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Abstract: Location selection determines the feasibility of a new location by evaluating factors such as the drive time
of customers, the number of potential customers, and the number and proximity of competitors to the new
location. Traditional location selection approaches use census block group data to determine average customer
drive times by computing the drive time from each block group to the proposed location and comparing it
to all competitors within the area. However, since companies need to evaluate on the order of hundreds
of thousands of potential locations and competitors, traditional location selection approaches prove to be
computationally infeasible. In this paper we present an approach that generates an optimal set of clusters to
speed up drive time calculations. Our approach is based on the insight that in urban areas block groups are
comprised of a few adjacent city blocks, making the differences in drive times between neighboring block
groups negligible. We use affinity propagation to initially cluster the census block groups. We use population
and average distance between the cluster centroid and all points to recursively re-cluster the initial clusters. Our
approach reduces the census data for the United States by 80% which provides a 5× speed when computing
drive times. We sample 200 randomly generated locations across the United States and show that there is
no statistically significant difference in the drive times when using the raw census data and our recursively
clustered data. Additionally, for further validation we select 300 random Walmart stores across the United
States and show that there is no statistically significant difference in the drive times.

1 INTRODUCTION

Location selection determines the feasibility of a new
retail location by evaluating factors such as the drive
time of customers to the new location, the number of
potential customers, and the number and proximity of
competitors to the new location. Locations that are
distant from the customer base, out-positioned by a
major competitor, or in a rural area with a low pop-
ulation density are less likely to succeed. Drive time
computations for a new location are performed by us-
ing the census block group data in conjunction with
drive time analysis tools, such as the Google Maps
Distance Matrix API (Google, 2017). For a pro-
posed location, a trade area is created around the lo-
cation and drive times are computed from each block
group within the trade area to the proposed location.
The drive times are then averaged and compared with
competing locations to determine if the proposed lo-
cation is closer than the competition.

However, since companies need to evaluate on the

order of thousands of potential locations and competi-
tors, computing drive times from each census block
group can be computationally infeasible. In this pa-
per, we present an approach to reduce the computa-
tional overhead for drive time calculations by cluster-
ing neighboring block groups into a single point. Our
insight is that census block groups in urban areas are
in close proximity, as shown in Figure 1, making drive
time calculations from each block group redundant as
the differences in driving time between neighboring
block groups are negligible.

In this paper we present an approach to estimate
an optimal set of census block group clusters. The
novelty of our approach is a recursive algorithm to
split large clusters into optimal-sized clusters that
satisfy user-provided thresholds of population count
and average distance between the cluster centroid and
cluster members. We first generate an initial set of
clusters using affinity propagation (Frey and Dueck,
2007) which automatically estimates the number of
clusters for an input set of points. We recursively
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Figure 1: Two neighboring census block groups in Wash-
ington, DC. As shown by the Google Maps distance and
drive time calculation, the block groups are 0.2 miles which
equates to a 1 minute driving time. The difference in dis-
tance and drive time is insignificant and the block groups
can be clustered to a single point. In this paper, we leverage
block group proximity to cluster neighboring block groups
into a single point to reduce computational overhead.

split clusters if their human population count or av-
erage distance from each member to the cluster cen-
troid are higher than user-provided thresholds, and if
there are more than 10 block groups in each cluster.
We approximate the distances between each cluster
member and the cluster centroid by using the haver-
sine formula (Van Brummelen, 2012).

The remainder of this paper is organized as fol-
lows: in Section 2 we discuss the related literature in
location selection. Section 3 discusses our recursive
threshold based cluster splitting approach. In Sec-
tion 4 describe our dataset, and we show the com-
putational improvements gained by clustering block
groups. We discuss the practical and statistical dif-
ferences in drive times using 200 random locations in
Section 5. We discuss internal and external validity
threats in Section 6. Finally, we conclude the paper in
Section 7 and provide potential directions for future
research.

2 RELATED WORK

Several approaches use a variety of features extracted
from the data in location selection. The approach of
Xu et al. (Xu et al., 2016) features such as distances
to the city center, traffic, POI density, category pop-
ularity, competition, area popularity, and local real
estate pricing to determine the feasibility of a loca-
tion. The approach of Karamshuk et al. (Karamshuk
et al., 2013) uses features mined from FourSquare
along with supervised learning approaches using Sup-
port Vector Regression, M5 decision trees, and Linear
Regression to determine the optimal location of a re-
tail store.

Social media platforms provide novel metrics to
evaluate the feasibility of a location. Several ap-

proaches determine the popularity of a proposed lo-
cation by using the reviews of users (Wang et al.,
2016a), or by evaluating the number of user check-
ins and location centric data from platforms such as
Twitter and FourSquare (Karamshuk et al., 2013; Qu
and Zhang, 2013; Yu et al., 2013; Yu et al., 2016;
Wang et al., 2016b; Chen et al., 2015). User com-
ments posted on review sites provide insights on the
personal experience of the consumer at an existing lo-
cation or similar business. User check-in data pro-
vides popularity metrics for a geographical area based
on the frequency and duration of a visit.

Many approaches use optimal location queries
to evaluate the effectiveness of a location by plac-
ing higher priority on locations that are closer to
the proposed customer base (Xiao et al., 2011;
Ghaemi et al., 2010). The approach of Ghaemi et
al. (Ghaemi et al., 2012) uses nearest neighbors with
results from past optimal location queries to address
issues caused by moving locations and customers.
Banaei et al. (Banaei-Kashani et al., 2014) propose re-
verse skyline queries to allow optimal location queries
to handle multiple criteria such as distance to location
and distance to competitors.

Since a proposed location may not satisfy all cri-
teria adequately, Kahraman et al. (Kahraman et al.,
2003) use fuzzy techniques to reach a compromise be-
tween various criteria while evaluating the feasibility
of a site. Fuzzy approaches have been used to de-
termine the appropriate number of firestations at an
airport (Tzeng and Chen, 1999), and the optimal lo-
cation of new convenience stores (Kuo et al., 1999)
and factories (Çebi and Otay, 2015; Yong, 2006). Ap-
proaches based on analytic hierarchy process (AHP)
use human experts to weight location selection crite-
ria and to generate a comprised location rank (Tzeng
et al., 2002; Yang and Lee, 1997; Aras et al., 2004).

Unlike the prior approaches, our work uses cen-
sus block group data, and is most closely related to
research in the area of retail location selection, ser-
vice accessibility and market demands using census
block groups (Bailey, 2003; Nallamothu et al., 2006;
Carr et al., 2009; Guagliardo, 2004; Jiao et al., 2012;
Branas et al., 2005; Farber et al., 2014; Blanchard and
Lyson, 2002). Several approaches use census block
groups and tracts to compute population and drive
time estimates for access to trauma centers, hospitals,
grocery stores, and supermarkets (Branas et al., 2005;
Nallamothu et al., 2006; Carr et al., 2009; Guagliardo,
2004; Jiao et al., 2012; Farber et al., 2014; Blanchard
and Lyson, 2002). Unlike our work, these approaches
estimate drive times by using urban, suburban, and
rural speed thresholds and population densities. In
the absence of accurate drive time data for location

Optimal Estimation of Census Block Group Clusters to Improve the Computational Efficiency of Drive Time Calculations

97



Figure 2: Comparison of census block group distribution for Minnesota and Utah. While both states are approximately 85,000
square miles, Utah has large uninhabited areas when compared to Minnesota.

Figure 3: Comparison of clustered census block groups for Minnesota and Utah. While both states have the same land area,
Utah has only 51 clusters while Minnesota has 134 clusters. Hence, traditional clustering approaches cannot be applied as
we have no prior knowledge of the number of optimal clusters. In our approach we use affinity propagation, which does not
assume a base number of optimal clusters.

selection, the approach of Li et al. (Li et al., 2015)
computes road segment times from public transit GPS
data. Our work differs from these approaches in
that all these approaches use unclustered census block
groups and drive time estimates for evaluating the fea-
sibility of a proposed location. Unclustered census
data introduces computational overhead when select-
ing across multiple candidate locations and compar-
ing to multiple competitors. Drive time estimates do
not accurately depict the time taken by customers to
reach the location. Instead we propose using exact
drive times obtained from Google Maps, while using
clustering to reduce computational overhead.

3 THRESHOLD BASED
RECURSIVE CLUSTERING

3.1 Base Clustering Algorithm

We use affinity propagation as our base clustering al-
gorithm as it does not require the user to specify the
number of clusters (Frey and Dueck, 2007). In our
case, we have no prior knowledge on the optimal clus-
ter size. Further, each state can have a different num-
ber of clusters based on the population distribution.
For example, as shown in Figure 2, Utah and Min-
nesota have the same overall land area, but have dif-
ferent census block group distributions due to their
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geography. As shown in Figure 3, Utah has 51 clus-
ters while Minnesota has 134 clusters. Densely popu-
lated areas are combined into multiple clusters, while
sparsely populated areas are combined into a single
cluster. Minnesota has several densely populated ar-
eas, and hence requires a larger number of clusters to
describe the state.

We use the affinity propagation algorithm im-
plemented in the Python skikit-learn toolkit using
2000 maximum iterations and 200 convergence iter-
ations (Pedregosa et al., 2011). The convergence it-
erations control the number of iterations without any
changes in the estimated clusters. A high maximum
and convergence iteration provides higher certainty
that the resultant clusters will not change.

3.2 Recursive Cluster Splitting

Our recursive cluster splitting method uses the initial
clusters generated in Subsection 3.1, a user-provided
upper bound d̄bound for the mean distance between the
cluster centroid and each cluster point, and a user-
provided upper bound pbound for the total population
in each cluster as input. For the results shown in this
paper, we set dbound to 5 and pbound to 20,000. For
each cluster c from Subsection 3.1, we compute the
distance di between the cluster centroid and the ith

point in the cluster, where i ∈ Ic and Ic represents the
indices of all points in the cth cluster, as

di = R ·bi, (1)

where bi is given by

bi = 2atan2
(√

ai,
√

1−ai

)
. (2)

The value of ai represents the haversine of the central
angle between each point represented by its latitude
φi and longitude λi to its cluster centroid represented
by φc and λc, and is computed as

ai = sin2 φc−φi

2
+ cosφi · cosφc · sin2 λc−λi

2
. (3)

In Equation (1), R represents the radius of the earth at
the equator, i.e., 3959 miles. For cluster c, we com-
pute the mean distance d̄ for all points in the cluster
to its centroid as

d̄ =
1
|Ic| ∑i∈Ic

di. (4)

We split cluster c into a second set of clusters us-
ing affinity propagation if d̄ is higher than the user-
specified upper bound d̄bound or the population in the
cth cluster pc is higher than pbound, and if the num-
ber of points in a cluster is greater than 10. For each

Algorithm 1: Recursive Cluster Splitting.
Input: Sets of latitudes and longitudes for

initial cluster points
{{(φi,λi) : i ∈ Icinit} : cinit ∈ Cinit},

Set of latitudes and longitudes for initial cluster
centroids {(φcinit ,λcinit : cinit ∈ Cinit}, and
user-provided bounds d̄bound and pbound
Output: Set of final clusters, O

1 for cinit ∈ Cinit do
2 Pcinit ←{(φi,λi) : i ∈ Icinit}
3 O = split(Pcinit ,O)
4 return O

end
Procedure split(Pc,O)

1 Compute d̄c using Equation (4)
2 if (d̄c > d̄bound∨ pc > pbound)∧|Ic|> 10

then
3 Split cluster represented by points in Pc

by clustering them into smaller
clusters {Pc̄ : c̄ ∈ Cc} using affinity
propagation

4 for c̄ ∈ Cc do
5 return split(Pc̄,O)

end
else

6 O← O ∪Pc
7 return O

end

newly generated cluster, we recursively perform av-
erage distance computation and evaluation of the dis-
tance, population, and cluster point count to split them
further till the user-defined constraints are met. Algo-
rithm 1 summarizes the steps of our approach. The
initial clustering algorithm runs in O(kn2) time and
produces R clusters, where k represents the number
of iterations until convergence and n represents the
number of samples. In our case, the initial clustering
algorithm runs with n = 220,334 points and k = 200.
Each of the R clusters is reclustered in O(kmi

2) time,
where k = 200 and mi represents the number of points
in the ith cluster and i ∈ R.

3.3 Drive Times Computation

When evaluating the effectiveness of our approach,
we compute exact drive times to a potential location
from all points enclosed by a bounding box at a user
specified distance (e.g. 5 miles). The bounding box is
represented by coordinates of the north east and south
west most points. All points within the bounding box
are clustered census block groups generated by Al-
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Algorithm 2: Bounding Box Computation.
Parameters: MINLAT (min latitude):−90◦,

MAXLAT (max latitude):90◦,
MINLON (min

longitude):−180◦,
MAXLON (max longitude):180◦,
R (radius of earth): 6,371 km.

Input: Distance d and location (φ1,λ1)
1 φ = d

R
2 φmin = φ1−φ

3 φmax = φ1 +φ

4 if φmin > MINLAT∧φmax < MAXLAT then
5 λ = sin−1

(
sinφ

cosφ1

)
6 λmin← λ1−λ

7 if λmin < MINLON then
8 λmin← λmin +2π

end
9 λmax← λ1 +λ

10 if λmax > MAXLON then
11 λmax← λmax−2π

end
else

12 φmin←max(φmin,MINLAT)
13 φmax←min(φmax,MAXLAT)
14 λmin←MINLON
15 λmax←MAXLON

end

Figure 4: We use the drive times generated by the Google
Maps API to determine the differences between raw census
block group data and our recursively clustered data. The
JSON object payload contains distance and drive time val-
ues from a given starting and ending location.

gorithm 1, and represent customers who are likely to
visit the potential location. We compute the locations
of the north east and south west most points of the
bounding box by using the inverse haversine formula
described in Algorithm 2. Given a distance d and the

location denoted with latitude φ1 and longitude λ1,
we compute the north east location with latitude φmax
and longitude λmax and the south west location with
latitude φmin and longitude λmin. We use the Google
Maps API to generate drive times for all points en-
closed by bounding box to the location. For exam-
ple, to compute the drive time and distance between
starting location (44.66, -74.99) and ending location
(44.67, -74.98), we call the mapping API using: ht
tp://maps.googleapis.com/maps/api/distanc
ematrix/json?units=imperial&origins=44.66
,-74.99&destinations=44.67,-74.98. The re-
turned JSON object is shown in Figure 4. The gener-
ation of the north east and south west most points of
the bounding box are performed in O(1) time, while
the drive time computations are performed in O(n)
time, where n represents the number of points within
the bounding box.

4 RESULTS

We use the 2010 US Census Bureau Block
Group dataset which consists of 220,334 unique
block groups representing all 50 states, District of
Columbia, and Puerto Rico (Census, 2010). The
dataset consists of:

• STATEFP or State Federal Information Process-
ing Standards (FIPS) code, which is used to iden-
tify each state in the US,

• COUNTYFP or county FIPS code, which is used
to identify each county within the state,

• POPULATION or the total population of the
block group,

• LATITUDE or the latitude of the block group cen-
ter, and

• LONGITUDE or the longitude of the block group
center.

Our approach reduces the size of the census
dataset from 220,334 block groups to 41,442 clus-
tered block groups, thereby reducing the dataset by
81.19%. On a per state basis, we see the highest re-
duction in Rhode Island, with a reduction from 815
block groups to 117 clusters resulting in a reduction
of 85.64%. We see the lowest reduction in North
Dakota, with a reduction from 572 block groups to
164 clusters, or a reduction of 71.33%.

The average maximum distance from the cluster
centroid across all states is 4.624 miles. The aver-
age distance from the cluster centroid to cluster points
across all states is 2.300 miles. On a per state basis,
we see the lowest average maximum distance from
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Figure 5: Comparing results for raw census block group data, sub-optimal clustered data, and optimally clustered data for
Rhode Island, Nevada, North Dakota, and Wyoming. A densely populated state, such as Rhode Island, or a state with dense
population localities, can be described by fewer clusters. Sparsely populated states, such as North Dakota and Wyoming,
require a larger number of clusters to define the population. (Figure best viewed in color).

the cluster centroid in the District of Columbia at
0.667 miles. The lowest average distance from the
cluster centroid to cluster points is also in the District
of Columbia at 0.381 miles. We see the highest av-
erage maximum distance from the cluster centroid in
Alaska at 27.141 miles. The highest average distance
from the cluster centroid to cluster points is also in
Alaska at 11.369 miles. For a congested state with
dense traffic patterns and low inner city speed limits,
such as the District of Columbia, a low cluster cen-

troid to cluster point distance is ideal. On the other
hand, for a sparsely populated state, such as Alaska,
where speed limits are higher a larger cluster centroid
to cluster point distance has minimal impact.

The state to state variations in census block group
reduction can be explained by the differences in land
area and population distribution. As shown in Fig-
ure 5 census block group reduction is highest in
Rhode Island as it is a densely populated state with
1021 individuals per square mile. States such as
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Figure 6: A densely populated area contains several block groups in close proximity, while a sparesely populated area has
larger distances between block groups. In our approach the densely populated area shown in the top right is reclustered further
into smaller clusters to ensure each cluster point is less than 5 miles from the cluster centroid and the total population of the
cluster is below 20,000. The sparsely populated area shown on the bottom right will also be reclustered using our approach,
however our algorithm generates fewer sub clusters. (Figure best viewed in color).

Nevada, where the population density is low (26 in-
dividuals per square mile), but highly concentrated to
a few localities also have a higher reduction (84.80%).
On the other hand, states with a low population den-
sity, such as Wyoming with 6 individuals per square
mile have the lowest reduction.

For a densely populated state, such as Rhode Is-
land, we start with 815 census block groups and gen-
erate a set of 27 sub-optimal clusters. These initial
clusters are sub-optimal as the average maximum dis-
tance from the cluster centroid of 6.825 miles and an
average cluster centroid to cluster points distance of
3.272 miles. Using our approach, we generate 117
optimized clusters. The average maximum distance
from the cluster centroid is 2.285 miles, and the aver-
age distance from the cluster centroid to cluster points
is 1.259 miles. On the other hand, for a sparsely
populated state, such as South Dakota, we start with
654 census block groups and generate a set of 15
sub-optimal clusters. The average maximum distance
in the sub-optimal clusters is 76.994 miles and the
average cluster centroid to cluster points distance is
30.607 miles. Our approach generate 177 optimized
clusters with a average maximum distance of 8.501
miles and an average cluster centroid to cluster points
distance of 4.264 miles.

To understand how localities with different popu-
lation densities are handled by our approach, we show

the changes in cluster distribution after initial clus-
ter and optimization for two localities in Connecticut
in Figures 6 and 7. As shown in Figure 7, after ini-
tial clustering a densely populated areas, such as the
Hartford area, has a large number of block groups in
close spatial proximity. A sparsely populated area,
such as the Salisbury area has very few census block
groups with a larger distance between neighboring
block groups. As shown in Figure 7, after optimiza-
tion our approach generates clusters comprised of 10
or more census block groups in densely populated
areas since the distance between cluster members is
low. For sparsely populated areas, each cluster con-
sists of 3-4 census block groups as they are spatially
further apart from each other.

The 80% reduction in the census dataset results
in a 5× increase in computational efficiency on aver-
age. As shown in Figure 8 for our random location
denoted by the diamond symbol and located at coor-
dinates (41.766458,-72.677643), we generate 253 po-
tential customers groups in a 5 mile bounding box us-
ing the census block group data with an average drive
time of 10 minutes 14 seconds. Our approach gen-
erates 33 clustered customer groups with an average
drive time of 10 minutes 5 seconds.
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Figure 7: A densely populated area contains several block groups in close proximity, while a sparsely populated area has
larger distances between block groups. By reclustering the densely populated area into multiple smalller clusters, we ensure
that the drive time differences between the raw census data and clustered data are minimized. (Figure best viewed in color.)

Figure 8: Effect of clustering on reducing the number of drive time computations in a urban location, such as Hartfod, CT.
The diamond indicates a proposed location, and the circles indicate block groups. The figure on the left shows the raw census
block group data, while the figure on the right shows the clustered block group data.

5 EVALUATION

The typical location selection process involves the
evaluation of drive times for several thousand loca-
tions across the country and making comparisons to
several thousand competitors. We measure the perfor-
mance of our optimized clustering approach by com-
puting the difference in drive times for 200 random
locations generated across the entire US. For each lo-
cation we create a trade area at a radius of 5 miles
from the location and compute the average drive time
using both the census block group data and the opti-

mally clustered data. We apply a paired t-test and test
the following hypotheses:

NULL : the mean drive time for census block
group data is no different from the mean drive time
for optimally clustered data.

Alternate : the mean drive time for census block
group data is different from the mean drive time for
optimally clustered data.

We failed to reject the NULL hypothesis with a
p-value of 0.1878. The difference in sample means
for the census block group data and clustered data is
0.224301 minutes or 13.5 seconds. The 95% confi-
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dence interval lies between [-33.53 seconds, 6.62 sec-
onds]. For the census block group data, we compute
drive times to 8855 consumer groups. By using the
clustered census block groups we only compute drive
times to 1570 locations, resulting in a 5.64× improve-
ment in the number of computations.

The differences in drive times obtained from the
census and clustered census data are impacted by
the number of clustered points found within a trade
area for a proposed location. As shown in Figure 9,
sparsely populated areas where the clustering reduces
to the census block groups to 1 or 2 clusters results
in a higher difference in drive times. In sparse ar-
eas, we observe drive time differences up to 2 minutes
on average when comparing the census and clustered
census data. For densely populated areas, where cen-
sus block groups are in close spatial proximity, the
drive time differences are less than 30 seconds on av-
erage. A 2 minute drive time difference in a sparsely
populated area, where amenities are in general further
apart, may be more acceptable to a consumer.

To further validate our approach, we randomly se-
lected 300 Walmart locations and computed the drive
time using our optimized clustering approach and the
raw census data. We failed to reject the NULL hy-
pothesis with a p-value of 0.08782. The difference in
sample means for the census block group data and the
clustered data is 0.1464922 minutes or 8.8 seconds.
The 95% confidence interval lies between [-18.89 sec-
onds, 1.31 seconds].

Figure 9: Drive time differences measured in seconds for
census vs. clustered census data. Drive time differences re-
duce as the number of clustered points in the neighborhood
of a proposed location increases.

6 THREATS TO VALIDITY

Internal. The 2010 United States Census block group
dataset contains 930 block groups with zero popula-
tion. These block groups are located in uninhabited
areas, such as lakes and nationals forests. Our ap-
proach is not affected as zero population block groups
are either left unclustered (579 out of 930) as they are
not candidates to becomes members of another clus-
ter, or are consumed into a cluster where they do not
add to the cluster’s population count.

We use the haversine formula to compute dis-
tances from cluster members to the cluster centroid.
The haversine formula provides the distance as the
‘crow files’, and does not factor in natural pathway
obstructions for humans, such as bodies of water
or mountains. For the purpose of our approach the
haversine distance is used to determine the closeness
of cluster members to the centroid, and not as an exact
measure of distance.

As shown in Figure 10 in sparsely populated areas
the differences in the drive times between the census
and the optimized cluster set is higher. For exam-
ple, using a randomly generated location in Salisbury,
CT, our approach reduces the number of drive time
computations from 8 in the census data to 1 in the
clustered census data. However, the drive time dif-
ference between the two is 4 minutes 38 seconds. In
future, we intend to address these issues by extending
the bounding box further out from the proposed loca-
tion in sparsely populated areas. In this instance, if
we increased the bounding box distance to 7.5 miles
the differences in drive time reduces to 1 minute 52
seconds. Additionally, using a population weighted
approach would remove this threat since these block
groups would have no impact on the analysis.
External. Our approach uses population data aggre-
gated as census block groups. While census block
groups are used only in the United States, our ap-
proach can be performed on census tracts which are
used in several other countries, such as Australia,
New Zealand, and United Kingdom.

7 DISCUSSION

In this paper we presented our approach for gener-
ating optimized census block group clusters for im-
proving the efficiency of drive time calculations for
location selection. Companies need to evaluate on the
order of thousands of potential locations and competi-
tors, computing drive times from each census block
group can be computationally infeasible. Our opti-
mization approach allows the user to specify distance
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Figure 10: Effect of clustering on reducing the number of drive time computations in sparsely populated areas, such as
Salisbury, CT. The diamond indicates a proposed location, and the circle indicate block groups. The figure on the left shows
the raw census block group data, while the figure on the right shows the clustered block group data.

and population thresholds and generate a clustered US
census block group dataset. Our clustering approach
reduces the census block group data from 220,334
groups to 41,442 clustered groups. By reducing the
census data set, we provide an average 5× speed up
for the drive time computation process. We demon-
strate the robustness of our approach by generating
200 random and 300 Walmart locations across the
United States and using the Google Maps Distance
Matrix API to generate actual drive times. The dif-
ference in drive times generated by the census and
clustered census datasets have no practical or statisti-
cally significant difference. The largest differences in
drive times between the census and clustered census
data are found in sparsely populated areas. Citizens in
these areas are more likely to be accepting of longer
travel time due to the lack of amenities. The lowest
differences in drive times are found in densely pop-
ulated areas, where citizens are more likely to notice
changes in time and distance.

Our current census block group clustering ap-
proach uses the haversine formula to determine prox-
imity of cluster members to the cluster centroid. In
future, we will use geographic data to determine lo-
cations of natural obstructions, such as mountains and
waterways, along with transportation data to use road-
way speed limits to improve the accuracy of the clus-
tering process using obstacle aware clustering tech-
niques (Tung et al., 2001). Traffic patterns within
urban areas influence drive time calculations. Our
current approach generates clusters based on spa-
tial proximity. In future, we will incorporate traffic
data to optimize clusters based on congestion trends.
Our current approach uses a population threshold of
20,000 and a distance threshold of 5 miles, in future
we will investigate a broader set of thresholds to de-
termine the most effective clustering approach. Our
approach utilizes data from the United States, in fu-

ture we will investigate the generalizability of our ap-
proach by using census tract data from countries such
as Australia, New Zealand, and United Kingdom.
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