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Abstract: Due to their universal accessibility, interactivity and scaling ease, Web applications relying on client-side 

code execution are currently the most common form of delivering applications and it is likely that they will 

continue to enter into less common realms such as IoT-based applications. We reason that modern Web 

applications should be able to exhibit advanced security protection mechanisms and review the research 

literature that points to useful partial solutions. Then, we propose a framework to support such characteristics 

and the features needed to implement them, providing a roadmap for a comprehensive solution to support 

Web application integrity. 

1 INTRODUCTION 

Web applications had a significant evolution in the 

last decade. They went from applications with very 

little interactivity, where the user would explicitly 

submit each request to the server and wait for the 

response, to the exceptionally interactive applications 

of today, which rival with native applications. In large 

part, this evolution is due to a model based on the 

execution of Web application code on the browser. 

Besides the interactivity that executing code on the 

client’s browser allows, it also enables Web 

applications to scale more easily.  

Web applications that follow the browser 

execution model are perhaps the most common form 

of delivering software nowadays. A natural desire to 

have uniform application delivery and development 

is leading to the appearance of the Web application 

model based on client-side code execution in many 

different areas and devices. Web applications 

however still face serious security challenges, and 

client-side code execution presents particular 

difficulties that are not trivial to overcome. When the 

code executes on the client, measures implemented 

on the server to protect the application against certain 

types of attacks are of little or no use (Nava and 

Lindsay, 2009), as the data flow of attacks frequently 

does not involve the server. Threats to client-side 

code execution can arise from, for example, malicious 

browser extensions (Kapravelos et al., 2014), or third-

party code included by the Web application (a 

common practice related to revenue models based on 

advertisement networks), which create trust relation-

ships that attackers can exploit (Nikiforakis et al., 

2012). Section 4 discusses these and other threats 

more systematically. 

While client-side Web application protection is 

not a new research theme, we propose two important 

directions: (i) a comprehensive framework providing 

a level of protection that is not possible with partial 

solutions (which we will review in Section 5), and (ii) 

include in the framework features for self-protection, 

self-healing and data integrity. Another important 

feature is that our framework relies on protections 

being delivered with the application code. This 

facilitates the delivery of up-to-date protection 

without assuming a particular execution environment 

other than a standard Web application execution 

environment. 

1.1 Organization 

In the following section (Section 2), we will start by 

developing further why we think Web applications 

are entering new realms of IoT-based applications. 

This motivates the need for Web applications that 

provide advanced security guarantees (self-healing, 

self-protection and data integrity). Next, in Section 3, 
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Figure 1: Techniques Towards Self-healing and Self-protecting Applications. 

we will provide an overview of the research literature 

concerning self-healing, self-protection and data 

integrity. Section 4 will present the threats against 

Web applications with client-side code execution and 

formalize our threat model. Section 5 introduces our 

framework for Web Application Integrity and finally, 

Section 6 provides conclusions. 

2 WEB APPLICATIONS 

EVERYWHERE  

In this section, we will present several examples that 

support Web applications are going beyond 

traditional scenarios. Not only we can find today 

many devices and platforms that support this type of 

applications, but also there is an increasing trend to 

develop them for different areas of everyday life. 

Traditionally, embedded systems were rather 

closed to the outside world, having very limited 

networking options. However, this is increasingly not 

the case. Most embedded systems today can be 

globally connected using the Internet Protocol (IP) 

standard, and take part of what became known as the 

Internet of Things (IoT). Developers of systems for 

the IoT soon started employing the same standards 

used to develop Web applications, giving birth to yet 

a new term: the Web of Things (WoT) (Atzori and 

Morabito, 2010). By developing WoT applications, 

developers tap on the already available protocols, 

libraries (e.g. HTTP, Websockets, JSON), the large 

amount of trained developers, and are also able to 

benefit from the architectural advantages of the Web 

application model, such as scalability and ease of 

update which is important problem of today’s IoT 

(Schneier, B., 2014). 

Javascript plays a central role in the development 

of WoT applications. While traditionally its adoption 

in embedded devices was dismissed due to its 

increased requirements on computing resources, we 

can observe that many platforms enabling developers 

to create WoT applications have appeared recently 

(e.g. (“The Tessel Board,” 2017)). 

A testament to the advantages of using existing 

protocols for the WoT is also the amount of Web 

application development tools for this type of devices 

that appeared very quickly. The Cyclon.js (Cylon.js, 

2017) is a JavaScript framework for robotics and 

WoT applications, currently supporting 43 different 

platforms. IoT.js (IoT.js, 2017) is a framework for 

application development, based on JerryScript, a 

lightweight JavaScript engine, both open sourced by 

Samsung. Pi.js (Pi.js, 2017), is a cloud-based 

platform that supports writing JavaScript applications 

for the Raspberry Pi. These are just a few illustrating 

examples of the plethora of available tools for WoT 

application development. Naturally, along with these 

efforts, we can see the development of many 

emerging application domains from wearables, home 

automation, manufacturing, building management, 

and many other domains (Raggett, 2015).  

3 RELATED WORK  

We will now present an overview of techniques that 

can be relevant for developing self-healing and self-

protecting Web applications. We have three main 

classes of techniques: protection, detection and 

healing, as depicted in Figure 1. This is not an 

extensive review of all existing techniques, but rather 

an overview of the more relevant techniques in the 

context of our work.  

3.1 Protection 

Code Obfuscation and Encryption: code obfusca-

tion is the process of transforming an original source 

Self-healing	and	Self-
protecting	Web	applications

Protection

Obfuscation	
and	Encryption

Redundancy	
and	Diversity

Isolation

Detection

Monitoring	
behaviour

Execution	
paths

Integrity	
Checks

Healing

Failure	plans

Redundancy	
and	Voting

Escalation	
and	Challenge

Code	guards

Whitebox
cryptography

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

488



code into a form that is much harder to understand 

and to debug, and assuring at the same time that the 

transformed code maintains the original functionality 

intact. While obfuscation, as a security approach, is 

generally not considered a strong and proven defence 

as encryption. However, recent work (Garg et al., 

2013) established that obfuscation could theoretically 

be as secure as encryption in some applications, and 

this is an important development. Code obfuscation 

can also be combined with code encryption or code 

encoding techniques to make the resulting code more 

difficult to tamper with.  

Redundancy and Diversity: pertains to techniques 

that use redundant program instances to force 

adversaries to manipulate more than one instance to 

be successful (Cox et al., 2006). Techniques that try 

to remove some of the predictability of the program 

execution and location of code and data as a barrier to 

program manipulation (Larsen et al., 2014). An 

important example is code polymorphism, which 

aims to defeat automated tampering attacks by 

frequently changing the aspect of the code.  

Isolation: isolation is a fundamental technique in 

modern operating systems. This technique is useful, 

for example, to encapsulate application modules that 

need different sets of privileges, and are a way to 

delineate trust boundaries.  

Code Guards: is a technique that consists in 

spreading multiple checks throughout the code, 

usually benefiting from code obfuscation. These 

checks enforce some restriction and may also defend 

themselves mutually (Chang et al., 2001). 

White-box Cryptography: is a technique for 

protecting cryptographic code deployed to 

uncontrolled environments or devices (Chow et al., 

2002). The protection is achieved by hiding the key 

using mathematical operations. 

3.2 Detection 

Some self-healing and self-protecting capabilities are 

triggered by the detection of some threat. In order to 

perform detection several techniques can be 

distinguished.  

Monitoring Behaviour: the execution of the 

application can be constantly monitored by an 

external module (for example, the operating system 

or the browser in the case of Web applications), and 

this execution can be compared against a model of the 

normal execution of the application. This model can, 

for example, be a description of the expected 

interactions between system resources (Huang et al., 

2008). There are also examples of building execution 

models using machine-learning techniques that 

enable the classification of malicious web 

applications (Borgolte et al., 2013). 

Execution Paths: the execution path of an 

application can be an instance of monitoring 

behaviour by an external module, or the execution 

path can be controlled by inserting code checks into 

the application itself, to ensure that the code 

execution path is legitimate. One example of this 

technique is the Control Flow Integrity (Gekas et al., 

2014) employed to protect native applications. 

Integrity Checks: aim to detect if the application has 

been tampered, e.g. (Li et al., 2009). Integrity checks 

can be built into the code or done remotely, but in 

both cases, they usually rely on strong assumptions 

about the execution of the verification code, usually 

employing self-check-summing techniques. One 

important area is data integrity, where it is often 

assumed that secure communication channels can 

alone provide adequate guarantees. However, there 

are threats to web applications that can bypass secure 

channels (our threat model in Section 4 includes such 

scenarios), and several work approached this problem 

with both client-side and server-side solutions 

(Hallgren et al., 2013), (Karapanos et al., 2016). 

3.3 Healing 

In regard to the mechanisms to recover from attacks, 

we start by noting that many protection mechanisms 

are designed to cause the application to fail 

irrecoverably in order to stop an attack (e.g. (Oishi 

and Matsumoto, 2011)). While this approach is 

suiting for many applications, it is not an option for 

safety-critical applications. 

Failure Plans: applications can be designed with 

handlers for expected security exceptions, and, 

instead to irrecoverable failure, these handlers may 

attempt to get the application back to a safe state. 

Theory in development and analysis of software 

safety plans is an extensive area, with many previous 

useful results (Ravikumar and Subramaniam, 2016). 

Redundancy and Voting: Redundancy coupled with 

a mechanism to decide on the correct output (such as 

voting) is a well-known mechanism for healing and 

recovery (Latif-Shabgahi et al., 2004). 

Escalation and Challenge: security escalation by 

triggering other defences or by presenting a challenge 

that only a legitimate user will be able to pass is also 

a widely used technique. 
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Figure 2: Threat Model and Trust Boundary. 

4 THREAT MODEL 

We assume the hostile host model, widely used in 

previous work on tamper-resistant software (Collberg 

and Thomborson, 2002). The attacker is capable of 

inspecting, tamper or inject code, to steal sensitive 

information that can be used in a broader scale attack. 

This is also an attack on the user’s privacy (provided 

that the application manipulates or receives user 

data). The attacker can also apply deception 

techniques by changing the code to manipulate the 

messages that are presented to the user of the 

application. 

Figure 2 depicts our threat model. The attacker 

can employ debugging tools, malicious browser 

extensions, Man-in-the-Browser Trojans (other than 

browser extensions, e.g. API hooking or malicious 

JavaScript), or can compromise third-party code 

included in the application (from, e.g. advertisement 

networks). These tools can allow the attacker to 

analyse, manipulate or inject code, and also 

manipulate the webpage content and its object-

oriented representation – the Document Object Model 

(DOM). Our main goal is then to enforce the web 

application trust boundary protecting the web 

application execution from malicious manipulation 

on the browser platform.  

5 WEB APPLICATION 

INTEGRITY 

In order to enforce the Web Application trust 

boundary depicted in Figure 2, we need to protect the 

application execution from other code and plugins 

running on the Browser. Additionally, we also need 

to ensure the integrity of the Web application code, 

the DOM and application data. One important 

characteristic we wanted to enforce in our solution is 

that all protection mechanisms are delivered together 

with the Web Application code and do not rely in any 

particular execution environment (such as a dedicated 

Browser plugin). Only a standard Browser with a 

modern Javascript execution environment is required. 

This also has the very important advantage of 

enabling easier updates to the protection mechanisms. 

An overview of the proposed solution is presented 

in Figure 3. The solution is inspired by techniques 

reviewed in Section 3, and relies on code 

transformations made to the application code on the 

server side so that it includes the protection 

framework. The protection framework will then be 

delivered along with the Web application and 

executed on the client. The code transformations 

performed also include performing integrity checks 

on the data exchanged. We will now briefly discuss 

the two main mechanisms of our framework: (i) code 

execution protection and (ii) integrity protection. 

5.1 Code Execution Protection  

This mechanism employs state-of-the-art obfuscation 

techniques (introduced in Section 3) to protect the 

code from analysis, code injection and execution 

manipulation. Our approach is to bundle together the 

Web application code with the DOM, code and data 

integrity check mechanisms and use the code 

execution protection to ensure that they are executed 

as a whole, without being manipulated. 
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Figure 3: Overview of the Solution for Web Application Integrity. 

We currently implemented several obfuscation-based 

techniques to impose significant barriers:  

(i) to application analysis (through extensive code 

transformations and anti-debugging traps); 

(ii) to application tampering (by using tamper-

resistant code and tamper-detection), and 

(iii) to attack automation (by using diversity in the 

transformed code). Further details and an evaluation 

of this protection mechanism is ongoing work that we 

deem out of the scope of this first effort that aims to 

outline our complete Web Application integrity 

framework. 

5.2 Integrity Protection 

As indicated in our threat model, there are scenarios 

where data can be manipulated before reaching 

standard secure communication channels (such as 

HTTPS), therefore integrity checks must be executed 

by the application that is protected by the code 

execution mechanism discussed in Section 5.3. 

The main mechanism for integrity protection is to 

employ a message authentication code (MAC). In 

order to create and verify MACs, the webserver and 

the web application running on the client need to 

share a session key, which we negotiate when the 

Web application is first delivered to the client. We do 

not rely on keys negotiated by TLS as these are 

usually not available to the Web application.  

We will not go through the details of the key 

exchange mechanism, but our approach is to employ 

a well-known key exchange protocol – the 

Authenticated Diffie-Helman protocol (Diffie et al., 

1992). This requires the client to have access to a 

public key of the website, and we assume this can be 

made available through a server certificate that the 

client can verify using common browser 

functionality. There is however one important 

underlying assumption: we have to trust the browser 

platform to perform this verification. We think this is 

a reasonable assumption as the browser should not 

allow plugins to interfere with such calls and is within 

our threat model. 

The session key established can then be used for 

DOM, code and data MAC-based integrity checks  

as discussed in the following subsections. On the 

server side, we need to also compute these MACs 

(including a nonce to avoid replay attacks) and send 

them to the Web Application code running on the 

client. This is the task of the Integrity Endpoint 

depicted in Figure 3. 

5.2.1 Dom Integrity Check 

The DOM performs as an interface between 

JavaScript and the real document to allow the creation 

of dynamic webpages and recent security attacks 

targeted the DOM rather than the webpage itself 

(Gupta and Gupta, 2017), therefore it is important to 

also check the integrity of the webpage’s DOM. To 

do this, we perform integrity checks of the DOM 

similar to previous work (Li et al., 2009), using a one-

way hash function to compute a fingerprint of the 

document on the webserver and then verify this 

fingerprint on the client. One important difficulty to 

overcome is that modern Web Applications make 

dynamic changes to the DOM, and it is hard to 

distinguish the legitimacy of the changes. Our current 

mechanism performs static checks to selected 

sections of the DOM, but a more sophisticated 

mechanism is needed in general and we leave this for 

future ongoing work. 
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5.2.2 Code Integrity 

Before the application code itself is executed, it needs 

to be checked for its integrity and this can be trivially 

done using the already established session key and 

verifying the MAC and nonce computed on the client 

with the ones sent by the webserver. 

5.2.3 Data Integrity 

During execution, the Web application might request 

data from the webserver. Our approach is to, during 

the code transformation phase, scan all calls that 

result in these data exchanges (such as calls to 

XMLHttpRequest() in JavaScript) and inject the logic 

necessary to perform integrity checks on these data 

(i.e. generate and verify the MACs and nonces). In 

this way, we can also guarantee the integrity of the 

data at the Web application being executed under the 

code protection mechanism. 

6 CONCLUSION 

We have presented a framework, inspired by existing 

building blocks, which delineates a possible future for 

Web application integrity protection. Our framework 

relies heavily on an obfuscation-based code 

protection mechanism, which enforces a trust 

boundary inside the browser. In this work, we focus 

on outlining this complete Web Application integrity 

framework.  

As discussed, WoT applications are set to become 

omnipresent, and our framework becomes even more 

relevant under this assumption. Supporting different 

types of devices (interoperability), with different 

capabilities is one important aspect to be addressed 

by our implementation. We note however that there 

are already very capable platforms for WoT 

applications (Sin and Shin, 2016). Proof-of-concept 

implementation and performance evaluation (e.g. 

evaluating overhead introduced by our code 

transformations) of our proposed framework are left 

as a future work. 
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