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Abstract: We propose a segmentation method of cell membrane and nucleus by integrating branches with different roles 

in a deep neural network. When we use the U-net for segmentation of cell membrane and nucleus, the accuracy 

is not sufficient. It may be difficult to classify multi-classes by only one network. Thus, we designed a deep 

network with multiple branches that have different roles. We give each branch a role which segments only 

cell membrane or nucleus or background, and probability map is generated at each branch. Finally, the 

generated probability maps by three branches are fed into the convolution layer to improve the accuracy. The 

final convolutional layer calculates the posterior probability by integrating the probability maps of three 

branches. Experimental results show that our method improved the segmentation accuracy in comparison with 

the U-net.  

1 INTRODUCTION 

For the development of cell biology, it is important to 

understand the state of cells accurately. Currently, the 

most accurate way to check the state of cells is human 

visual inspection. However, it requires much time and 

effort. In addition, the results become subjective. 

Therefore, the automation of the process is desired in 

the field of cell biology. In this paper, we propose an 

automatic segmentation method of cell membrane 

and nucleus. 

In recent years, deep learning gave high accuracy 

in many computer vision tasks (Tang and Wu, 2016, 

Tseng, Lin, Hsu, and Huang, 2017, Caesar, Uijlings 

and Ferrari, 2016, Ghiasi and Fowlkes, 2016). In 

particular, encoder-decorder CNN such as U-net 

(Ronneberger, Fischer and Brox, 2015) and Segnet 

(Badrinarayanan, Kendall and Cipolla, 2015) are 

recent trend of semantic segmentation. The advantage 

of U-net is to integrate the features at shallow layers 

and at deep layers, and features which are lost by 

convolution are used at deeper layers effectively. 

When we apply the U-net to segment cell membrane 

and nucleus, the accuracy is not sufficient for cell 

biologists. Since it is important to know how cell 

nucleus is covered by cell membranes, many 

 

Figure 1: Example of cell images and ground truth labels. 

Red shows the cell membrane and green shows cell nucleus. 

discontinuities of cell membranes are not good for 

biologists. It may be difficult to classify multi-classes 

by the standard U-net. In order to address this issue, 

we propose to give the U-net multiple branches for 

solving different roles. 
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Figure 2: Overview of the proposed network. The decode part is divided into three parts, although all the branches are 

connected with the encoder parts and concatenated. This model optimized the output obtained by each branch and the result 

of integrating them with soft max cross entropy. 

 

Figure 3: Structure of U-nets used in this paper. The number in the square shows the number of feature map. 

In this paper, we use the network structure with 

reference to the U-net. The encoded part is the same 

structure as the original U-net, and we modified the 

decoder part of U-net. The decoder part is divided 

into three branches. Each branch has a unique role 

that generates a probability map for cell nucleus or 

cell membrane or background from the feature maps 

obtained by encoder. Finally, single convolution layer 

combines the three probability maps, and it gives final 

segmentation result.  
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In the experiments, we used 50 fluorescence 

images of the liver of transgenic mice that expressed 

fluorescent markers on the cell membrane and in the 

nucleus. Figure 1 shows the examples of cell image 

and ground truth label attached by human experts. 

Input for the network is grayscale image and the 

output is 3 probability maps that each probability map 

is for cell membrane, nucleus and background. Red 

shows the cell membrane and green shows cell 

nucleus. We evaluated segmentation results by class-

average accuracy, and we confirmed that our 

proposed method improved the accuracy of cell 

membrane or nucleus in comparison with the U-net. 

This paper is organized as follows. In section 2, 

we explain the proposed method with different roles. 

Dataset and experimental results are shown in section 

3. Comparison with conventional U-net is also shown. 

Section 4 is for conclusion and future works. 

2 PROPOSED METHOD 

Figure 2 and 3 show the overview of our proposed 

network and the structure of the U-net used in this 

paper. Input image is a grayscale image including cell 

membrane and nucleus. As described previously, it is 

difficult for simple U-net to segment cell membrane 

and nucleus simultaneously. Thus, we add branches 

to the decoder part of the U-net and assign each 

branch to different task. The outputs of three branches 

are integrated by a convolution layer to obtain the 

final segmentation result. This may be a kind of 

curriculum learning (Bengio, 2009). Three decoder 

parts try to do only one task, and the final convolution 

layer tries to integrate three branches. 

At first, an input image is fed into encoder part of 

the U-net. Features are extracted by multiple 

convolutions and pooling. The encoded feature is fed 

into the three decoders with different roles. Each 

decoder learns to output the probability map for only 

cell membrane or nucleus or background.  

Each branching decoder part calculates the 

probability of each pixel whether the certain class (e.g. 

cell nucleus) in 3 classes or not. Thus, the input of 

final convolutional layer is probability maps with 6 

channels, and the output of it is the probability map 

for 3 classes; cell nucleus, cell membrane and 

background. We use softmax cross entropy as the 

losses for three branches and final integration layer. 

In this paper, we use the weighted sum of losses 

of three decoders with different roles and integrated 

layer. The whole networks are trained simultaneously. 

The weighed loss is defined as 
 

Loss =  ∑ λ𝑐L𝑐𝑐  + λ𝐼  L𝐼, (1) 
 

where c is the class that is one of cell nucleus, 

membrane and background. L𝑐 is the loss generated 

by the c-th branch. L𝑙  is the loss for the 

convolutional layer for final segmentation result. In 

experiments, we set those parameters as λ𝑐 = 0.2,
λ𝐼 = 0.4 empirically. 

Each loss is defined as   
 

  𝐿𝑐 = − ∑ 𝑦𝑐𝑖 log(𝑆(𝑥𝑐𝑖))𝑛
𝑖 , (2) 

  𝐿𝐼 = − ∑ 𝛼𝑐𝑦𝐼𝑖 log(𝑆(𝑥𝐼𝑖))𝑛
𝑖 , (3) 

 

where 𝑥𝑐𝑖, 𝑥𝐼𝑖 are the output of three branches  and 

final convolutional layer respectively. “i” means the 

i-th pixel in an input image, and 𝑦𝑐𝑖 and 𝑦𝐼𝑖  are the 

ground truth. 𝛼𝑐  is class-balancing weight 

(Badrinarayanan, Kendall and Cipolla, 2015). Class-

balancing is a method for weighting the loss of each 

class according to the number of pixels in each class. 

In this paper, background pixels are overwhelmingly 

larger than the number of cell nucleus and membranes. 

Thus, the network tends to learn to background 

dominantly. By applying the weights according to 

occurrence of each class, all classes are trained 

equally. In this paper, the class weights of cell 

membrane, cell nucleus and background are 1, 2.72 

and 0.42, respectively. 

 

Figure 4: Cropping local region. At every epoch, different 

images are cropped from training images. This prevents 

overfitting. 

3 EXPERIMENTS 

This section explains the dataset, evaluation measure 

and results. In section 3.1, we describe the dataset 

used in this paper. Evaluation measure is also 
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explained in section 3.1. Experimental results are 

shown in section 3.2. Comparison result with the U-

net is also shown. 

3.1 Dataset and Evaluation Measure 

We use original dataset which includes fluorescence 

images of the liver of transgenic mice that expressed 

fluorescent markers on the cell membrane and in the 

nucleus. To train the segmentation network, we 

require fluorescence images with ground truth. 

However, creating ground truth labels for cell images 

is a labor job for cell biologists. Therefore, the 

number of images with ground truth is limited. In this 

paper, we have only 50 images. The size of those 

images is 256 x 256 pixels. Examples of cell images 

and ground truth labels are shown in Figure 1. Red 

and green show the cell membrane and nucleus. In the 

following experiments, 50 images are divided into 

three sets; 35 training images, 5 validation images and 

10 test images.  

To solve the problem on a small number of images, 

data augmentation of training images is used. 

Concretely, left-right mirroring and rotations with 90 

degrees are combined, and the number of training 

images is 8 times larger. In addition, we crop local 

regions with 64 x 64 pixels from the augmented 

images randomly. Since the size of input images for 

the U-net is 256 x 256 pixels, the cropped images are 

resized to 256 x 256 pixels and used for training.  

To prevent the overfiting, we crop local regions 

randomly at each epoch when we train the network. 

Figure 4 shows the overview of this process. Since 

different local regions with ground truth are cropped 

randomly at each epoch from training images, the 

network can avoid the overfit. 

When we evaluate test images, a test image with 

256 x 256 pixels is divided into 4 x 4 without overlap. 

The cropped 64 x 64 images are resized to 256 x 256 

pixels and fed into the proposed method. By this 

processing, the number of images used for the final 

test is 160 and the number of validation is 80. 

In experiments, we use class average accuracy as 

the evaluation measure because the main purpose of 

this research is to segment cell membrane and nucleus. 

Since the area of background is the largest, pixel-wise 

accuracy heavy depends on the accuracy of 

background. On the other hand, since class average 

accuracy is the average of accuracy of each class, the 

accuracy of small area is influenced to the class 

average accuracy. 

Since the accuracy of deep learning depends on 

the random number, we trained the networks three 

times and evaluate the average accuracy. 

 

Figure 5: Comparison of output of no weight branches U-

nets. (a) shows a test local region. (b) shows ground truth. 

(c) shows the outputs by three branched decoder parts of U-

net in the proposed method. (d) is the output of the network 

with the same structure as the proposed method when we 

do not give a role branched decoder parts of U-net. 

3.2 Evaluation Results 

To show the effectiveness of the proposed method 

integrating three branches with different roles, we 

also evaluate the network with the same structure as 

the proposed method as shown in Figure 2. But we 

evaluated the proposed method while changing the 

value of λ. One of them is 𝜆𝑐 = 0,  𝜆𝐼 = 1. Namely, 

this optimizes only the cross entropy loss at the final 

output. By the comparison with this network, we 

understand the effectiveness of training of three 

branches with different roles. Of course, the accuracy 

of the U-net as shown in Figure 3 is also evaluated.  

Table 1 shows the accuracy of each method. As 

described previously, we trained each method three 

times and average accuracy is evaluated because the 

accuracy of networks depends on random number. In 

this paper, each pixel in an input image is classified 

into three classes; cell membrane, cell nucleus and 

background. Table 1 shows that the accuracy changes 

slightly depending on the random number.  

The mean accuracy of three time evaluation is 

shown in Table 2. We see that the accuracy of the 

proposed method outperformed with the U-net.  

We also evaluate the network with the same 

structure as the proposed method and without giving 

a role to the branches. We see that the accuracy is 

worse than our proposed method. 

Figure 5 shows the outputs of three branches in 

the proposed method and those in the network 

without specific roles. (a) and (b) show a test local 

region and its ground truth label. (c) and (d) show the 

outputs of the branched decoder part in both methods.  
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Table 1: Accuracy at three times evaluation. 

 

Table 2: Average accuracy of three times evaluation. 

 

The proposed method gave obviously better maps 

than the network without a specific role. This result 

demonstrated that the integration of networks with 

specific role is effective to improve the accuracy.  

(d) is the result that we trained the network without 

calculating the losses at the three branches. We 

conducted experiments three times under the same 

conditions, but similar results are obtained that one of 

the three branches had the function of focusing on the 

segment of the cell nucleus. In this paper, we give 

each clear role to three branches, but we found that 

this network has a little ability to share the roles 

automatically.  

Finally, we show the segmentation results by the 

proposed method in Figure 6. Figure 6 (a) and (b) 

show the test images and their ground truth labels. (c) 

shows the results by the proposed method. We see 

that overall segmentation is good though the cell 

membrane is conspicuous. Figure 7 shows the 

segmentation results of local regions by the proposed 

method (𝜆𝑐= 0.2, 𝜆𝐼= 0.4) and the U-net. 

Figure (a) and (b) are the test local regions and 

their ground truth labels. (c) is the results by the 

proposed method. (d) is the results by the U-net. We 

see that the segmentation accuracy of cell membrane 

and nucleus is improved in comparison with the U-

net. 

 

 

Figure 6: (a) shows test images. (b) shows ground truth. (c) 

shows the results by the proposed method. 

In the results shown in the first and second row, 

there is a case that cell membranes disconnected by 

U-net are connected by the proposed method. The 

effectiveness of branches with different roles is 

demonstrated by experiments. 
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Figure 7: comparison results of local regions. (a) shows test 

regions. (b) shows ground truth. (c) shows the results by the 

proposed method using three branches. (d) shows the 

results by the U-net. 

4 CONCLUSIONS 

We improved the segmentation accuracy by using 

branches with different roles and final convolution 

layer. Three branches segment only cell membrane or 

nucleus or background, and the final convolution 

layer for integrating the outputs of three branches 

estimate the posterior probability of each pixel. By 

assigning each branched decoder to a different role, 

the accuracy was improved.   

We crop a local region with 64 x 64 pixels from a 

test image without overlap, and the output of the local 

region is put to final segmentation result. If we apply 

the proposed method to local regions with 

overlapping manner, some segmentation results are 

obtained at the same pixel. The integration of those 

results will improve the accuracy further. It is a 

subject for future works. 
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