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Abstract: Most of the existing works on partially occluded shape recognition are suited for Euclidean transformations.

As a result, the performance would be degraded in the affine and perspective transformation. This paper

presents a new estimation and matching method of the 2D partially occluded recognition under affine transfor-

mation including translation, rotation, scaling, and shearing. The proposed algorithm is designed to estimate

the motion between two open 2D shapes based on an affine curve matching algorithms (ACMA). This ACMA

considers the normalized affine arc length coordinated to the 2D contour. Then, it will correlate them in order

to minimize the L2 distance according to any planar affine transformation by means of a method based upon

a pseudo-inverse matrix. Experiments are carried on the Multiview Curve Dataset (MCD). They demonstrate

that our algorithm outperforms other methods proposed in the state-of-the-art.

1 INTRODUCTION

The motion estimation and the matching of planar

shapes that are subjected to certain deformation and

viewing transformations is one of the most impor-

tant goals in computer vision and pattern recognition,

done through different applications such as robotic vi-

sion, Medical Image Registration (Bronstein et al.,

2006), 3D reconstruction, Optical Character Recog-

nition (Belongie et al., 2002), Object Classification

(Adamek and O’Connor, 2004) (Alajlan et al., 2008)

(Baseski et al., 2009), and content-based image re-

trieval (Bronstein et al., 2008). However, despite the

progress of the research, remains a challenging task

that makes shape recognition more complicated. It

is presented by two critical factors: (a) images ta-

ken from different viewpoints of the same object suf-

fer from perspective distortions and (b) the partially

occluded shapes sometimes make the recognition pro-

blem more challenging (Turney et al., 1985). So the

matching methods should have the ability to handle

the different cases.

For example, the silhouette tracking application

which records the movement of objects or people,

consist of matching curves extracted from two succes-

sive images at two different instants which would lead

to many problems due to several factors such as lo-

cal deformations, articulations, missed and extrane-

ous contour portions owing to errors in shape ex-

traction. Under these conditions, it is known that a

perspective transformation between two images of an

object can be approximated by a two-dimensional af-

fine transformation (Forsyth et al., 1991) when the ob-

ject is far from the camera-since the slight distortion

that may result from the more general projection-can

be regarded as part of a deformation.Therefore, local

deformations have been treated in the literature by al-

lowing some leeway in the matching of curve points

via methods like Chamfer and Hausdorff distance.

Also, local geometric corrections of affine transfor-

mation have been applied to handle more severe dis-

tortions and articulations. However, the issue is to

specify which portions of the shape should be used

for the geometric corrections, although some methods

have been tried to solve this problem, presented in the

next section.

Towards the solution of this challenging problem,

our contribution aims to recognizing and curve ma-

tching of partially occluded 2D shape under affine

transformations. The ACMA algorithm is applied to

estimate the motion of two contours and matching

them. First, a curve re-parameterization is defined, in-

spired by the expression of the normalized affine arc

length (Spivak, 1981),(Ghorbel, 1998). Subsequently,

sampling this part of curves at constant equivalence

lengths which is represented by a sufficiently large
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set of points that makes the number of equations hig-

her than the unknowns. Finally, an affine part-to-part

curve matching is obtained by the computation of the

pseudo-inverse matrix which makes it possible to mi-

nimize the L2 distance. This algorithm ACMA has

the ability to handle object recognition under affine

distortions, partial occlusions and outperforms other

methods in terms of registration and recognition accu-

racy.

The remainder of the paper is organized as fol-

lows: section 2 introduce the related work to our ap-

proach. Then the detailed descriptions of ACMA and

the new curve matching algorithm will be presented

in the next section where we will briefly recall the

affine arc length reparameterization method and cal-

culate the pseudo-inverse matrix. Section 4 investiga-

tes the effectiveness of the proposed approach through

experiments and analyses. Finally, the last section gi-

ves the conclusion.

2 RELATED WORK

In this section, we focus on work that serves to place

this paper relative to the state of the art. There-

fore, various affine invariant shape matching met-

hods have been developed (Latecki et al., 2000), (Ma-

weheb et al., 2016), (Chaieb and Ghorbel, 2008).

They are able to address difficult problems like ma-

tching under noise condition, affine transformations

and so on. In this context, the most well-known-

researched shape description and shape matching

methods include affine invariant Fourier descriptors

method (Arbter et al., 1990), (Osowski et al., 2002),

(Chaker et al., 2008), affine curvature scale space

(ACSS) method (Mokhtarian and Abbasi, 2001), in-

dependent component analysis (ICA) method (Huang

et al., 2005), curvature tree method (Alajlan et al.,

2008), shape contexts (SCs) methods (Mori et al.,

2005), (Ling and Jacobs, 2007), moments invariants

methods (Huang and Cohen, 1996), (Zhao and Chen,

1997), symbolic representation method (Daliri and

Torre, 2008) and so on. However, they treat only the

closed-to-closed shape matching and assuming that

the whole shape is always visible in images. On the

other side, it is possible that the shape to be recogni-

zed is only partially visible in real applications, which

makes the recognition problem, far more difficult than

that of closed shapes.

Only some approaches of shape matching under

partially occluded 2D shapes have been suggested.

However, the most of them work only for shapes up

to a similarity transform. The work presented in (De-

mirci, 2010) proposes a new indexing structure under

partial matching. Shan (Shan et al., 2006) proposes a

method to present model objects using histograms and

then matches the histogram between model and ob-

ject to be recognized. Their method can match partial

occluded objects. Orrite (Orrite and Herrero, 2004)

estimates projective transform using alignment appro-

ach and extractes the invariant points bitangents, this

method is able to deal with partial occluded and per-

spective transform. However it requires a complete

searching match so that it is time consuming. Zhang

(Zhang et al., 2015) presents a method dealing with

recognition of partially occluded and affine distortion

objects. Their method was designed for objects with

planar polygon shapes, but many objects cannot be

approximated by polygons.

In order to handle local affine changes, Gopa-

lan et al. (Gopalan et al., 2010) proposed a shape-

decomposition technique that divides a shape into

convex parts using Normalized Cuts. These parts

were then individually affines normalized and combi-

ned into a single shape that was matched using the In-

ner Distance Shape Context (IDSC). As a result, this

method is able to capture more deformations of lo-

cal portions, such as a 3D part articulation that may

be modeled by a 2D affine transformation of its pro-

jection. It nevertheless assumes an a-priori shape de-

composition from a single shape that may be incon-

sistent in the presence of occlusions or noise in shape

extraction. Furthermore, the matching is still global

and hence we will be unable to handle partial occlusi-

ons of the shapes. Also, Mai et al. (Mai et al., 2010)

proposed a method for partial matching and affine dis-

tortions shapes, where the shape is described by a se-

quence of ordered affine-invariant segments based on

the properties of curvature scale space (CSS) shape

descriptor. Then Smith-Waterman algorithm is ap-

plied to match these sequences. This idea is deve-

loped by Huijing et al. (Fu et al., 2013) where an

affine-invariant curve descriptor (AICD) based on a

new-defined affine-invariant signature and its unsig-

ned sum is proposed to represent the local shape of

a curve with high distinctiveness. The comparison of

our method to these methods will be highlighted in

Section 4.

3 AFFINE MOTION ESTIMATION

AND CURVE MATCHING

In this section, we will present a contour matching ba-

sed on the affine curves matching algorithm (ACMA),

Fig.1, we will illustrate the main steps performed to

obtain the proposed algorithm. First, an affine arc-

length re-parametrization is performed to meet invari-
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ant parametrization. Then, the L2 distance is minimi-

zed by the calculation of pseudo-inverse matrix to es-

timate the translation vector b and the linear transfor-

mation A. Finally, Affine curve matching algorithm is

obtained.

Figure 1: Block diagram of ACMA alghorithm.

3.1 Affine Arc-Length

Reparametrization

We focus on planar shapes represented by an open 2D

continuous curves Γ1 and Γ2 which we can obtain one

of them from other by a planar affine transformation.

Lets consider f (t) and h(t ′) two respective parame-

trizations of curves Γ1 and Γ2 where their relation is

defined by:

h(t ′) = A f (t)+ b

with b is a translation vector and A is a linear trans-

formation.

It is obvious that a given curve can be represented

with various parameterizations. So, we can’t com-

pare different views of a planar contour and assume

that the parameterizations are the same. To avoid this

problem we must ensure that the parameterization is

independent of transformations.

For this aim, we need to normalize the number of

sampled points of the curves. The underlying idea

is to do an affine re-parameterization of these curves

by applying an affine arc length function L(t) defined

by:

L(t) =
1

la

∫ t

0

3
√

| det( f ′(u), f ′′(u)) |du (1)

Where the total affine arc length La of the considered

curve presented by:

La =

∫ T

0

3
√
| det( f ′(u), f ′′(u)) |du (2)

With f ′ and f ′′ denote, respectively, first and second

derivative of f, while det represents the determinant

operator.

3.2 Calculation of the Pseudo-inverse

Matrix

After re-parametrization by the affine arc length, the

estimate of the apparent motion is equivalent to ex-

tracting the parameters of A and the translation vector

b. 



h(la1) = A f (la1)+B

h(la2) = A f (la2)+B

....

h(laN) = f (laN)+B

with f (la) and h(la) are the reparametrization, re-

spectively ,of two contours f (t) and h(t ′). Our goal

is to minimize the error between the two contours by

the estimation of A and b which is defined by:

min(A,b) =‖ A f (la)+ b− h(la) ‖2≈ e

Explaining this system of 2N equations and 6 unkno-

wns we obtain the following set of systems:




hx(la1) = f x(la1)a11 + f y(la1)a12 +Bx

hy(la1) = f x(la1)a21 + f y(la1)a22 +By

....
hx(laN) = f x(laN)a11 + f y(laN)a12 +Bx

hy(laN) = f x(laN)a21 + f y(laN)a22 +By

This system can be written in matrix notation:

H = DU
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with U = [a11a12a21a22BxBy]t ,H =
[hx

l1
h

y
l1

hx
l2

h
y
l2
....hx

lN
h

y
lN
] and

D=




f x(la1) f y(la1) 0 0 1 0

0 0 f x(la1) f y(la1) 0 1

f x(la2) f y(la2) 0 0 1 0

0 0 f x(la2) f y(la2) 0 1

. . . . . .

. . . . . .
f x(laN) f y(laN) 0 0 1 0

0 0 f x(laN) f y(laN) 0 1




(3)

The idea of the method of least squares is to solve the

overdetermined system of linear equations when the

numbers of equations are more than unknowns. So,

the resolution of this rectangular system can be done

by minimizing the error via inverting the system by

using pseudo-inverse of the matrix D.

U = (DtD)−1DtH

The instability of the reconstruction of the movement

sometimes arises from the poor conditioning of the

normal matrix (DtD). There are stabilization methods

to reduce the effect of poor conditioning (when the

conditioning value of the inverted matrix becomes

high). We suggest in this case:

-To use the classical method which is obtained by

means of multiplication by appropriately chosen

diagonal matrices.

- To realize the best choice of the set pairs of points in

correspondence by reducing to the best conditioning.

The matrix to be inverted is a normal matrix whose

expression is:

DtD = N6




X̄2 X̄Y 0 0 X̄ 0

X̄Y Ȳ 2 0 0 Ȳ 0

0 0 X̄2 X̄Y 0 X̄

0 0 X̄Y Ȳ 2 0 Ȳ

X̄ Ȳ 0 0 1 0

0 0 X̄ Ȳ 0 1




(4)

and

X̄= 1
N ∑N

i=1( f x(li)) ,Ȳ= 1
N ∑N

i=1( f y(li))

X̄2= 1
N ∑N

i=1( f x(li))
2 ,Ȳ 2= 1

N ∑N
i=1( f y(li))

2

X̄Y= 1
N ∑N

i=1( f x(li) f y(li))

For mathematical proof the reader can be referred to

(Ghorbel, 2013).

3.3 ACMA Algorithm

the procedure of matching the apparent affine parti-

ally occluded curves can be described by the follo-

wing algorithm:

Algorithm

Step1: take two contours of partially affine shape.
Step2: re-parametrize the two contours by the normalized
affine arc length f ∗ and h∗.
Step3: sample at constant equivalence lengths in Npoints.
Step4: calculate X̄2,Ȳ 2, X̄Y , X̄ ,Ȳ .
Step5: write the matrices D, DtD and H.
Step6: reverse DtD .
Step7: calculate U by performing (DtD)−1DtH.

Step8: reconstruct Â and B̂ from U .
Step9: apply Â and B̂ to f ∗ to obtain (Â f ∗ + B̂ ).
Step10: superimpose Â f ∗ + B̂ a h∗ by the
maximization of the correlation.
Step11: calculate the distance L2 between Â f ∗ + B̂ and h∗.

4 EXPERIMENTS

In this section, we test our algorithm for shape ma-

tching and estimation where shapes are represen-

ted only by contours for the task of shapes recogni-

tion and retrieval. Our experimentations were con-

ducted on the Multiview Curve Dataset (MCD) (Zuli-

ani et al., 2004) which is composed of 40 shape clas-

ses taken from MPEG-7 database. Each class con-

tains 14 curve samples that correspond to different

perspective distortions of the original curve. Samples

of shapes from MCD databases are shown in figure 2.

Figure 2: Different shape images from the MCD dataset,
two images from each class.

In the initial MCD database, all shapes are presented

by closed curves. So, to make it open and partially

visible, we remove a few parts of the contour. In our

experiments, we make three types of test to improve
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the performance of our algorithm in matching: (a)

Whole-to-whole matching(Fig.3), (b) whole-to-part

(Fig.4) and (c) Part-to-part matching (Fig.5)

Figure 3: Bird pair: (a) and (b) are the initial curves; (c)
and (d) show the original shape overlaid with the matched
shape.

Figure 4: Butterfly pair:(a) and (b) are the initial curves; (c)
and (d) show the original shape overlaid with the matched
shape.

Figure 5: Key pair: (a) and (b) are the initial curves; (c)
and (d) show the original shape overlaid with the matched
shape.

So from this result we can conclude that our algorithm

works well for all the three cases and it is robust to

both partial occlusions and affine transformation.

4.1 Alignment Error Calculation

The shape registration is one of the important appli-

cations to evaluate the robustness of our algorithm

under partial occlusion, where the estimated affine

transformation align the two different curves of the

same shape. So, we calculate the percentage of non-

overlapping areas to obtain the alignment error bet-

ween the common part of these two 2D open curves.

Then, we compare our result with different methods

presented in the literature. Our average alignment er-

ror is 8.95 % which is smaller than 12.13 % , 13.12 %

and 49.41 %, respectively, the average error of the re-

ference approach (Fu et al., 2013), (Mai et al., 2010)

and (Petrakis et al., 2002).

4.2 Image Database Retrieval

Another significant application to test our algorithm is

the shape retrieval. Several techniques for shape data-

base retrieval exist in the literature, among which FD

is one of the most well-known descriptors and a state-

of-the-art algorithm for affine-invariant shape retrie-

val . Therefore, we select two Affine-Invariant Fou-

rier Descriptors (Chaker ’s FD (Chaker et al., 2007)

and Arber’s FD (Arbter et al., 1990)) as reference

methods. Besides, we select another three reference

methods for shape retrieval: wavelet-based method

(El Rube et al., 2006) , ICA-based method (Huang

et al., 2005) and Mai ’s method (Mai et al., 2010). Ta-

ble 1 compares the retrieval average rates for the first

10 shapes (apple, bell, bone, bird, butterfly, bottle,

bat, brick, camel and insect) of the MCD dataset using

our suggest with the five reference methods. The dif-

ferent methods results for this dataset are collected

from the respective papers. In terms of the average

rates performance, our approach performs reasonably

well as compared to many other techniques. Figure

6 , shows the retrieval results of 10 random queries

from MCD databases based on our algorithm.

Table 1: Retrieval results on the entire MCD dataset.

Methods Average

Arber (Arbter et al., 1990) 41 %

Huang (Huang et al., 2005) 71 %

Chaker (Chaker et al., 2007) 76 %

Rube (El Rube et al., 2006) 79 %

Mai (Mai et al., 2010) 89 %

Our algorithm 94 %
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Figure 6: 10 random retrieval results from MCD database.

5 CONCLUSIONS

This paper presents a general affine motion estimation

algorithm based on Affine Curve Matching Algorithm

(ACMA). The re-parameterization of the contours ba-

sed on the affine arc length is indispensable when the

movement is assumed affines. Under this hypothe-

sis, we recover the affine parameters by the compu-

tation of the pseudo-inverse matrix which minimizes

the error. Our experiments indicate that our algorithm

works well on the MCD database compared to many

existing techniques, particularly in the case of partial

occlusions that might arise in many situations. While

the results on this dataset are interesting, but there is

no guarantee that the same ordering of the methods

would be obtained with other datasets or other met-

hods. So, in the future, we intend to compare our

method with other approaches and other datasets in

terms of both performances under perspective distor-

tion and complexity.
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