optimal.

In order to further determine user workload char-
acteristics and their correlations with CPU and mem-
ory variance, we perform clustering on users, using an
off-the-shelf statistical technique, k-means clustering
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(a) Steady state workload pattern.

(b) Spiky workload pattern.

Figure 3: Two example users with completely different
workload patterns (a) user 68 and (b) user 83.

Table 5: Three classes and their distribution among all
users.

Cluster rate Centroids of users task features
CPU usage Memory Usage Duration

class1 66% 7.8 6.1 0.5
class2 32% 2.5 0.1 18
class3 4% 446 691 6

(Hartigan, 1975). The clustering was performed on
three important attributes: task’s CPU usage, memory
usage, and duration. We varied the number of clus-
ters from 2 to 10 and found that the best similarity
and dissimilarity score, within and between classes,
is achieved when 3 clusters were selected. The cen-
troids of the 3 clusters and their share among users are
shown in Table 5. Class 1 has medium resource usage
and short running tasks, while both class 2 and 3 are
long-running tasks, with small and large resource us-
age, respectively. In each class, 80% of user’s task
CPU and memory usage are below the centroid pro-
vided in Table 5.

In our dataset, no information of application or
task types is provided. However, in general, there
are two type of long-running tasks. First, user-facing
tasks that run continuously, so as to respond quickly

to user requests (class2). Second, compute-intensive
ones, such as processing web logs (class3). While
from Table 5, we see that users with short duration
and low resource usage (class1) tasks, such as in-
dex look up and search, dominate the user population,
which is consistent with related work (Mishra et al.,
2010).

As Figure 5 shows, most of the users in class 1 and
3, are among the perfectly-fitted users, around 65%
and 100%, respectively, while only 30% of class 2
users are perfectly-fitted.

Analysis of individual user’s temporal work-
load patterns within the same class of users shows
that overall, users with lower variances tend to sit
in the perfectly-fitted category while users in the
imperfectly-fitted category have higher variance.

6 RELATED WORK

The resource provisioning problem has been viewed
and solved from different perspectives (Meng et al.,
2010), (Li et al., 2015), with little attention from the
end-user’ view.

The paper closest to our work optimizes the cost
of VM provisioning in the cloud computing envi-
ronment from the end-user’s point of view (Chaisiri
et al., 2012) by an optimal cloud resource provision-
ing algorithm (OCRP) while considering both reser-
vation and on-demand pricing plans. Even though
the heterogeneity of VMs has been considered in the
problem formulation, by specifying the number of
VMs as the demand unit in their experiments, het-
erogeneity of VM has been implicitly denied. In
this work, spot pricing was completely ignored and
reservation cost is simplified as hourly cost. Another
work that also neglects spot VM in their optimiza-
tion problem is (Dı́az et al., 2017). In it, an opti-
mization technique, called LLOOVIA, is proposed to
minimize cost, while quarantining the required level
of performance. This work has been evaluated with
synthetic workloads and Wikipedia users’ workloads.
The characterization of the workloads are known and
therefore the number of reserved VMs are chosen
based on a known workload demand. A joint resource
provisioning approach that combines both VM and
bandwidth allocation is proposed in (Chase and Niy-
ato, 2015). The uncertainty of the problem is also
taken into account using stochastic programming. A
scenario reduction algorithm is used for scalability of
the problem. This work is useful and applicable for
both users and cloud providers.

In (Genaud and Gossa, 2011), a satisfactory trade-
off between cost and speed to process a set of inde-
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Figure 4: Number of Reserved VMs for individual users for different options.

Figure 5: Percentage classes in each category.

pendent jobs, is conducted from the end-users’ side,
but only the on-demand pricing model is taken into
account. The main focus of (Zhu and Agrawal, 2010)
is an automated and dynamic resource allocation ap-
proach, in the cloud environment, based on control
theory techniques. This problem is solved under con-
straints of resource budget and a fixed time limit for
a particular task. An autonomous elasticity controller
is proposed in (Ali-Eldin et al., 2012), it changes the
number of virtual machines allocated to a service,
based on both monitored load changes and prediction
of future work.

Most of the existing literature on cloud resource
provisioning focuses on deterministic formulations
over fixed horizons, where the scheduler has perfect
foresight (Teng and Magoules, 2010). Those that have
considered uncertainty in their problem, typically fo-
cus on just one aspect (Chaisiri et al., 2012), or use
very simple and artificial data (Zafer et al., 2012).
Pricing and VM heterogeneity are also neglected in
most of them. In our previous work (Tajvidi et al.,
2017), we solved a simple version of this problem,
while considering parameter uncertainty and hetero-
geneity of pricing plan and VM types. However we
simplified some complexity of the problem, for ex-
ample, the only optimization objective was cost and
the deadline was not modelled. The reservation cost
was calculated hourly (to make it comparable with
on-demand and spot price), which is not applicable
in real-world problems. The workload was not inves-
tigated as temporal workload and only two stages of
time were modelled.

7 CONCLUSION

In this paper, we have proposed an optimization strat-
egy which determines the number, type, and pricing
plan of VMs in multiple stages, to satisfy a user’s
workload demand and the deadline of tasks.

The experimental results shows that although the
user requirements have uncertainty, users can use our
model (ROS) to attain provisioning that is close to
that obtained with perfect foresight (Omni-ROS). We
also conclude that having spot instances beside on-
demand and reservation can make a big cost saving
for the users. Although the user’s workload pattern
is an important factor for getting better results, users
with lower variance in CPU and memory usage get
closer to optimal provisioning, in general. Finally,
based on the clustering we performed, we found the
majority of the users are allocated to class 1, with
short duration and medium resource usage and they
are mainly well-fitted to the ROS option. Similarly,
the lower variance users within each class get better
results.
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