
An Information System for Bus Travelling and Performance Evaluation

Leandro Ricardo2, Susana Sargento1,2 and Ilı́dio C. Oliveira1,3

1Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro,
Campus Universitário de Santiago, Aveiro, Portugal

2Instituto de Telecomunicações, Campus Universitário de Santiago, Aveiro, Portugal
3Instituto de Engenharia Electrónica e Informática de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal

Keywords: Vehicular Networks, Long-Term Time Estimation, Prediction, Machine Learning.

Abstract: A wide vehicular network has a huge potential to collect city-data, specially with respect to city mobility, one
of the top concerns of the municipalities. In this work, we propose the use of the mobility data generated by
the movement of the connected buses to deliver a new set of tools to support both the bus passengers and bus
fleet operator use cases. Considering the bus passengers, it is possible to build smart schedules, which deliver
an estimated time of arrival based on the city dynamics along time, and that can be accessed directly in the
smartphone. Considering the bus fleet operator, it is possible to characterize the behaviour of buses and bus
lines. Using the GPS trace of buses and map-matching algorithm, we are able to discover the line each bus
is assigned to. Estimated times of arrival and predictions are implemented recurring to time estimations and
predictions, using both data mining and machine learning approaches. Proof-of-concept applications were
implemented to demonstrate the real-life applicability, including a mobile app for the citizens, and a web
dashboard for the fleet operator.

1 INTRODUCTION

In last several years, much has been told about smart
cities. A smart city is a city which tries to bring
the best out from the cooperation between people and
policies through the use of Information and Commu-
nication Technologies, that connects and empowers
both (Monzon, 2015).

Much like human communities, Smart cities can
be sensed, analyzed and served. Sensing is possi-
ble using a wide sensor network, that can be either
fixed, when it is located, for instance, in buildings or
dynamic, as happens with sensors of vehicular net-
works. These sensors are generating a big amount of
data everyday and that same data can be used for ana-
lyzing the city dynamics. The internet of the ”moving
things” is happening right now in Porto, a Smart City
which deploys a world-level pilot project implement-
ing a Vehicular Ad-hoc Network connecting buses,
garbage trucks and taxis, and delivering free internet
access to bus passengers, enhancing their commuting
experience.

Considering the Smart Transportation topic, im-
proving the mobility is possible by studying those
bus lines flows in terms of their completion and de-
lay. Also, considering passengers, com muting expe-

rience can be enhanced by providing time estimations
(or predictions) concerning the arrival times in such
a way that passengers can use this information any-
where, for instance, in their smartphones, for moving
with agility through the city.

Regarding this, our study proposes a generic so-
lution to build arrival time estimations and predic-
tions from the data resulting from the movement of
the wondering nodes of the vehicular network. For
being able to perform arrival time estimations and
predictions, a map-matching algorithm has been pro-
posed for identifying which bus line is being com-
pleted by a given bus.

Three ensemble machine learning methods have
been tested and compared. Finally, a set of services
and proof-of-concept applications were done with the
goal of showing the practical utility of the system for
bus passengers and bus fleet managers as a decision
support system.

This article starts by presenting studies which
serve as basis of our work. Then, we present the pro-
posed architecture for solving our problem and each
one of its core components. The results of our study
are discussed for a matter of self-evaluation of this
work and finally, some conclusions are withdrawn.

Ricardo, L., Sargento, S. and C. Oliveira, I.
An Information System for Bus Travelling and Performance Evaluation.
DOI: 10.5220/0006707903950402
In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2018), pages 395-402
ISBN: 978-989-758-293-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

395

2 RELATED WORK

The study driven by (As and Mine, 2016) starts de-
fends that the most valuable resources which can be
given to the bus passengers is the estimated time of
arrival, an argument that is supported by the obser-
vation that, if bus passengers know “their departure
time and arrival time at the destination” they can ”re-
duce their waiting time at the bus stop”.

Under the same topic, (Uno et al., 2009) argument
that the fast progress of the information technology
are leading to new insights about traffic phenomena
that can be solved. Also, they refer that the identifica-
tion of particles moving through the city is one of the
key areas of application on the traffic and transporta-
tion study areas. This work focuses on presenting a
methodology for using GPS data with the aim of turn-
ing it meaningful to transportation analysis. It sum-
marizes also methodologies and transformation tech-
niques that can be applied to the GPS data. The final
aim of this study is to propose an approach for eval-
uating the bus lines quality of service, from the point
of view of the travel time stability and reliability.

Regarding time estimation and prediction, the re-
view written by (Mori et al., 2015) presents the state
of the art of this topic, going even further by explain-
ing the main definitions and how the advanced trav-
eller information systems work.

Finally, in terms of methods for long term travel
time prediction, the study conducted by (Mendes-
Moreira et al., 2012) highlights the importance of this
prediction and how it can be an important measure
for public transportation companies. They also make
a comparison of three non-parametric popular regres-
sion methods, namely, Support Vector Machine, Ran-
dom Forests and Projection Pursuit Regression using
the data from the same public transportation company
of our study. As remarking conclusions, Random For-
est is elected as the best method and it is advised to
use ensemble learning methods for improving the ac-
curacy of the predictions.

This work borrows some important ideas from the
study in (Uno et al., 2009), such as how to separate the
pipeline (like map-matching, data reduction, data pro-
cessing and data reporting) and the important func-
tionalities on each of the stages.

The related work also shows that some studies are
very different in nature, like the study conducted (As
and Mine, 2016), where the granularity of the avail-
able data is larger (1 second) and the information of
the route, number of bus stops, travel direction and
bus performance history is present as probe data used
for the study.

3 PROPOSED SYSTEM AND
ARCHITECTURE

The proposed system architecture, represented in the
figure 1, includes several modules and data sources to
support the processing pipeline.

From the bottom of the diagram to the top, please
find the description of each element:

• vanetV3 and the STCP Website are the main
raw data sources. vanetV 3 contains the location
information of each bus every 15 seconds, gath-
ered through the vehicular network, and the STCP
website contains the information on bus lines and
schedule.

• The Extraction Scripts transform the raw data,
existing on the website, in a set of well-known
and well structured files containing all the context
information such as the bus lines, bus stops, etc.

• The Matching Unit consists in a Python program
which conforms the log position data with the bus
network data.

• The Matches Database is responsible for holding
the Matching Unit results (bus line identification,
matched bus stops, etc).

• The Estimation Database helps to gather perfor-
mance metrics from bus delays.

• The Synchronization Script performs the syn-
chronization between the Matches Database and
the Estimation Database.

• The Bus Network Information Database holds
information about the bus carrier such as line, bus
stops and their relationship.

• Bus Network Information API delivers informa-
tion about the bus carrier infrastructure (the lines,
stops, the relation between them).

• Matches API delivers information about the
matches, data which is stored in the Matches
Database.

• Estimation API delivers only one endpoint for
gathering the estimated times of arrival given a
stop, a line and a date, data which is stored in the
estimation database.

• Prediction API delivers an endpoint for making
predictions, using the prediction module.

• The Line Performance Dashboard is a dash-
board for the bus carrier manager to consult the
performance of the carrier’s lines. It is a decision
support dashboard because it provides hints about
the health of the bus transportation system.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

396

External Data Sources

Data Exctracting and Preparation

APIs

Applications

vanetV3 STCP Website

Extraction Scripts

Matching Unit

Synchronization
Script

Matches
Database

Estimation
Database

Bus Network
Information Database

Matches API

Line Performance
Dashboard

Bus Passenger
Application

Estimation API Prediction API Bus Network
Information API

Figure 1: Architecture components and the data flow.

• The Bus Passenger Application is a mobile ap-
plication meant to provide the estimated times of
arrival for a given line and bus stop to the bus pas-
sengers (the carrier’s end-users).

The following subsections explain in further detail
the core components this solution.

3.1 Matching Algorithm Design

3.1.1 Overview

With the purpose of matching a set of GPS locations
of a given bus with the bus line (set of bus stops) that it
is performing, a map-matching algorithm is proposed.
Notice that the bus assigned to each bus line is inde-
pendent from the previous line performed in the same
and in different days, and the only information avail-
able is the mobility of the bus.

The algorithm comprises two steps:

• The bus line start detection;

• The greedy search for validation of the candidate
as a solution.

These two steps are explained in further detail on
the next two subsections.

3.1.2 Bus Line Start Detection Algorithm

On each iteration of the algorithm, it is applied a
heuristic, which consists on detecting the bus line
starting on that given position.

To do that, for each of the GPS positions, bus stops
are detected using a fixed-size radius that is calcu-
lated using the Vincenty Formulae (see (T. Vincenty,
1975)), and then, for each of the bus stops it is verified
if they are the first bus stop of any of the bus lines.

The algorithm 1 implements the mechanism for
detecting bus lines starts.

3.1.3 Bus line Completion Greedy Search
Algorithm

After finding a bus line starting, the second step is to
analyze whether or not the candidate is truly a solu-
tion.

The figure 2 presents the steps for validating a can-
didate bus line as solution. First, it is presented a sam-

An Information System for Bus Travelling and Performance Evaluation

397

Input: QueryTool: an object for making spatial
queries

Input: Records: a set of records from a given node,
in a given day

Output: start pro f ile: a list of the line start
detections for each one of the records

1 start pro f ile← /0

2 foreach record ∈ Records do
3 record position←

record.extractLatitudeLongitude()
4 nearest stops←

QueryTool.getNearestBusStops(record position)

5 lines o f the record← /0

6 foreach bus stop ∈ nearest stops do
7 line o f bus stop←

QueryTool.getLinesStartingWith(bus stop)
8 lines o f the record.append(lines o f bus stop)

9 start pro f ile.append(lines o f the record)

Algorithm 1: Detect Line Starts Algorithm.

S

S

1

2

3

4

5

6

7

8

9

10

11

12

S

E

1

2

3

4

5

6

7

8

9

10

11

12

S

E

1 2

3 4

Figure 2: Steps for validating a candidate bus line as solu-
tion.

ple of GPS positions, represented as blue dots. Then,
it is presented two bus lines starting at the current GPS
position being iterated by the algorithm. Then, the
two remaining steps are implemented by the greedy
search algorithm for validation of the bus line. On the
third subfigure, in order to test if the candidate bus
line is a solution, it is loaded and finally, tested, stop
by stop, using a detection radius (marked in green).

The algorithm 2 implements the mechanism pre-
sented in the fourth subfigure of the figure 2.

As input, it takes four elements: a QueryTool
object for making spatial queries, the position log
database records to be matched, the set of starting
lines for each one of the records, and finally, the base

1 i← 0;
2 solutions← /0

3 while i <Records.length() do
4 if StartingLines.index(i) is not empty then
5 foreach candidate ∈ StartingLines.index(i) do
6 j = i;

7 line stops←
QueryTool.getStopsFromLine(candidate);

8 f irst stop← line stops.getFirstElement();
9 line stops.setElement(0, None);

10 last stop← line stops.getLastElement();

11 matches← /0;
12 indexes← /0;
13 solution f ound← False;
14 target order← 1;

15 ttl← BaseTTL;

16 while ttl >= 0 do

17 if j >= Records.length() then
18 return solutions

19 ttl← ttl−1;

20 current position←
Records.index(j).getLatitudeLongitude();

21 nearest bus stops←
QueryTool.getNearestBusStop(current position);

22 foreach nearest bus stop ∈ nearest bus stops do
23 if nearest bus stop ∈ line stops and

nearest bus stop /∈ matches then
24 stop order←

line stops.index(nearest bus stop);
25 if stop order ∈

[target order, target order+5] then
26 matches.append(nearest bus stop);
27 indexes.append(j);
28 target order← stop order+1;
29 ttl← BaseTTL;

30 completeness←
(matches.size()+1)/line stops.size();

31 if last stop ∈ matches and completeness >= 0.8
then

32 matches.insert(0, first stop);
33 matches.insert(0, i);
34 solution← initializeMap();
35 solution.map(’line’, candidate);
36 solution.map(’stops’, matches);
37 solution.map(’indexes’, indexes);
38 solution.map(’completeness’, completeness);

39 solutions.append(solution);

40 i← j;
41 solution f ound← True;

42 j← j+1;
43 if solution f ound is True then
44 break;

45 i← i+1

Algorithm 2: Greedy search for validation of the
candidate as a solution.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

398

TTL, later explained.

Input: QueryTool: an object for making spatial
queries

Input: Records: a set of records from a given node,
in a given day

Input: StartingLines: a start profile of the the
records, output from the procedure
implementing the heuristic
detect line starts

Input: BaseTTL: the timeout for finding a next bus
stop (the default is 15 minutes)

Output: solutions: a list of matches

Iterating over all the sucessive GPS positions of a
bus, the algorithm verifies if there are bus lines start-
ing at the current GPS position. The variable i tracks
the overall progress.

The method’s input provides StartingLines, a list
of bus lines starting at the current GPS position. Thus,
we must test if any of them is locally a solution by
simulating the bus course (line 5).

Before starting the simulation, a context is ini-
tialized. For tracking the current progress of the
simulation, j is set. Then, the stops of the current
line are loaded and the remaining context is built:
matches holds the detected bus stops for the can-
didate line, indexes locate the bus stop appearance
in time and solution found controls the simula-
tion, interrupting it when a solution is found. Finally,
target order represents the order of the next bus
stop that the algorithm will try to detect (line 6 to 14).
The initial target order is one.

The algorithm comprises also a time-to-live
(or simply TTL). Therefore, it is able to give up on the
current simulation if it is unable to find the target bus
stop in a certain amount of time (15 minutes, based
on empirical evidences). When ttl reaches zero, an-
other candidate is tested.

The simulation itself starts at the line 16. The
current GPS position is extracted out of the record
(database element), and the nearest bus stops are re-
trieved (lines 20-21). For each of the bus stops, it is
verified if they belong to the line and if they are not
already matched. If they are not matched, the bus stop
order is extracted and it is made a verification for as-
serting that the bus stop is expected in a near future.

If the order of the detected bus stop fits this crite-
ria, both matches, indexes and the target order
are updated. The variable ttl is set to its default
(lines 24-29).

After all the bus stops finish the evaluation, the
completeness rate is computed. If the last stop was
detected and the completeness is larger than 80%, the
solution is saved into a data structure and added to the
solutions. The lines 32 and 33 handle the detection of

the first stop, which is the first to be detected but the
last to be tracked. This is also implied as technique for
detecting circular lines since, if the completeness met-
ric is targeted and the last stop is detected, only one
bus stop will be missed (the first, regarding the ini-
tial target order). The iteration variable i is updated,
making the main control cycle ignore the analysis of
all the intermediate records which are covered by the
found solution (lines 32-41).

3.2 Estimating Arrival Times

After the system being capable of identifying which
bus line has a bus completed, it is possible to use the
data from the source database to build statistics about
the bus line arrival times. Unlike most of the litera-
ture which makes use of times between stops to cal-
culate time estimations, our study uses passing times
because they require less computation power and also
because the data granularity is very low (15 seconds).

The process of estimating arrival times consists in
the following steps:

1. Choosing a bus line and a bus stop.

2. Finding a reference time (for instance, a times-
tamp chosen by the user or a timestamp gathered
from a fixed time table of the carrier).

3. Then, over all the found matches in a period of
time (for instance, one month), find the matches
that fit the previous captured timestamp in a given
reference window (for instance, 5 minutes around
the reference time).

4. Obtain those corresponding timestamps.

5. Compute the average or the median of the gath-
ered timestamps.

3.3 Predicting Arrival Times with
Machine Learning

The goal of the prediction module is to deliver pre-
dictions of bus arrival times at each bus stop of a bus
line. Thus, this module can be integrated in a service
that can be accessed by bus passengers, in real-time.

Using machine learning is a natural approach for
implementing this module. This is a supervised learn-
ing task because training values are provided as sam-
ples (the timestamps). Since the target value is not a
class but rather a continuous value (a float expressing
a time in the form of UNIX epoch), the type of ma-
chine learning algorithms that need to be tested are
regressions.

The three tested algorithms are the following:

An Information System for Bus Travelling and Performance Evaluation

399

• Random Forrest Regressor1

• Gradient Boosting Regressor2

• Bagging Regressor (using Decision Trees or
Support Vector Regression)3

These machine learning algorithms are ensem-
ble methods, as recommended by ((Mendes-Moreira
et al., 2012)), in order to obtain a better accuracy.

The objective of using three different algorithms is
to find which one of them performs better. The predic-
tion module is implented using the Python language
and the framework scikit-learn.

3.4 Overall Integration

3.4.1 APIs

The information generated by the matching algorithm
is stored into a database. Also, the estimation mecha-
nism is implemented in the database level.

Since the application does not interact directly
with the databases, an abstraction level is provided
through the provision of a set of REST APIs. They
are implemented using the Python language and
connexion4, which provides a mean for present-
ing the API documentation automatically from a
swagger5 YAML6 specification file.

3.4.2 Applications

Two main applications have been developed as an ef-
fort to illustrate the outputs of the system architecture.
One is a bus line performance dashboard, meant for a
bus carrier manager and the other is a mobile applica-
tion for bus passengers.

Illustrations of these applications are shown in the
figures 3 and 4.

1Random Forrest Regressor on scikit-learn docu-
mentation (http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.
RandomForestRegressor.html)

2Gradient Boosting Regressor on scikit-learn
documentation (http://scikit-learn.org/stable/modules/
generated/ sklearn.
ensemble.GradientBoostingRegressor.html#examples-
using-sklearn-ensemble-gradientboostingregressor)

3Bagging Regressor on scikit-learn documentation
(http://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.BaggingRegressor.html)

4Connexion, a Swagger/OpenAPI First framework for
Python on top of Flask with automatic endpoint validation
& OAuth2 support (https://github.com/zalando/connexion)

5Swagger, The world’s most popular API tooling
(https://swagger.io/)

6YAML Ain’t Markup Language (http://yaml.org/)

Figure 3: Estimated Times of Arrival for a given bus stop.

Figure 4: Decision Support Dashboard showing a delay
plot.

4 RESULTS

4.1 Map-matching Results

A natural question, at this stage, is how many bus
lines were matched in the period of this study (since
the start of January until the end of March). Below,
we present some numbers:

• Number of SQL Records Processed: 94 328
959.

• Average Processing Time (Depends on the
Dataset): 35h14m per month.

• Number of Detected Bus Lines: 268 702, total-
ing 2985 bus lines completions per day.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

400

• Number of Detected Bus Stops: 9 460 737, to-
talling 105 119 bus stops detection per day.

• Average of the Completion Rate: 97.199(89) %.

The three months of captures result in more than
94 million SQL records with the location of the
buses. With this technique, 268 thousand matches
were found, adding value to vanetV3.

The average completion rate, despite of not being
a totally reliable metric, shows that in the average, the
overall bus lines detected have 97.2% of its bus stops
detected, being a strong indicator that the algorithm
works mostly well.

4.2 Time Estimation Results

The delay plot of a bus line is presented on the Line
Performance Dashboard. The delay plot helps us on
understanding how a bus line usually behaves during
the bus course completion as well as on understand-
ing if the bus line completion usually completes uni-
formly or if it varies locally (next to a bus stop or a
set of bus stops). Also, the delay plot provides a mean
for studying the behavioral differences in terms of de-
lay of a given bus line on rush and non-rush hour pe-
riods while enabling long-term time estimations (for
instance, in 3 months).

Five values are presented: the current match (in
blue) represents the current bus line completion that
is being compared, the inner red line represents the
value of the third quartile (75%) and the inner green
represents the first quartile (25%). These metrics are
represented towards the median value (second quar-
tile, with value 50%), defined as zero. The outer
values sample the edges of the distribution. Values
higher than zero are said to be late in relation to the
distribution.

Regarding these characteristics, we have chosen
some of the bus lines of STCP that seem to reveal
traffic patterns or mobility problems. For instance,
the bus line 204 - HOSPITAL DE SAO JOÃO reveals
very well the traffic and delay patterns. It comprises
some popular points of interest, such as Faculdade de
Engenharia da Universidade do Porto, Escola Supe-
rior de Educação and Hospital de São João.

Having such destinations, it is a line that is worth
studying because of its impact on student , teachers
and other faculty members mobility.

Below, we present a delay plot of the bus line 204
- HOSPITAL DE SAO JOÃO at February 20, using the
period from January 20th until February 20th of 2017
as reference. The delay plot refers to the period be-
tween 07:57 until 09:02 a.m, during the rush hour.
The x-axis represents the bus stop codes and the y-axis
represents the time in minutes.

Figure 5: Line 204 Hospital de S. João from 07:57:50 until
09:02:20.

4.3 Machine Learning Results

For evaluating the model with newly found hyper-
parameters, regression metrics needed to be calcu-
lated. The machine learning framework’s API pro-
vides five regression metrics: the Explained Variance
Score (EVS), Mean Absolute Error (MAE), Mean
Squared Error (MSE), Mean Squared Logarithmic Er-
ror (MSLE), Mean Squared logarithmic error and Me-
dian Absolute Error (Median AE), Determination Co-
efficient (R2).

The table 1 presents these metrics comparison.
More information about their meaning can be con-
sulted on Scikit-Learn Documentation 7 about the re-
gression metrics.

Table 1: Resulting Evaluation Metrics.
Bagging

(Decision Tree
Estimator)

Bagging
(Support Vector

Regressor)

Gradient
Boosting

Random
Forrest

EVS 0.982 0.975 0.985 0.984
MAE 179.999 133.562 183.049 183.319
MSE 38972.588 22614.798 39265.194 39925.414
MSLE 1.309e-05 7.682e-6 1.320e-05 1.342e-05
MAE 201.664 130.909 206.808 206.723
R2 0.899 0.941 0.898 0.897

Overall, using the bagging algorithm with SVR as
base estimator is better choice because:
• The determination coefficient R2 is higher,

meaning that it is likely that this model is better
on predicting accurately;

• The mean square error, mean square logarith-
mic error, and the median absolute errors are
almost half lower than the counterpart models;

• The model is more general: when plotting the so-
lution, the generated regression is mathematically
simpler than the counterparts;
Therefore, the model chosen for being used in the

Prediction API is Bagging with SVR as base estima-
tor.

An important note is that the median errors
(mean absolute errors) are approximately 130 sec-
onds, meaning that predicted passing times may have

7Regression Metrics (http://scikit-learn.org/stable/
modules/classes.html#regression-metrics)

An Information System for Bus Travelling and Performance Evaluation

401

an error in the order of 2 minutes and 10 seconds. This
is subject to change, depending on the data variance,
something that needs to be studied in more depth, in
the future.

5 CONCLUSIONS

This paper proposed an approach to generate mean-
ingful information for bus passengers, municipalities
and transportation companies.

The match algorithm is a generic solution, de-
pending on few data to deliver a matching solution.
With it, it is possible to guess what bus line is a bus
traversing, not only in Porto, but also in other places,
if the vehicular network exist and also information re-
garding bus carrier network is provided.

Then, the arrival time estimation delivers founda-
tions for using as recommendation for bus passenger
or, for delivering reports and decision support systems
for the bus fleet operators.

Also prediction is introduced, exploring ensemble
learning as a measure for improving the accuracy of
the literature studied methods. The estimators per-
form in a similar way but the best performing one is
bagging, using support vector regressor as base es-
timator, due to being more general and providing a
lower error.

Finally, the applications for bus passengers and
bus fleet operators are a proof of the utility provided
by this whole architecture. Future work will provide
real assessment of these applications.

ACKNOWLEDGEMENTS

This work was supported by the CMU-Portugal Pro-
gram through S2MovingCity: Sensing and Serving a
Moving City under Grant CMUPERI/TIC/0010/2014.

REFERENCES

As, M. and Mine, T. (2016). Empirical Study of Travel Time
Variability Using Bus Probe Data. In 2016 IEEE Inter-
national Conference on Agents (ICA), pages 146–149.
IEEE.

Mendes-Moreira, J., Jorge, A. M., De Sousa, J. F., and
Soares, C. (2012). Comparing state-of-the-art regres-
sion methods for long term travel time prediction. In-
telligent Data Analysis, 16(3):427–449.

Monzon, A. (2015). Smart Cities and Green ICT Systems
(SMARTGREENS), 2015 International Conference

on. Smart Cities and Green ICT Systems (SMART-
GREENS), 2015 International Conference on, pages
1–11.

Mori, U., Mendiburu, A., Álvarez, M., and Lozano, J. A.
(2015). A review of travel time estimation and fore-
casting for Advanced Traveller Information Systems.
Transportmetrica A: Transport Science, 11(2):119–
157.

T. Vincenty (1975). Direct and Inverse solutions of
geodesics on the ellipsoid with application of nested
equations. Survey Review, XXII(176).

Uno, N., Kurauchi, F., Tamura, H., and Iida, Y. (2009). Us-
ing Bus Probe Data for Analysis of Travel Time Vari-
ability. Journal of Intelligent Transportation Systems,
13(1):2–15.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

402

