
Using Amplitude Modulation for Extracting Gait Features 

Abdulhakim Elkurdi, Ipek Caliskanelli and Samia Nefti-Meziani  
Autonomous Systems and Advanced Robotics Centre, Salford University, Manchester, U.K. 

Keywords: The Gait Analysis, Spatiotemporal Features, Amplitude Modulation, Classification Technique.  

Abstract: Feature extraction for gait analysis has been explored widely over the past years. The set of static and/or 
dynamic skeleton parameters which are obtained from tracking body joints (i.e. limbs and trunk) are initially 
pool of gait features extraction. The challenge of gait feature extraction is to reduce the noise in the row data 
which is due the computational complexity of determination of the gait cycle and sub-phases of the gait 
cycle, correctly. Although marker-based motion capture systems are highly accurate, they often only used in 
laboratory environments which leads to a constrained method. Alternative products such as MS Kinect 
overcome the limitations of the motion capture systems by providing low-cost, moderate accuracy with 
flexibility of quick installation even in residential settlements. The level of accuracy of the MS Kinect 
camera for 3D skeleton points can be increased by using pre-processing techniques which helps to 
overcome the jitter and nose in data. The proposed method modifies the gait walk signal using amplitude 
modulation (AM) technique to extract high predictive power of gait features without the need of gait cycle 
determination. Experimental results on 14 health subjects and 3 different types of walking speeds shows that 
AM technique provides 100% correctly classified instances using support vector machine (SVM) and 
decision tree (DT) classifiers, while 97.6% with k-nearest neighbour (k-NN) classifier. 

1 INTRODUCTION 

Human gait analysis is an attractive subject 
especially for clinical purposes. The vision tracking 
systems play a main role for tracking and monitoring 
the 3D skeleton position (Clark et al., 2015). 
Marker-less MS Kinect provides up to 25 joints 
position during motion. However, due to the marker-
less nature of Kinect cameras cause such systems to 
suffer from noise. The injected noise can be related 
to various reasons such as body's parts make itself-
occlusion, relative speed of joints to data rate of the 
Kinect during tracking, etc. This reduces the 
accuracy of the Kinect outcome as opposed to a 
marker-based motion capture system. Although the 
level of accuracy is the main bottleneck for Kinect 
cameras, they are cost effective and easy to install in 
residential settlements (Staranowicz et al., 2015). 

Recently, human computer interaction that is 
based on 3D data has been used widely among of 
researchers (Li et al., 2015). The objective of 
building 3D skeleton-based human representations is 
to extract compact, discriminative descriptions to 
characterise a human’s attributes from 3D human 
skeletal information. 

The main goal of this research is to effectively 
extract gait features from positional lower limbs 
using the amplitude modulation (AM) technique in 
order to classify gait speeds. The efficiency of a 
classifier can be affected by the high predictive 
power of the classifier, which is related to the 
success of the feature extraction to define the 
discrimination between the classes. The human gait 
analysis is categorised under three groups as gait 
kinematics, gait kinetics and electromyography (Tao 
et al., 2012).  

This study exploits the spatiotemporal gait 
analysis which belongs to kinematic measurements 
for extracting the gait features. The proposed 
method is based on the 3D skeletal data, which is 
called modified gait signal using AM. Consequently, 
the gait features are extracted from the modified gait 
signal namely, modulation index (D) and baseband 
frequency of gait signal (fg). The parameters of the 
modified gait signal are used for classifying the 
three kinds of walk speeds (slow, normal and fast 
walk speeds). In classification stage, a comparison 
between DT, SVM and k-NN classifiers is 
conducted and efficiency of each classifier is 
evaluated based on confusion matrix and ROC curve 
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to calculate the accuracy, sensitivity, specificity and 
area under curve (AUC). The experimental results 
show that the extracted features using proposed AM 
method is more efficient than the gait features which 
are extracted using spatiotemporal gait analysis in 
walking speed classification.  

The rest of this paper is structured as follows. 
Sec. 2 reviews the related work on spatiotemporal 
gait analysis and gait features extraction, Sec. 3 
covers the proposed amplitude modulation technique 
for gait features extraction. The experimental setup 
and results are presented in Sec. 4 and we conclude 
in Sec. 5. 

2 REALTED WORK 

2.1 Gait Cycle Determination 

Gait cycle is defined as the distance between two 
consecutive strike heels of the same leg (Tao et al., 
2012). The gait cycle composites of two main 
phases; stance phase and swing phase. Fig.1 
illustrates a full gait cycle with a set of sub-stages 
namely initial contact, loading response, mid stance, 
terminal stance, pre-swing, initial swing, toe-off, 
mid swing, terminal swing. 

 

Figure 1: Full gait cycle limited between two strike heels 
of the same leg. 

In (Nguyen et al., 2016 ) detects the gait cycle 
from the horizontal distance between the left and 
right legs during forward walking to the MS Kinect. 
The author shows exactly that the maximum 
distances between both legs (which correspond to 
state of legs) are farthest apart, while minimum 
horizontal distance between legs are closed to each 
other. Another study uses a different technique to 
calculate the full gait cycle is based on spectral 
signal analysis and detection technique of zero-
velocity crossing (Wang et al., 2015). 

2.2 Spatiotemporal Gait Parameters 

The spatiotemporal gait parameters include gait 
speed, gait rhythm, stride length, step length, step 
width, time of single and double support stages and 
duration of gait cycle (Kim & Son, 2014). 
Researchers have conducted a wide range of studies 
on gait parameters by collecting data from lower 
body limbs. (Clark et al., 2013) uses skeletal data to 
assess step time, step length, stride time, stride 
length and speed gait. The results show increased 
accuracy in stride length, step length and gait speed. 
(Auvinet et al., 2015) calculates spatiotemporal gait 
parameters based on the step length as a maximum 
distance between ankles, stride length by doubling 
the step length, and gait speed by using stride length 
over MS Kinects data rate. The authors use these 
features in biometric recognition using three 
different classifiers. (Dolatabadi et al., 2014) 
determine the two main phases of gait cycle (stance 
and swing) automatically from the movement of the 
ankle joint in the z-axis.  

The spatiotemporal gait features can be 
calculated accordingly as the following equations 
illustrate: ܵ݌݁ݐ ݄ݐ݈݃݊݁ ൌ ݔܽܯ ௫ሺܴ݂݂݁ݐ݋݋௜െ  ௜ሻ (1)ݐ݋݋݂݁ݐ݅ݏ݋݌݌݋

݁݀݅ݎݐܵ ݄ݐ݈݃݊݁ ൌ ௫ݔܽܯ ሺܴ݂݂݁ݐ݋݋௜െ  ௜ାଵሻ (2)ݐ݋݋݂݂ܴ݁

݈݁ܿݕܥ ݁݉݅ݐ ൌ ܪ ௜ܵ െ	ܪ ௜ܵାଵ						 (3) ܵ݁ܿ݊ܽݐ ݁݉݅ݐ ൌ ܪ ௜ܵ െ	ܶ ௜ܱ		 (4) ܵ݃݊݅ݓ ݁݉݅ݐ ൌ ܶ ௜ܱ െ	ܵܪ	௜ାଵ		 (5) ݌ݑݏ_݈ܾ݁ݑ݋ܦ ܶ ൌ ሺܵܪ௜ െ ܶ ௜ܱሻܴ ∩ ሺ	ሺܵܪ௜െ ܶ ௜ܱሻܮ 
(6) 

݁ܿ݊݁݀ܽܥ ൌ ݎܾ݁݉ݑ݊ ݂݋ /݌݁ݐݏ ݁݉݅ݐ ሺ݉݅݊ሻ (7) 

݀݁݁݌ܵ ൌ ܿܽ݀݁݊ܿ݁ ൈ  (8) ݄ݐ݈݃݊݁	݌݁ݐݏ	

Where ݔܽܯ௫ is the maximum distance between 
two heel's strikes in horizontal direction, i is the 
number of frames, HS is the heel strike, R for right 
foot, L for left foot and TO is the toe off, time 
represents time taken for the process whereas length 
is the distance covered by the skeletal joint motion 
during the walk as Fig.2 illustrates. 
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Figure 2: Detection of a complete gait cycle by tracking 
the distance between the left and right ankle joints (the top 
curve), and tracking the vertical displacement of the left 
and right hips (the bottom curve). The gait cycle contains; 
initial contact (IC), mid stance (MS), strike heel (SH), toe 
off (TO) and initial swing stages (ISW). 

2.3 Classification Technique 

Data classification techniques have been used in 
many different fields including human gait 
classification, representation and recognition using 
MS Kinect. In classification stage, researchers use 
different classifiers. The Nave Bayes Neural 
Network (NBNN) classifier is used in (Yang & Tian, 
2012) for classifying the human actions using the 
skeleton data from MS Kinect. (Andersson & de 
Araújo, 2015) uses three types of classifiers for gait 
attributes using MS Kinect, the authors achieved the 
highest level of accuracy with SVM classifier, 
followed by k-NN classifier, and then with the MLP 
classifier. In (Arai & Asmara, 2014), 3D skeletal 
model is extracted by using MS Kinect video data to 
classify gait gender, and the result shows that 
83.75% and 76.25% classification rate using SVM, 
Nave Bayes, respectively. 

3 PROPOSED METHOD 

3.1 Modified Gait Signal in Time 
Domain 

 
The modified signal ܯሺݐሻ is generated by 
multiplication of the reference signal to the gait 
signal g(t) for obtaining the relationship as in (9). 
The reference signal is chosen as a sinusoidal signal 
with fixed parameters (Ac ൌ 1	m, ௖݂ ൌ 7.5	Hz	), 
these values let the spectrum of signals in the medial 
of the graph; this is related to the sensor data rate. 
While, gait signal g(t) is generated from the 
horizontal distance between ankles during walk.  

Mሺtሻ ൌ Ac ሺ1 ൅ D. gሺtሻሻ	coswୡ 	t (9) 

Where, D is the depth of modification and can be 
written as:  ܦ ൌ ݃ܣ /  (10) ܿܣ	

Where Ag is the amplitude of the gait signal, which 
can be substituted by [ 1/2 (ݔܽܯ	݌_݌) - 1/2  
 while the amplitude of reference signal ,[  (݌_݌	݊݅ܯ)
Ac can be replaced by [  1/2  (ݔܽܯ	݌_݌) +  1/2  
  .as Fig. 3 shows  ,[(݌_݌	݊݅ܯ)

 

Figure 3: Modified gait signal using AM technique in time 
domain. 

Finally, the depth of modification (D) in 
percentage can be obtained by dividing the 
amplitude of gait signal (Ag) over the amplitude of 
the reference signal (Ac), see (11). ܦ ൌ ሾሺݔܽܯ ሻ݌_݌ െ ሺ݊݅ܯ	݌_݌ሻሿ/  ሾሺݔܽܯ ሻ݌_݌ ൅ ሺ݊݅ܯ ሻሿ݌_݌ 	ൈ 	100				ሺ%ሻ (11) 

The modification depth (D) is extracted from ܯሺݐሻ	for three different kinds of walking speeds, as 
described in Algorithm 1. 

Algorithm 1. Depth Modification (D): 

Input: 
Input 1 = Gait signal 
Input 2 = Reference signal 
Processing & Output: 
D = Input1 amplitude  
Input2 amplitude 
while i <= N do 
IF Speed = = Slow walk 
then D-slow = D 
else IF Speed = Normal walk 
then D-normal = D 
else 
Speed = Fast walk 
then D-fast = D 
end IF 
end while 
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3.2 Modified Gait Signal in frequency 
Domain 

The spectrum of the modified gait signal on the 
frequency domain is achieved by using Fast Fourier 
Transformer to analyse the complex signal to its 
original components. The spectrum of modified gait 
signal consists of three components, namely upper 
side band component which has the highest 
frequency ሺݓ௖ +ݓ௚), lower side band component 
which located at the lowest frequency (ݓ௖ - ݓ௚), and 
the middle component which is at ݓ௖, as shown in 
Fig.4. 

 

Figure 4: The spectrum of modified gait signal in 
frequency domain. 

The spectrum of modification signal is extracted 
by using (9) which yields (12).  				Mሺtሻ ൌ 	Aୡ coswୡt ൅	Aୡ coswୡt 		gሺtሻ												ሺ12ሻ 

Where, the ݃ሺݐሻ is the gait signal, and can be 
written as,	݃ሺݐሻ 	ൌ  to obtain the ,	ݐ௚ݓ	ݏ݋ܿ	௚ܣ	
following equation: 	ܯሺݐሻ ൌ ݐ	௖ݓݏ݋ܿ	௖ܣ	 ൅	ܣ௖	ܿݓݏ݋௖ݐ	.  ሺ13ሻ			௚ݓݏ݋ܿ	௚ܣ

Finally, by using the multiplication concept of 
cosine functions in (13), the components of the 
modified gait signal is formed as in (14). Where, the 
angular frequencies	ݓ௖, and ݓ௚is simplified into ௖݂, 
and ௚݂ respectively. 		ܯሺݐሻ ൌ 	ݏ݋௖ܿܣ	 ௖݂ ൅ 1/2ሺܣ௖ܣ௚ cos൫ ௖݂ െ ௚݂൯ ൅	1/2ሺܣ௖ܣ௚cos	ሺ ௖݂ ൅ ௚݂ሻሻ                                      (14) 

Where ௖݂, is the frequency of the carrier signal, 
which is always constant, while ௚݂ is the frequency 
of the gait signal which varies according to the 
number of gait cadence per a certain period of time. 
Algorithm 2 describes the baseband frequency 
implementation in detail which is related to the gait 
speed. 

 

 

Algorithm 2. Baseband frequency (fg): 
Input: 
Input 1 = Gait signal @ fg 
Input 2 = Reference signal @ fc 
Processing & Output: 
fg = BW/2 
while I <= N do 
For Speed = Slow walk do 
IF (fc+fg @ max3) > fc @ max2 > (fc- fg 
@ max1)  
then f_slow = (fc+fg)-(fc-fg) 
end IF 
For Speed = Normal walk do 
IF (fc+fg @ max3) > fc @ max2 > (fc- fg 
@ max1)  
then f_normal = (fc+fg)-(fc-fg) 
end IF 
For Speed = Fast walk do 
IF (fc+fg @ max3) > fc @ max2 > (fc- fg 
@ max1)  
then f_fast = (fc+fg)-(fc-fg) 
end IF 
end while   

4 EXPERIMENTAL RESULTS  

4.1 Gait Signal Generation  

The proposed method is developed using Matlab and 
tested on 14 healthy subjects who were instructed to 
walk in the front a MS Kinect. Each subject 
performed three types of walk speeds: slow, normal 
and fast walk. The positional data of left and right 
ankles is collected in each trial for all subjects as 
shown in Fig.5.  

 

Figure 5: The horizontal movement data of left/ right 
ankles. 

The horizontal distance between ankles during 
walk can generate the gait signal which is mentioned 
as unmodified signal	݃ሺݐሻ as can be seen in Fig.6, 
where the maximum value of ݃ሺݐሻ represents the 
gait step length in meter.  
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The RLOESS filter is used for smoothing the 
row joints position data. Fig.6 illustrates the 
difference between the row data in Fig.6 (a) versus 
the smoothed data in Fig.6 (b).   

 
(a) 

 
(b) 

Figure 6: The step length signal: (a) original data; (b) 
filtered data. 

4.2 Features Extraction 

A complete and consistent gait analysis commonly 
requires the cycle gait determination, which can be 
divided into two phases; the stance and swing 
phases. Two different methods are used for 
extracting the gait features; both methods have been 
based on the lower limbs displacement data 
(positional data) to determine the gait features in 
three different kinds of the walking speeds. Method 
1: spatiotemporal gait analysis based on the gait 
displacement signal. Method 2: proposed AM 
method based on the modified gait displacement 
signal. 

The former method is used for extracting eleven 
gait features; step length, stride length, step width, 
left and right swing phase time, left and right stance 
phase time, gait cycle time, double support phase 
time, gait cadence and speed. These features are 
extracted by using equations (1-8) for all subjects in 
three different kinds of walk as shown in Fig. 7.   
 

 

Figure 7: The determination of a complete gait cycle for 
extracting the step length (SL), stride length (STL), double 
support time (DS), swing time (SW), stance time (ST) and 
gait cycle time (SW+ST). 

The latter method is used for extracting two 
parameters of the gait signal by modifying the gait 
signal using the AM technique. The modified gait 
signal can be represented in time domain to extract 
the modulation depth (D), which represents the ratio 
for the amplitude of the gait signal to the amplitude 
of the reference signal. The second parameter of the 
modified gait signal is the baseband frequency of the 
gait signal (fg) which can be extracted by 
representing the modified gait signal on frequency 
domain.  

The baseband frequency (fg) can be found either 
in the lower or the upper side band component. The 
gait features have been extracted for all subjects on 
three types of walk speeds, as can be seen in Fig.8, 
Fig.9 and Fig.10. 

4.3 Classification and System 
Evaluation 

In this set of experiments, the extracted gait features 
have been categorised into two groups relating to the 
method that is used for extracting the gait features; 
the first set of data is extracted the gait cycle using 
spatiotemporal gait analysis, whilst the second set of 
data is extracted by using the proposed AM 
technique. 

The first data set including step length, stride 
length, stance phase time, swing phase time, double 
support phase time, cadence, and speed gait, the 
second data set include modulation index and 
baseband frequency of modified gait signal. DT, 
linear SVM, non-linear SVM, and k-NN classifiers 
are compared and we investigate the high predictive 
power of features. The task of a classifier is to 
predict three kinds of walking speeds in three classes 
(C1, C2 and C3) as listed in Table 1 for 
spatiotemporal gait analysis and Table 2 for the 
proposed AM method, respectively. 
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(a) 

 
(b) 

Figure 8: Modified gait signal during slow walk (a) 
Time domain representation. (b) Frequency domain 
representation. 

 
(c) 

 
(d) 

Figure 9: Modified gait signal during normal walk (c) 
Time domain representation. (d) Frequency domain 
representation.  

(e) 

 
(f) 

Figure 10: Modified gait signal during fast walk (e) 
Time domain representation. (f) Frequency domain 
representation.  
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Table 1: Result of four different classifiers for spatiotemporal gait analysis method in three different kinds of walking 
speeds, the sensitivity and specificity are calculated for: slow speed (C1), normal speed (C2) and fast speed (C3). 

Classifiers  Sensitivity  Specificity  Accuracy (%) 
C1 C2 C3 C1 C2 C3 

Decision Tree 1 1 1 1 1 1 100 
Nonlinear SVM 1 0.93 0.93 1 0.93 0.93 97.6 

Linear SVM 1 0.86 0.93 1 0.96 0.93 95.2 
k-NN 1 0.93 0.93 1 0.96 0.96 95.2 

Table 2: Result of four different classifiers for spatiotemporal gait analysis method in three different kinds of walking 
speeds, the confusion matrix and AUC curve are calculated for: slow speed (C1), normal speed (C2) and fast speed (C3). 

Classifiers  
 

Confusion matrix  AUC   Overall error 
(%) C1 C2 C3 C1 C2 C3 

Decision Tree 0 0 0 1 1 1 0 
Nonlinear SVM 0 0 7.1 1 1 0.982 2.4 

Linear SVM 0 0 14.3 1 1 0.997 4.8 
k-NN 0 0 14.3 1 0.964 0.982 4.8 

Table 3: Result of four different classifiers for modified gait signal technique in three different kinds of walking speeds, the 
sensitivity and specificity are calculated for: slow speed (C1), normal speed (C2) and fast speed (C3). 

Classifiers  
 

Sensitivity Specificity   Accuracy (%) 
C1 C2 C3 C1 C2 C3 

Decision Tree 1 1 1 1 1 1 100 
Nonlinear SVM 1 1 1 1 1 1 100 

Linear SVM 1 1 1 1 1 1 100 
k-NN 1 0.93 1 0.94 1 1 97.6 

Table 4: Result of four different classifiers for modified gait signal technique in three different kinds of walking speeds, the 
confusion matrix and AUC curve are calculated for: slow speed (C1), normal speed (C2) and fast speed (C3).  

Classifiers  
 

Confusion matrix  AUC   Overall error 
(%) C1 C2 C3 C1 C2 C3 

Decision Tree 0 7.1 0 1 1 1 0 
Nonlinear SVM 0 0 0 1 1 1 0 

Linear SVM 0 0 0 1 1 1 0 
k-NN 0 7.1 0 0.982 0.964 1 2.4 

 

4.4 Discussion 

Sensitivity, specificity, accuracy, overall error, 
confusion matrix and AUC have been shown for 
various classifiers which used in this paper. It is 
noticeable that the Decision Tree (DT) classifier 
achieves the best results in both techniques with 
accuracy 100% as shown in tables' result. In 
addition, the sensitivity and specificity have been 
shown high predictive result with class one which 
represents the slow walking speed for both 
techniques, they reached 1. This means the ability of 
classifiers to sense the positive value correctly 
(sensitivity), and ability to select the negative value 
correctly (specificity). Moreover, the classification 
accuracy for the proposed method showed higher 

result than spatiotemporal gait analysis, where the 
former method reached 100% with three different 
classifiers, while the latter method reached 100% 
just with DT classifier as shown in tables (1 & 3). 
However, the k-NN classifier showed the lowest 
classification accuracy in both techniques, but still 
the proposed method has better result than another 
method as 97.6% and 95.2%, respectively.  

In tables (2 & 4), AUC evaluation metric showed 
better results with the modified gait signal technique 
than the spatiotemporal gait method, where the 
proposed method reached 1 with three types of 
classifiers, while the spatiotemporal analysis method 
reached 1 just with decision tree classifier for all 
classes. The confusion matrix used to calculate the 
false negative rate reported only 7.1% with AM 
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method, and 14.3% with spatiotemporal gait 
analysis. 

5 CONCLUSIONS 

In this paper, we study the concept of classifying the 
assessment of three types of gait speeds by using 3D 
human skeleton for lower joints' body position 
which is captured by a Kinect v2 sensor. We propose 
an enhanced gait features extraction which is based 
on a positional lower joints data without the 
requirement of the gait cycle determination.  

The proposed method shows high classification 
accuracy using several classifiers in comparison to 
spatiotemporal gait features method. The high 
predictive power of classifier can be related to the 
extracted features which are based on the modified 
gait signal that was generated by amplitude 
modulation technique. In the system evaluation, the 
confusion matrix and receiver operating 
characteristics (ROC) curve is used for calculating 
the accuracy, sensitivity, specificity and area under 
curve (AUC). The proposed method increased 
classification efficiency as opposed to 
spatiotemporal gait analysis which uses evaluation 
metrics (accuracy, sensitivity and specificity) to 
evaluate each classifier's result. 

ACKNOWLEDGEMENTS 

We thank Libyan government for supporting this 
research financially.  

REFERENCES 

Nguyen, T. N., Huynh, H. H. and Meunier, J., 2016. 
Skeleton-Based Abnormal Gait Detection. Sensors, 
16(11), p.1792. 

Andersson, V. O. and de Araújo, R. M., 2015, January. 
Person Identification Using Anthropometric and Gait 
Data from Kinect Sensor. In AAAI (pp. 425-431). 

Arai, K. and Asmara, R. A., 2014. Human Gait Gender 
Classification using 3D Discrete Wavelet Transform 
Feature Extraction. International Journal of Advanced 
Re-search in Artificial Intelligence, 3(2), pp.12-17. 

Auvinet, E., Multon, F. and Meunier, J., 2015. New lower-
limb gait asymmetry indices based on a depth camera. 
Sensors, 15(3), pp.4605-4623. 

Dolatabadi, Elham., Babak, Taati, P. and Alex, Mihailidis, 
P., 2014. Vision-based approach for long-term 
mobility monitoring: Single case study following total 
hip replacement. Journal of rehabilitation research 
 

and development, 51(7), p.1165.  
Clark, R. A., Bower, K. J., Mentiplay, B. F., Paterson, K. 

and Pua, Y.H., 2013. Concurrent validity of the 
Microsoft Kinect for assessment of spatiotemporal gait 
variables. Journal of biomechanics, 46(15), pp.2722-
2725. 

Clark, R. A., Vernon, S., Mentiplay, B. F., Miller, K. J., 
McGinley, J. L., Pua, Y.H., Paterson, K. and Bower, 
K.J., 2015. Instrumenting gait assessment using the 
Kinect in people living with stroke: reliability and 
association with balance tests. Journal of 
neuroengineering and rehabilitation, 12(1), p.15. 

Kim, C. J. and Son, S. M., 2014. Comparison of 
spatiotemporal gait parameters between children with 
normal development and children with diplegic 
cerebral palsy. Journal of physical therapy science, 
26(9), pp.1317-1319. 

Li, S. Z., Yu, B., Wu, W., Su, S. Z. and Ji, R. R., 2015. 
Feature learning based on SAE–PCA network for 
human gesture recognition in RGBD images. 
Neurocomputing, 151, pp.565-573. 

Yang, X. and Tian, Y. L., 2012, June. Eigenjoints-based 
action recognition using naive-bayes-nearest-neighbor. 
In Computer vision and pattern recognition workshops 
(CVPRW), 2012 IEEE computer society conference 
on (pp. 14-19). IEEE. 

Tao, W., Liu, T., Zheng, R. and Feng, H., 2012. Gait 
analysis using wearable sensors. Sensors, 12(2), 
pp.2255-2283. 

Wang, Q., Kurillo, G., Ofli, F. and Bajcsy, R., 2015, 
October. Unsupervised temporal segmentation of 
repetitive human actions based on kinematic modeling 
and frequency analysis. In 3D Vision (3DV), 2015 
International Conference on (pp. 562-570). IEEE. 

Staranowicz, A. N., Ray, C. and Mariottini, G. L., 2015, 
August. Easy-to-use, general, and accurate multi-
Kinect calibration and its application to gait 
monitoring for fall prediction. In Engineering in 
Medicine and Biology Society (EMBC), 2015 37th 
Annual International Conference of the IEEE (pp. 
4994-4998). IEEE. 

ICT4AWE 2018 - 4th International Conference on Information and Communication Technologies for Ageing Well and e-Health

168


