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Abstract: Traffic signs recognition and classification play an important role in the unmanned automatic driving. Various

methods were proposed in the past years to deal with this problem, yet the performance of these algorithms

still needs to be improved to meet the requirements in real applications. In this paper, a novel traffic signs

recognition and classification method is presented based on Convolutional Neural Network and Support Vec-

tor Machine (CNN-SVM). In this method, the YCbCr color space is introduced in CNN to divide the color

channels for feature extraction. A SVM classifier is used for classification based on the extracted features.

The experiments are conducted on a real world data set with images and videos captured from ordinary car

driving. The experimental results show that compared with the state-of-the-art methods, our method achieves

the best performance on traffic signs recognition and classification, with a highest 98.6% accuracy rate.

1 INTRODUCTION

Nowadays, unmanned automatic driving technology

(Sezer et al., 2011) has attracted increasing attentions

from researches and industry communities. The traf-

fic signs recognition and classification play an impor-

tant role in this field. A lots of research efforts have

been devoted to dealing with the problem. However,

many factors, such as insufficient illumination, par-

tial occlusion and serious deformation, make traffic

detection a challenging problem.

Feature extraction in traditional traffic signs re-

cognition is based on hand-crafted methods, such as

Scale-Invariant Feature Transform (SIFT) (Nassu and

Ukai, 2010), Histogram of Oriented Gradient (HOG)

(Creusen et al., 2010) and Speeded-Up Robust Featu-

res (SURF) (Duan and Viktor, 2015). With the rise of

neural network theory, the application in recognition

has also increased, e.g., the Semantic Segmentation-

Aware CNN Model (Gidaris and Komodakis, 2015),

showing a better feature-learning capabilities.

Even though traffic signs detection and classifica-

tion had been developed for a long time, a complete

data set was inadequate until the launch of the Ger-

man Traffic Signs Recognition Benchmark (GTSRB)

(Stallkamp et al., 2012) and Detection Benchmark

(GTSDB) (Houben et al., 2014). Various methods

have been making progress in these two tasks, such

as the DP-KELM method (Zeng et al., 2017). Howe-

(a) Warning (b) Prohibition (c) Mandatory

Figure 1: Three Main Categories of Traffic Signs in China.
Warning signs (mostly yellow triangles with a black boun-
dary), Prohibition signs (mostly white surrounded by a red
circle) and Mandatory signs (mostly blue circles with white
information).

ver, the GTSDB cannot adapt very well in real world

tasks, due to the small size of the training data. Af-

ter that, a benchmark named Tsinghua-Tencent 100K

(Zhu et al., 2016) has been proposed along with the

end-to-end CNNs method, which shows a good per-

formance of detection and classification of tiny traffic

signs. However, the processing speed is still slow.

In this paper, three main traffic signs categories,

i.e., warning signs, prohibition signs and mandatory

signs (shown in Figure 1), are covered for experi-

ments. Specifically, in our video-based CNN-SVM

recognition framework, by introducing the YCbCr co-

lor space (Basilio et al., 2011), we firstly divide the

color channels, secondly employ CNN deep network

for deep feature extraction and then adopt SVM for

classification. The experiments are conducted on a

real world data set, based on which, a synthetically

comparison illustrates the superiority of our model.
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The rest of the paper is organized as follows:

Section 2 discusses the related work. The frame-

work and experimental data are shown in Section 3,

while the introduction of the YCbCr-based network

is presented in Section 4. The parameters adjustment

and image preprocessing in CNN-SVM are done in

Section 5. Finally, we give experimental results in

Section 6 and conclusions in Section 7.

2 RELATE WORK

To solve the target recognition problem, most of the

previous works use hand-crafted feature extracting

methods mentioned in Section 1. Those conventio-

nal feature extraction methods, over-reliant on the de-

signer’s experience, meet some restriction in feature

expression. On the contrary, the deep network mo-

del based on CNN is more powerful in feature ex-

pression. CNN method, which possessing the cha-

racteristics of rotation, translation and scaling inva-

riance, is able to realize weight sharing through lo-

cal receptive fields. It’s widely used in the sub-area

of target recognition, e.g., image classification (Kri-

zhevsky et al., 2012) (Schmidhuber, 2012), face re-

cognition (Sun et al., 2014) (Li et al., 2015) and pe-

destrian detection (Ouyang and Wang, 2014) (Zeng

et al., 2013). Afterwards, various CNN-based mo-

dels have been proposed, such as AlexNet (Krizhe-

vsky et al., 2012), VGG (Simonyan and Zisserman,

2014) , GoogleNet (Szegedy et al., 2015), ResNet (He

et al., 2016) and so on. The VGG network model has

been widely used and improved by researchers thanks

to its multi-layer construction and excellent perfor-

mance on the most representative data set in target re-

cognition field which named ImageNet (Krizhevsky

et al., 2012). Based on this, some famous network

models, e.g., the R-CNN series (Girshick, 2015) (Ren

et al., 2017), YOLO (Redmon et al., 2016), SSD (Liu

et al., 2016), R-FCN (Dai et al., 2016), appears in

succession.

3 FRAMEWORK AND

EXPERIMENTAL DATA

3.1 Framework of CNN-SVM Method

Figure 2 shows a process diagram of the working pro-

cedures of CNN-SVM. The CNN-SVM method can

be concluded as the following six steps:

• Training images and testing street-view images

Raw Images

Training Images Testing Images

Feature Extraction Preprocessing

Classification

Result

ROIs

Figure 2: Framework of Traffic Signs Recognition.

are collected, and then the training images are la-

beled and transformed in YCbCr color space.

• Visual features of these training images are ex-

tracted in CNN.

• A SVM classifier is used to classify the training

images based on the extracted features.

• Testing street-view images are sent to preproces-

sing progress, including homomorphic filter, mor-

phological treatment and area threshold segmen-

tation.

• Region of Interest (ROIs) in street view are acqui-

red and delivered to CNN-SVM model.

• Detection and classification results are obtained.

3.2 Experimental Data

Eight kinds of signs, individually from the warning

signs, prohibition signs and mandatory signs, are ta-

ken into consideration in our research. The trai-

ning images mainly consists of mobile phone shoot-

ings, GTSDB and Baidu exploration. These images,

through some transformation like rotating and affine

transformations, reach a total number of 1000. Each

image is unified with the size of 48×48. Then, these

images are labeled and composed as a training data set

which is shown in Figure 3. The testing street-view

images comes from 4 videos, which are captured by

PIKE F-100 FireWire camera. Each frame size of the

videos is 1920×1080.

Figure 3: Traffic Signs Training Data Set.
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Figure 4: The Diagram of Convolution Progress. An input
sample with the size of 48×48 is convoluted with a 5×5
convolutional kernel. Then, six 44×44 feature maps are ge-
nerated. Each neuron in the feature map is connected with
5×5 convex kernel. After the summation of each group of
pixels in the feature map, the weight and offset are added.
After taking activate function, the neurons in the next layer
are automatically acquired. Naturally, the next volume can
be obtained by continuous translation and traverse opera-
tion.

4 CONVOLUTIONAL NEURAL

NETWORK TRAINING BASED

ON YCBCR COLOR SPACE

4.1 Convolutional Neural Network

Our basic model follows the classic LeNet-5 network,

which consists of three convolutional layers (C1, C3

and C5) and two sub-sampling layers (S2 and S4). The

input of each layer represents a small group of local

units from the upper layer. Each convolution layer

contains multiple convolution kernels. These convo-

lution kernels are able to scan the image features via

different expressions, based on this, we can acquire

various feature maps in different locations. The sub-

sampling layer, following the convolution layer, is

mainly used to reduce the resolution of the feature

map, to extract the existing image features and to de-

termine the features’ relative location.

4.2 CNN Training

The training of the layer-concatenated CNN includes

4 main parts, i.e., forward propagation, error calcula-

tion, back propagation and weights adjustment. The

forward propagation represents a progress of infor-

mation delivery from the input layer to the output

layer. Since initialization of the weighting parame-

ters is random, the results obtained by forward propa-

gation tend to be deviated. To modify this deviation,

error estimation and parameters adjustment are inclu-

ded between each forward and backward propagation.

More specifically, it runs with the following procedu-

res:

• Extract a sample from the training data set and

send it into the training network.

• Each layer’s output, generated by the activation

function, are continuously led into the next hidden

layer till the output layer.

• Calculate the deviation matrix of the output.

• Conduct a layer-by-layer reverse calculation ac-

cording to gradient descent algorithm.

• Acquire the updated weight and gradient values.

• Repeat the forward propagation to start the next

iteration.

4.3 YCbCr Color Space for CNN’s

Feature Extraction

The previous traffic signs recognition and classifi-

cation methods usually take CNN training in RGB

space. In that space, the color information and the lu-

minance information are mixed among channels, ge-

nerating the variance of the extracted features. No-

netheless, the color distribution in RGB space is not

uniform. Some subtle changes in color are captured

difficultly.

YCbCr color space is mainly used for continuous

image processing in the video. We can calculate each

component by the transform formula shown as:

Y = 0.299R+ 0.587G+0.114B (1)

Cb = 0.564(B−Y) (2)

Cr = 0.713(R−Y), (3)

where Y is luminance component, Cb represents the

blue chrominance component and Cr denotes the red

chrominance component.

In order to choose a better color space for fea-

ture extraction, we conduct an error evaluation among

three typical color space, i.e., Grayscale, RGB and

YCbCr. To do this, we send the training data set for

CNN training. Taking the bn as the number of wrong

samples in each batch training, the n as the number

of batch training time, the S as the batch size. We

are able to calculate the training error in each batch

training which represented by En:

En =
bn

S
(4)

The results of different training errors shown as Table

1, we can find that the corresponding result of YCbCr

space is better than the others.

Table 1: Training Error in Different Color Spaces.

Color Space Training Error

Grayscale 0.138

RGB 0.105

YCbCr 0.073
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5 PARAMETERS ADJUSTMENT

BASED ON CNN-SVM

In this section, we will take training data set and tes-

ting street-view images to conduct parameters adjust-

ment and image preprocessing in training and testing

progress respectively. The goal of parameters adjus-

tment is to increase training accuracy and to shorten

the training time in the training parts. While in the

testing progress, the image preprocessing operation is

mainly used to eliminate the negative impacts, e.g.,

insufficient illumination and similar background, so

as to acquire ROIs precisely.

5.1 Parameters Adjustment for

Training

In the training part, some parameters, e.g., kernel

size, iteration numbers and the connecting methods

between convolutional layer and sub-sampling layer,

greatly impact on training accuracy and speed. Thus

some experiments are carried out based on the trai-

ning data set for choosing the best parameters.

5.1.1 Kernel Size

In terms of kernel size, a comparison experiment is

conducted both in the 2-hidden-layer network and the

4-hidden-layer network. In the 2-hidden-layer net-

work, an input layer, a convolutional layer, a sub-

sampling layer and an output layer are included.

While in the 4-hidden-layer network, there exists one

more convolution layer and sub-sampling layer. In

addition, the kernel sizes of the convolution layer se-

lected for the former are 9×9 and 5×5, yet 7×7 and

5×5 for the later. This comparison proves that a larger

corresponding kernel size refers to less convolution

layers, contributing to a higher training speed and less

parameters. However, the over large size will cause

the loss of local features.

Table 2: Training Time of Different Kernel Sizes.

Hidden Layers 2 2 4 4

Kernel Size 9×9 5×5 7×7 5×5

Training Time 377s 260s 481s 325s

5.1.2 Connecting Methods

The connection modes between the sub-sampling

layer and the convolution layer include two methods,

i.e., the fully connected method and the non-fully con-

nected method. In order to connect more features,

sub-sampling layer S2 and convolution layer C3 is

Figure 5: Training Error Rate with 300 Epochs.

fully connected. In this case, there are a total num-

ber of 16×(6×5×5+1)= 2,416 training parameters

according to Table 3. Thus, this connection method

will lead to an increasing of computational cost. In

the deeper layers, we can take the non-fully connected

method like the connection between S4 and C5 to re-

duce the information redundancy. Taking this met-

hod, we can effectively reduce the training parameters

which access to less but more useful features.

Table 3: CNN Constructing Parameters.

Layer Type Neurons Kernel

0 Input 48×48

1 Convolutional 44×44 5×5

2 Subsampling 22×22 2×2

3 Convolutional 18×18 5×5

4 Subsampling 9×9 2×2

5 Convolutional 5×5 5×5

6 Fully 1×600

5.1.3 Iteration Numbers

Theoretically, a higher iteration number, means a

more thorough process. We are able to get more fe-

atures from each iteration. However, the redundant

iteration number will lead to an increase of training

error, if noise or the non-representative features in the

photos are fitted. Thus, a test with several iteration

numbers is conducted. We firstly load the training

data set for the test and choose the iteration numbers

of 300. As shown in the Figure 5, we can find that the

error rate of training process experiences a slight in-

crease after it converging to a very low rate with 150

epochs, which may ascribe to the introduce of non-

representative features.

Going deeply, we can load the training data set,

randomly select the number of T as training samples,

the rest are testing samples for validation. The to-

tal batch training time can be represented by N = T
S

.

Based on the Formula 4, the recognition accuracies

which is defined as A can be calculated by the For-

mula:

Traffic Signs Recognition and Classification based on Deep Feature Learning
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A = (1−

N

∑
n=1

(En)

N
)× 100% (5)

We are able to test the recognition accuracies with

the parameters T=840 and S=60, the results of CNN

accuracies with different iteration numbers are shown

in Table 4, in which the I represent Iterations and A

means Accuracy. Clearly, the 150-epoch-iteration is

verified to be the best.

Table 4: CNN Accuracies of Different Iterations.

I (epochs) 100 150 350 500

A (%) 97.27 98.18 94.4 92.73

Briefly, the experimental parameters can be con-

cluded in Table 5.

Table 5: CNN Experimental Parameters.

Kernel Size Batch Size I (epochs)

5×5 / 2×2 60 150

In order to optimize the classifying performance,

we have trained the SVM classifier by libsvm package

(Suralkar et al., 2012) (Chang and Lin, 2011) after

removing fully connected layer. The output vector

of the last layer in CNN is regarded as the input of

the SVM. We are able to expand the normal classi-

fier to solve the multi-classify problem, with training

and connecting
k×(k−1)

2
normal classifier as the con-

struction of a binary tree, in which k represents the

number of classes. Kernel function is a key factor

in constructing the SVM classifier. There are several

kernel functions provided for us to select, e.g., RBF,

Linear and Gaussian Kernel, with different parame-

ters and outcomes. Taking 100% and 50% training

data set as the experimental samples, we are able to

conduct an experiment to choose the most suitable

kernel function as Table 6. The overall training time

and training accuracy are two factors to evaluate the

performance of different functions.

From the point of training accuracy, the RBF ker-

nel outperforms the Linear kernel. As the parameter

number of RBF is more than Linear kernel, it will take

times to find a better result. Based on large number

of parameters, the training speed of RBF is obviously

slower than the Linear kernel. Thus, the Linear kernel

can be a more suitable choice for our model. In addi-

tion, the Table 6 also illustrate that the SVM method

is robust when the training data set is in a small scale.

Because our data set only contains 1000 images, the

50% of them still show good performance.

Table 6: The Performance of Different Kernel Sizes.

Training Data Kernel Accuracy Time

100% RBF 98.81% 507s

100% Linear 98.6% 371s

50% RBF 96.41% 285s

50% Linear 96.1% 122s

(a) Original (b) Homomorphic (c) Gamma

Figure 6: Comparison between Homomorphic Filtering and
Gamma Correction.

5.2 Preprocessing for Testing

Before testing progress, we have to take some image

preprocessing operations in street-view images to eli-

minate the effect of insufficient illumination, partial

occlusion and serious deformation. The main prepro-

cessing operations include image enhancement and

image segmentation.

Firstly, we need to deal with the images under a

poor illumination. A typical method is the homo-

morphic filter method (Cai et al., 2011), which uses a

suitable homomorphic filter function H(u,v). In this

method, the coefficients are Hl < 1 and Hh > 1, the

function H(u,v) would decrease. Therefore, we are

able to enhance the images by reducing the low fre-

quency and increasing the high frequency. Another

way is gamma correction (Huang et al., 2013), which

compensates the deficiency in dim light. The Figure

6 shows a comparison of the homomorphic filtering

as Figure 6(b) and gamma correction as Figure 6(c).

Clearly, the former performs better, as the color of

the testing image has a certain distortion after gamma

correction.

In addition, the images with normal light will not

be sent to the filtering process directly. To judge the

predicable images, we can introduce the YCbCr color

space, as the Y component represents the illumina-

tion factor. We are able to select the thresholds by

drawing the pixel distribution in histogram and coun-

ting the pixel numbers (a), in images with extremely

light. After taking the experiments, the threshold can

be determined by Y∈[200,234] and a < 53901.

Secondly, we need to take morphological treat-

ment before segmentation to eliminate discontinuous

tiny areas. However, some obstacles in the street view

have not been removed totally, for instance, the non-

signs areas which are similar with the signs areas.

Thus, we define the size and proportion of the traf-

fic signs by experimental results. In addition, the one

ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods
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Figure 7: ROIs in Different Scenarios.

third part in the bottom image, where we set the pixel

value to zero, would not contain any signs. Thus, the

non-signs area can be removed.

Finally, the ROIs can be selected by a bounding

box with fixed size and proportion in the whole street-

view image as shown in Figure 7. Among these re-

sults, we can find that the most of traffic signs are

successfully recognized while some are ignored or

double recognized.

6 ANALYSIS OF EXPERIMENTAL

RESULTS

In this paper, both training and testing were done on

a Linux PC with an Intel i7-6900k CPU and NVIDIA

GTX 1080 Ti GPU. The collected training data set is

loaded and trained in our network. From the training

data set, we randomly select 840 images as training

samples, the rest as testing samples for cross valida-

tion.

6.1 CNN-SVM Recognition and

Classification Results

The CNN is able to detect and classify the targets,

via extracting the training samples’ features. Then,

SVM contribute to a better result in classification.

With a number of parameter adjustments, the CNN is

successfully trained with 98.18% accuracy rate, while

the CNN-SVM’s accuracy reaches 98.6%. Even

though the growth of accuracy is slight, the training

time is very near from each other, with 366s and 371s

respectively.

In addition, we take the mean shift method (Co-

maniciu and Meer, 2002) to track the traffic signs in a

short video as Figure 8. The figure shows that the ca-

pabilities of this framework in detecting the tiny traf-

fic signs which take a small area as 0.2%−0.4% of

the whole image. The results of the recognition and

classification of 8-classes traffic signs are shown in

Table 7.

Figure 8: Tracking in Video by Mean Shift. From the upper
left to the lower right sub-images represent the 1st, 3rd, 5th
and 8th frame respectively.

Table 7: The Results of the Recognition and Classification
of 8-classes Traffic Signs.

Classes Total Numbers CNNs-SVM(%)

Limit 30 109 97.34

Limit 40 123 98.32

Limit 50 141 98.7

Slow 136 98.9

Crossroads 134 98.56

No tooting 153 99.43

Right 138 98.46

Straihgt 66 96.6

6.2 Comparison with State-of-the-Art

Methods

The Figure 9 illustrates the comparison results with

other state-of-the-art methods. It shows that our

CNN-SVM method is able to achieve a higher accu-

racy (98.6%) than the others, e.g., HOG-LDA (Stal-

lkamp et al., 2012), HOG-Random Forest (Zaklouta

et al., 2011) and PCA-SVM (Chan et al., 2015). Furt-

hermore, the training time of our method (around

371s) is the fastest, which nearly twice as fast as the

HOG-LDA.

Figure 9: Comparison with State-of-the-Art Methods.
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7 CONCLUSIONS

In this paper, a recognition and classification method

based on CNN-SVM has been proposed. In the trai-

ning process, the deep image features are extracted

by CNN in the YCbCr color space. SVM is con-

nected with the last layer of CNN for further classi-

fication, which contributes to a better training results.

On the other hand, some images preprocessing pro-

cedures are conducted in the testing process, in or-

der to eliminate those negative impacts, e.g., insuffi-

cient illumination, partial occlusion and serious de-

formation. Experiment-based comparison with other

state-of-the-art methods verify that our model is su-

perior than the others both in training accuracy and

speed. Furthermore, we found that some traffic signs

are miss-recognized when we apply this method in the

unmanned ground vehicle. In near future, we plan to

expand our data set by seeking out more images of

traffic signs, especially the images at night. Then, we

will accelerate the speed by optimizing the algorithm

for real-time application in vehicles.
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