Towards Distributed Model Analytics with Apache Spark

Onder Babur!, Loek Cleophas'? and Mark van den Brand!
LEindhoven University of Technology, NL-5612 AZ Eindhoven, The Netherlands
2Stellenbosch University, ZA-7602 Matieland, South Africa

Keywords:

Abstract:

Model-Driven Engineering, Model Analytics, Scalability, Distributed Computing, Apache Spark, Big Data.

The growing number of models and other related artefacts in model-driven engineering has recently led to the

emergence of approaches and tools for analyzing and managing them on a large scale. The framework SAMOS
applies techniques inspired by information retrieval and data mining to analyze large sets of models. As the
data size and analysis complexity goes up, however, further scalability is needed. In this paper we extend
SAMOS to operate on Apache Spark, a popular engine for distributed Big Data processing, by partitioning
the data and parallelizing the comparison and analysis phase. We present preliminary studies using a cluster
infrastructure and report the results for two datasets: one with 250 Ecore metamodels where we detail the
performance gain with various settings, and a larger one of 7.3k metamodels with nearly one million model

elements for further demonstrating scalability.

1 INTRODUCTION

The use of models as a basis for software
engineering—whether UML models used as a basis
for design and implementation, or meta-/models in
model-driven engineering (MDE)—has been expo-
nentially growing in recent years. This is witnessed
by e.g. the dramatic growth of models and related ar-
tifacts present both in open source such as the Git-
Hub repository (Kolovos et al., 2015; Hebig et al.,
2016) and in industrial MDE ecosystems (Babur et al.,
2017). Analogously to earlier developments in source
code analytics and text mining where very high vo-
lumes of data have long emerged as a reality and a
challenge, this development necessitates similar ap-
proaches for analyzing models at larger scales. At the
same time, models inherently display more complex
structure, in general being graph-structured instead of
the trees with (limited) cross-links typically encounte-
red as representations of source code and natural lan-
guage. Models in turn demand efficient and scalable,
even if approximate, techniques for the analysis—
versus comparing them one-to-one using exact but
expensive techniques (graph edit distance, similarity
flooding (Melnik et al., 2002), etc.). As a result, ana-
Iytics becomes more complex for the setting of mo-
dels, both in terms of techniques needed, and of com-
putation effort required. Note that the requirements
and potential added value for (big) data analytics in
the general sense (i.e. not for models) has for long

Babur, O., Cleophas, L. and Brand, M.
Towards Distributed Model Analytics with Apache Spark.
DOI: 10.5220/0006735407670772

been widely recognized by the community (LaValle
et al., 2011; Zikopoulos et al., 2011), and is not furt-
her elaborated in this paper.

One way to improve the performance of model
analytics (for complex analyses of large datasets) is
to look at distributed settings, versus running in a se-
quential setting on a single machine. There recently
have been a few efforts of exploiting distributed com-
puting in the MDE community, though in a different
context for model transformations (Benelallam et al.,
2015; Burgueiio et al., 2016). In this paper, we ske-
tch how the existing model analytics framework SA-
MOS can be lifted from the latter setting to a dis-
tributed setting using the Apache Spark framework
for distributed computation. In Section 2 we ske-
tch SAMOS, while Section 3 does the same for the
Apache Spark framework. Section 4 considers how
SAMOS can be modified and extended to operate in
the distributed setting for potentially higher perfor-
mance, while Section 5 discusses initial results for
two sets of Ecore metamodels from a proof of con-
cept, i.e. a version of SAMOS lifted to the Apache
Spark framework, without any specific optimizations:
one dataset with 250 Ecore metamodels reporting the
performance gain with various settings, and a larger
one of 7.3k metamodels with nearly one million mo-
del elements for further demonstrating our scalability.
Section 6 concludes the paper with several indications
for future work.

767

In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 767-772

ISBN: 978-989-758-283-7

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MOMAJ3N 2018 - Special Session on Model Management And Analytics

<:> NLP

Synonym

Tokenizati .
okenization detection

()

Filtering

Extraction Features .
scheme PN Ma.tchllng scheme _ _>l
Weighting scheme
N-grams i
Set of models Metrics .
VSM
Data selection; Automated extraction Dist
filtering_~ ™ Inferred < istance

Clone~— clusters
detection /

Re ositor
& Manual
management
inspection

Domain
anaIyS|s

Dendrogram

<€—— calculation

«

Classification €———

Analysis €——

Flgure 1: Overview of SAMOS workflow.

2 BACKGROUND: MODEL
ANALYTICS FRAMEWORK

We outline here the underlying concepts of SA-
MOS (Babur, 2016; Babur et al., 2016), a framework
for large-scale model analytics, inspired by the in-
formation retrieval (IR) and machine learning (ML)
domains. IR deals with effectively indexing, analy-
zing and searching various forms of content inclu-
ding natural language text documents (Manning et al.,
2008). As a first step for document retrieval in ge-
neral, documents are collected and indexed via some
unit of representation. Index construction can be im-
plemented using a vector space model (VSM) with the
following major components: (1) a vector representa-
tion of occurrence of the vocabulary in a document,
named term frequency, (2) zones (e.g. ’author’ or
title’), (3) weighting schemes—such as inverse do-
cument frequency (idf)—and zone weights, (4) Natu-
ral Language Processing (NLP) techniques for hand-
ling compound terms and for detecting synonyms and
semantically related words. The VSM allows trans-
forming each document into an n-dimensional vector,
thus resulting in an m x n matrix for m documents.
Over the VSM, document similarity can be defined as
the distance (e.g. euclidean or cosine) between vec-
tors. These distances can be used for identifying si-
milar groups of documents in the vector space via an
unsupervised ML technique called clustering (Man-

768

ning et al., 2008).

SAMOS applies this workflow to models, starting
with a metamodel-driven extraction of features. Fe-
atures can be, for instance, singleton names of mo-
del elements (very similar to the vocabulary of docu-
ments) or n-gram fragments (Manning and Schiitze,
1999) of the underlying graph structure. N-grams ori-
ginate from computational linguistics and represent
linear encoding of (text) structure. In our context, an
example n-gram for a UML class diagram for n = 2
would be a Class containing a Property (Babur and
Cleophas, 2017). SAMOS computes a VSM via com-
parison schemes (e.g. whether to check types), weig-
hting schemes (e.g. Class weight higher than Pro-
perty) and NLP (stemming/lemmatization, typo and
synonym checking, etc.). Applying various distance
measures suitable to the problem at hand, it then ap-
plies different clustering algorithms (via the R statis-
tical software) and can output automatically derived
cluster labels or diagrams for visualization and ma-
nual inspection, thereby enabling exploration of large
model sets. Figure 1 illustrates the workflow, sho-
wing key workflow steps of the workflow as well as
application areas such as domain analysis and clone
detection.

A sample output dendrogram is given in Figure 2
from (Babur et al., 2016). Given a domain analy-
sis scenario, SAMOS is used to hierarchically group

metamodels in the ATL Ecore Zoo!. The interpre-
tation of this visualization is as follows: the num-
bers on the dendrogram correspond to the metamodels
in the repository, which are gathered on (sub-)trees.
The height of the tree joints represents the distance
of the underlying nodes or sub-trees. Items in a sub-
tree have similar domains (e.g. conference manage-
ment metamodels), while the hierarchical structure of
the dendrogram further reflects the intra-cluster simi-
larity (e.g. word and excel subtrees under the large
office subtree.

<

- r
© o
@ | ¥ ° 8
a8
<+
8y
b
= a3
S ot =<3
° @o S ©
B ® &
. eamp| o =
=
Word Excel
Bibliography ~ Conference N/

Management Office

Figure 2: Excerpt of the dendrogram for domain clustering
the ATL Zoo (Babur et al., 2016).

3 BACKGROUND: APACHE
SPARK

Apache Spark? is an open-source distributed data pro-
cessing engine (Zaharia et al., 2016), also used for Big
Data Analytics. It offers a stack of technologies for
both fundamental components such as cluster mana-
gement and fault-tolerant distributed data storage (in
the form of Resilient Distributed Datasets — RDDs),
and for advanced ones such as streaming and distri-
buted machine learning. Spark further provides rich
APIs for various programming languages including
Java, Python and Scala. It improves on the pre-
viously popular MapReduce (Dean and Ghemawat,
2008) computational paradigm (e.g. on Apache Ha-
doop?) with a more efficient distributed data and me-
mory management system, leading to a higher com-
parative performance and scalability (Zaharia et al.,
2016).

Uhttp://web.emn. fr/x-info/atlanmod/index. php?title=Ecore
Zhttps://spark.apache.org/
3http://hadoop.apache.org/

Towards Distributed Model Analytics with Apache Spark

Spark typically operates with a master driver
node, which coordinates several worker nodes (see Fi-
gure 3). Each worker node is allocated parallel tasks
to process the specific parts of the distributed data
(e.g. on the distributed file system). A central cache
in each worker node can further improve efficiency by
for instance maintaining some data in memory for fas-
ter access in multiple cores and for repeated/iterative
tasks.

Spark Driver Master

Worker Nodes ’ o —
u—“ Tasks | I "I-u Tasks | "I-u Tasks | "I-u Tasks | u-u Tasks |
Cache ‘ Cache
RDD1-Blockl RDD1-Blockl RDD1-Blockl

RDD1-Block2 RDD1-Block3 RDD1-Block3 RDD1-Block3 RDD1-Block4
RDD1-Block4 RDD1-Block4 RDD1-Block5 RDD1-Block5 RDD1-Block5

Worker Node 1 || Worker Node 2 || Worker Node 3 || Worker Node 4 Worker Node 5

Cache

Cache ‘ Cache

RDD1-Block2 RDD1-Block2

Figure 3: Overview of Spark architecture*.

4 DISTRIBUTED VSM
COMPUTATION

As outlined in Section 2, SAMOS relies on the cal-
culation of a vector space by comparing the extracted
features of each model against the set of all features
(i.e. columns of the vector space). We can identify
several components of this approach:

e extraction of desired features from the models,
mapping each model to the feature set P;,

e calculation of the set of all unique features (F, di-
mensions of the VSM),

e given F', comparing each feature in P, against each
feature in F to calculate a row or vector in the
VSM.

The vector represents the model in the high-
dimensional vector space, to be used for distance cal-
culation and other statistical analyses. The bottle-
neck of this approach is the quadratic number of fea-
ture comparisons (in contrast with the previous steps
which have linear complexity), which makes this the
target for our parallelization effort to increase scala-
bility. Note that the efficiency and scalability of the
distance calculation for the resulting large sparse ma-
trix is a relatively lesser problem and left as future
work.

“http://spideropsnet.com/site1/blog/2014/12/09/igniting-
the-spark/

769

MOMAJ3N 2018 - Special Session on Model Management And Analytics

On the other hand, thinking in the context of the
Spark architecture (cf. Figure 3), we can map our ap-
proach to the distributed setting as follows:

e data: feature sets (P;’s) residing as distributed
data (i.e. RDDs of model-feature pairs),

e cache: maximal feature set (F') precomputed and
distributed to each worker node to be held in me-
mory cache,

o tasks: feature comparison as the atomic unit of
parallel execution.

While feature-to-feature comparison is the atomic
unit for parallelization in this setting, for practical re-
asons we aim for a coarser granularity: we perform
a single pass for each feature, comparing it with the
maximal set. Each parallel task in return consists of
(1) pair-wise comparing a feature p in P; versus F' and
computing an intermediate vector, and (2) computing
the final VSM vector for the corresponding model,
e.g. via summing the intermediate ones (frequency
setting of SAMOS (Babur and Cleophas, 2017)). To
exemplify, a model consisting of m features is pro-
cessed m-way and eventually integrated to calculate a
single row of the VSM corresponding to that model.

Note that a great deal of the necessary functiona-
lity for distributed operation are provided by Spark:
partitioning and distribution (shuffling) of the data,
synchronisation of the tasks and the workflow, data
collection and I/O, and so on. The necessary modifi-
cations for SAMOS were mostly wrapping the related
building blocks (e.g. parsing and extraction, feature
comparison) into parallel Spark RDD operations with
minimal glue code around them.

S PRELIMINARY RESULTS AND
DISCUSSION

We performed some preliminary experiments for our
technique. First of all, we used SURFSara 5 the com-
putational infrastructure for ICT research in the Net-
herlands. SURFSara provides a Hadoop cluster with
Spark support, which consists of 170 data/compute
nodes with 1370 CPU-cores for parallel processing
and a distributed file system with a capacity of 2.3
PB.

Next, as for SAMOS, we chose bigrams of attri-
buted nodes (for the clone detection scenario (Babur,
2018)), as one of the more computationally intensive
setting (e.g. compared with extracting simple word
features for domain analysis (Babur et al., 2016)).

Shttps://www.surf.nl/en/about-
surf/subsidiaries/surfsara/

770

As for the dataset, we mined GitHub for (1) a limi-
ted set of 250 Ecore® metamodels, and (2) a large
set of 7312 Ecore metamodels (after exact duplicates
and files smaller than 2KB removed). Table 1 shows
some details on the sizes of the two datasets. A furt-
her SAMOS framework setting to mention is that we
have turned off expensive NLP checks for semantic
relatedness and synonymy for this preliminary expe-
riment.

Normally, we have a simplistic all or none stra-
tegy for NLP-caching; for small datasets we iterate
over all the model elements to compute and keep in
memory the word-to-word similarity scores (i.e. full
caching). For the distributed execution we have disa-
bled this feature as we cannot fit the relevant data for
very large model sets (the goal is to process tens of
thousands of models) into the memory, so we comple-
tely disabled NLP-caching. As future work, we plan
to investigate various more sophisticated approaches
to caching to circumvent this issue.

Table 1: Description of the datasets: number of metamo-
dels, total file size and number of model elements.

dataset | #models | file size | #model elem.
1 250 4.8MB ~50k
2 7312 133.6MB ~1 million

Performance for Dataset 1. On dataset 1, we ran
the single-core local version of SAMOS, with and
without NLP-caching, and the distributed version
with 1, 10, 50, 100 and 250 and 500 executors wit-
hout NLP-caching. Figure 4 depicts the results. For
the single-core case, local execution has the best
performance, especially with NLP-caching enabled.
We have included the single-core distributed case to
roughly assess the overhead: 17.1 hours (distributed)
versus 13.8 hours (local). It is evident that as the num-
ber of executors increase, the performance increases
as well, though with diminishing returns.

Performance for Dataset 2. As a bigger challenge
for our approach, we made an attempt to run data-
set 2 with the same (expensive) settings as above.
We could argue going for more approximate, hence
cheaper, settings (unigrams instead of bigrams, igno-
ring instead of including attributes, etc.) for such
a large dataset but we performed this experiment in
order to load-test and assess the limits of our techni-
que. We successfully calculated the VSM using a to-
tal of ~1500 executors (215 executors with 7 cores
and 8GB memory each) processing the 5000-way par-
titioned data on SURFSara and obtained the resulting

Shttps://www.eclipse.org/modeling/emf/

Run time vs. # executors

Mode of Execution
—— local non—-cached
I local cached
distributed non—cached

15

10

Run time (hours)

o

100 200 300 400 500

Number of executors

Figure 4: Performance for dataset 1.

VSM (5000-part on the distributed file system) in ap-
proximately 17.9 hours.

Discussion. The results indicate that the distribu-
ted execution mode has the potential to increase the
applicability of SAMOS for large datasets. We can
consider this as a first but important step towards the
in-depth analysis of thousands of models for applica-
tion scenarios such as repository mining (notably our
~7k Ecore metamodel set from GitHub and the ~93k
Lindholmen UML dataset (Hebig et al., 2016)), large-
scale clone detection and model evolution studies.

Given the preliminary nature of this work, there is
certainly a lot of room for further optimization. These
would involve not only optimizations with respect to
the inner mechanisms of Apache Spark, but also im-
provements within SAMOS, which is itself a research
prototype. Nevertheless, to our knowledge we do not
know of another comparable model analytics appro-
ach or tool in the literature which is capable of such
scalability.

Threats to Validity. In this work, we only deal
with VSM calculation (which we assume to be the
major bottleneck) and leave tackling the rest of the
workflow—such as distance calculation and statistical
analyses—as future work. We plan to proceed with
parallel or scalable techniques for this as well. Anot-
her threat to validity is that our approach at this point
has not been tried on larger scales, so it should be
investigated how it performs with e.g. hundred thou-
sands of models towards Big Data.

Towards Distributed Model Analytics with Apache Spark

6 CONCLUSION AND FUTURE
WORK

In this paper we present a novel approach for distribu-
ted model analytics. We have extended the SAMOS
framework to operate on Apache Spark infrastructure
and exploit its powerful distributed data storage and
processing facilities. Using the SURFSara cluster, we
have performed preliminary experiments using two
sets of Ecore metamodels. On the smaller one, we
have reported in detail the performance of the diffe-
rent execution modes and number of executors. For
the larger one, we have tested the scalability of our
approach in the case of nearly a million model ele-
ments.

There is a large volume of potential future work.
The immediate next step would involve extending the
SAMOS workflow with scalable, distributed techni-
ques for distance calculation and statistical analyses.
More advanced statistical analyses, including pre-
dictive and prescriptive ones, are among the notable
targets for future work. Noting the benefits of NLP-
caching, we also would like to investigate compro-
mising NLP-caching strategies, applicable for large
amounts of data. Moreover, we believe there is a lot
of room for optimization for this approach, which can
be considered in parallel to the other proposed items.
A more in-depth discussion of the distributed vs. lo-
cal execution in terms of performance gain, optimal
number of executors, etc. would also be beneficial.

ACKNOWLEDGMENTS

This work is supported by the 4TU.NIRICT Rese-
arch Community Funding on Model Management and
Analytics in the Netherlands. We also would like to
thank SUREF, the collaborative ICT organisation for
Dutch education and research, for providing us with a
computational infrastructure and support.

REFERENCES

Babur, O. (2016). Statistical analysis of large sets of mo-
dels. In 31th IEEE/ACM Int. Conf. on Automated Soft-
ware Engineering, pages 888—891.

Babur, 0. (2018). Clone detection for ecore metamodels
using n-grams. In The 6th International Conference
on Model-Driven Engineering and Software Develop-
ment, to appear.

Babur, O. and Cleophas, L. (2017). Using n-grams for the
automated clustering of structural models. In 43rd
Int. Conf. on Current Trends in Theory and Practice
of Computer Science, pages 510-524.

771

MOMAJ3N 2018 - Special Session on Model Management And Analytics

Babur, O., Cleophas, L., and van den Brand, M. (2016).
Hierarchical clustering of metamodels for compara-
tive analysis and visualization. In Proc. of the 12th
European Conf. on Modelling Foundations and Appli-
cations, 2016, pages 3—18.

Babur, O., Cleophas, L., van den Brand, M., Tekinerdogan,
B., and Aksit, M. (2017). Models, more models and
then a lot more. In Grand Challenges in Modeling, to
appear.

Benelallam, A., Gémez, A., Tisi, M., and Cabot, J. (2015).
Distributed model-to-model transformation with ATL
on MapReduce. In Proc. of the 2015 ACM SIGPLAN
Int. Conf. on Software Language Engineering, pages
37-48. ACM.

Burgueio, L., Wimmer, M., and Vallecillo, A. (2016). To-
wards distributed model transformations with LinTra.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107-113.

Hebig, R., Ho-Quang, T., Chaudron, M. R. V., Robles, G.,
and Fernndez, M. A. (2016). The quest for open
source projects that use UML: mining GitHub. In
Proc. of MODELS 16, pages 173-183. ACM.

Kolovos, D. S., Matragkas, N. D., Korkontzelos, 1., Anani-
adou, S., and Paige, R. F. (2015). Assessing the use
of eclipse mde technologies in open-source software
projects. In OSS4MDE@ MoDELS, pages 20-29.

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., and
Kruschwitz, N. (2011). Big data, analytics and the
path from insights to value. MIT sloan management
review, 52(2):21.

Manning, C. D., Raghavan, P., and Schiitze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press, New York, NY, USA.

Manning, C. D. and Schiitze, H. (1999). Foundations of
Statistical Natural Language Processing. MIT Press.

Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Simi-
larity flooding: A versatile graph matching algorithm
and its application to schema matching. In Proc. of the
18th Int. Conf. on Data Engineering, pages 117-128.
IEEE.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust,
M., Dave, A., Meng, X., Rosen, J., Venkataraman, S.,
Franklin, M. J., et al. (2016). Apache Spark: A unified
engine for big data processing. Communications of the
ACM, 59(11):56-65.

Zikopoulos, P., Eaton, C., et al. (2011). Understanding big
data: Analytics for enterprise class hadoop and stre-
aming data. McGraw-Hill Osborne Media.

772

