
Internet of Things Middleware: How Suitable are Service-oriented
Architecture and Resource-oriented Architecture

Janick Kubela, Matthias Pohl, Sascha Bosse and Klaus Turowski
Magdeburg Research and Competence Cluster, Faculty of Computer Science,

University of Magdeburg, Magdeburg, Germany

Keywords: Resource-oriented Architecture (RoA), Service-oriented Architecture (SoA), Internet of Things, Middleware,
Web of Things.

Abstract: Over the last years, the Internet of Things was researched widely. Thus, various IoT applications are devel-
oped based upon different use-cases. Numerous middleware solutions for the IoT are based on the Service
oriented Architecture and Resource oriented Architecture. Both approaches do support the connection of dis-
tributed objects but no research is done to check the suitability of SoA and RoA in the context of common
IoT requirements in an adequate scope. In the context of this paper the fundamental mechanisms of SoA and
RoA are compared regarding to connectivity, compatibility, scalability, robustness and security. Resulting out
of this comparison, both approaches are suitable as the base of an IoT middleware. Nevertheless, RoA has
a lack of supporting bi-directional communication and real-time analysis while SoA rapidly become a heavy
middleware solution. Therefore, the use of a mixed-up middleware is recommended.

1 INTRODUCTION

Over the last decades, the internet developed into an
essential part of the everyday life. Its focus shifted
from an information network to a bidirectional com-
munication network (Fielding and Taylor, 2000). In
the era of mobile devices this development induces
the omnipresence of communication channels. For in-
stance, people communicate via smartphones, smart-
watches, tablets and other web compatible devices
with each other (Gubbi et al., 2013). Besides, the
interaction of humans with smart devices gets easier
by the advancement of voice, gesture and emotional
recognition (Fielding and Taylor, 2000). The next
logical step will be on one hand to enable the com-
munication between humans and non-smart, physi-
cal things and on the other hand the communication
among the things. This conception is summarized un-
der the umbrella term Internet of Things (IoT). Ac-
cording to (Haller et al., 2009), the IoT builds a bridge
between the physical and the digital world by inte-
grating physical objects seamlessly into the current
internet. Therefore, a reference architecture shows
on which one or more IoT applications are based
(Bandyopadhyay and Sen, 2011). The first challenge
of the IoT is to extend those objects in a way that
allows them to connect to a network. Thus, each

physical object needs a digital representation of it-
self which can be realised by a barcode or an RFID
chip (Gazis et al., 2015). More complex physical
things can consist out of sensors to collect data from
its environment. At this point, the IoT consists out
of distributed and heterogenous things which use dif-
ferent communication channels and various types of
data representation. Therefore, a middleware layer
is needed to create an interoperability across the het-
erogenous things. Other requirements that needs to be
managed by the middleware are connectivity, compat-
ibility, scalability, robustness and security. In order to
bundle, evaluate and use the data generated by various
things, an application layer is needed. This layer indi-
cates a user interface to establish the communication
with the enduser (Bandyopadhyay and Sen, 2011). In
this context, the enduser is a human being which ac-
cesses the information generated by the IoT. Since the
middleware builds the core of the IoT architecture,
the choice of its architecture is a significant decision.
In common, the Service oriented Architecture (SoA)
or the Resource oriented Architecture (RoA) is used
(Gazis et al., 2015; Guinard et al., 2012). However,
both approaches are originally designed to construct
(web) services at distributed networks like the inter-
net (MacKenzie et al., 2006; Richardson and Ruby,
2008). Therefore, it needs to be considered whether

Kubela, J., Pohl, M., Bosse, S. and Turowski, K.
Internet of Things Middleware: How Suitable are Service-oriented Architecture and Resource-oriented Architecture.
DOI: 10.5220/0006702202290236
In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (IoTBDS 2018), pages 229-236
ISBN: 978-989-758-296-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

229



these approaches are suitable for the IoT. Currently
there are no researches dealing with this problem in an
acceptable scope. Thus, this paper shall show if SoA,
RoA or both approaches are adoptable to the IoT. In
the following chapter the concept of SoA and RoA
is shortly explained. Section 3 of this paper gives a
review about related literature by analysing various
papers and pointing out named reasons for using SoA
or RoA as a middleware solution. The forth chapter
names essential IoT requirements and which charac-
teristics of SoA and RoA fulfils them. Chapter 5 com-
pares the main differences of both approaches regard-
ing the named IoT requirements. In the end a short
outlook for future work is given.

2 DEFINITION OF SoA AND RoA

SoA as well as RoA were not actually created to be
used in the field of IoT (Gazis et al., 2015; Guinard
et al., 2012). However, both architectures share the
goal to increase the interoperability of heterogeneous,
distributed objects (Guinard et al., 2011). Although
SoA and RoA share the same goal, both architectural
schemas are based on a different root concept. In
the following, the principle of both architectural ap-
proaches is explained.

2.1 Service-oriented Architecture (SoA)

SoA is based on the root idea of splitting com-
plex systems into small components called services
(Bandyopadhyay and Sen, 2011). Those SoA ser-
vices are defined as a logical, self-contained, indepen-
dent and reusable unit of tasks (Bean, 2009; Laskey
and Laskey, 2009; Schmidt et al., 2005; Spiess et al.,
2009) and are commonly abstracted from business
processes (Laskey and Laskey, 2009). From the user
point of view, a service is a black box that receives in-
put parameters and returns a specific output (Laskey
and Laskey, 2009; Spiess et al., 2009). Applications
can access the service interface and execute one or
more services to accomplish their task. Moreover,
new services can be created by chaining or enhanc-
ing existing services. Considering that, two services
communicate by exchanging messages (Bean, 2009).
But before two services are able to communicate they
have to find each other using the Service Registry.
The Service Registry handles the metadata of all pub-
lished services. Those can be deposited as UDDI,
WSDL or other formats (Wan et al., 2006). The ser-
vices registered at the Service Registry does not have
to be owned or hosted by the same person or company.
Moreover, it allows the distribution of the SoA net-

work (Bean, 2009). Thus, a service can find other ser-
vices automatically by searching at the Service Reg-
istry. SoA is based on a high degree of freedom by
choosing transport (like HTTP and FTP) and com-
munication protocols (like SOAP and XML) which
builds the interface of a service (Laskey and Laskey,
2009; Schmidt et al., 2005; Wan et al., 2006). In
the field of SoA web services a commonly used tech-
nology is the WS-*-specification (Gazis et al., 2015).
The result of this freedom is that the uniform inter-
face of services is harmed if different protocols are
used. To admit this problem, an Enterprise Service
Bus (ESB) can be established. The ESB unifies all
mechanisms of the SoA in one component (Schmidt
et al., 2005). A SoA using an ESB as the central com-
ponent which handles all messages of the service net-
work is shown in (Bean, 2009).

2.2 Resource-oriented Architecture
(RoA)

The term RoA was established in the year 2007
(Richardson and Ruby, 2008). It describes a software
architectural style which is based on the Represen-
tational State Transfer (REST) paradigm stated out
in (Fielding and Taylor, 2000) and the transfer pro-
tocol HTTP. Using these technologies, the root idea
of RoA is to split complex systems into resources
which are encapsulated in a unique interface (REST-
ful resources). Following the definition (Richardson
and Ruby, 2008), everything can be defined as a re-
source if it has a digital representation that is address-
able over a Unique Resource Identifier (URI). The in-
terface of each resource is restricted to the methods
PUT, GET, POST and DELETE. The POST method
assigns a resource to the used URI (Guinard et al.,
2011). If the URI is already assigned to a resource,
the old resource is replaced. Afterwards, the GET
method is used to read the data provided by the re-
source. As a result, the data represented in a prede-
fined format is returned. The most common represen-
tations are XML, JSON and HTML (Guinard et al.,
2011; Richardson and Ruby, 2008). Also, it is pos-
sible that a resource consists out of various represen-
tations. In this case, the calling instance can choose
which representation fits best for the handled use case
(content negation) (Guinard et al., 2011). Another
method provided by HTTP is the PUT statement. It
is used to update the data represented by the resource
(Guinard et al., 2011). The last by standard HTTP
supported method is DELETE and is necessary to free
an URI by deleting the assigned resource. Based on
the forced use of HTTP and REST, all resource of
the RoA can communicate with each other without

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

230



the need of an intermediary. Moreover, the connec-
tion between resources is following the client-server
principal. As a result, a resource (client) can only
pull data from another resource (server). In (Field-
ing and Taylor, 2000), the authors amplify this con-
cept by claiming that each request has to contain all
information necessary to process it. This character-
istic is named as statelessness (Fielding and Taylor,
2000; Richardson and Ruby, 2008). Another assumed
characteristic is the possibility of resources to cache
data that is already received and marked as cacheable.
The resources communicate which each other and are
linked to enable a navigation through them (Fielding
and Taylor, 2000; Richardson and Ruby, 2008).

3 RELATED WORKS

Some researches already try to show the suitability
of RoA and SoA as an IoT middleware. Neverthe-
less, either the focus of their research is on a spe-
cific IoT use case or the justification of their deci-
sions is limited. As a result, none of the found pa-
pers analyses the fitting of fundamental characteris-
tics of SoA and RoA to common IoT requirements
in an adequate scope. A Web of Things (WoT) ar-
chitecture using the concept of RoA as middleware
is presented in (Guinard et al., 2011). As a reason
for using RoA instead of SoA Guinard et al. mention
that SoA is often to heavy and complex for the field
of IoT. Moreover, the strict use of HTTP and REST
simplifies the integration of things into the current
internet. In contrast, a SoA based middleware only
uses the Internet as a transport infrastructure to ex-
change data inside of the SoA network. On one hand,
the authors conclude that WoT applications stand out
due to high scalability, high flexibility and simplic-
ity without justifying their conclusion. On the other
hand, they state out that working with real-time data
streams, avoiding a request overhead, low latency and
searching for things are challenges of an RoA based
middleware. A comparison between the use of RoA
and SoA as an IoT middleware regarding the devel-
opers’ perspective is provided. The result of the study
is that the concept of RoA ”is easier to learn, more
intuitive and more suitable for programming IoT ap-
plications” than SoA (Guinard et al., 2012). Other-
wise, the authors mention that the fixation of RoA
to HTTP does not allow the use of various security
mechanisms. Instead, SoA can make use of a wide
range of security tools. Nevertheless, they raise the
question if voluminous security mechanisms like they
are provided by WS-* are necessary. Another result
of their study is that the participations would rather

choose SoA for business applications based on the su-
perior security mechanisms and the possibility to use
a Service Registry. In (Spiess et al., 2009), a similar
result is concluded. The authors create a SoA middle-
ware to adapt business processes to the IoT. As rea-
sons for their choice the authors name the discovery
functionality provides by the Service Registry and the
scenario-specific way of creating new services based
on processes. Another aspect is the need for event-
handling and real-time processing in the field of man-
ufacturing. Therefore, the created SOCRADES ar-
chitecture uses amongst others a Service Catalogue
and a Service Monitor. Furthermore, they suggested
the various security aspects provides by SoA. Never-
theless, they decided to use a SoA based middleware
without considering the possibility to use RoA instead
(Spiess et al., 2009). Moreover, it seems that the deci-
sion of using SoA is made because of its origin to dig-
italise business processes. A comparison of different
IoT middleware solutions is provided in (Chaqfeh and
Mohamed, 2012). At the beginning, the authors name
common IoT requirements as well as known IoT mid-
dleware solutions like SoA and RoA. Afterwards, a
table is presented that shows which middleware solu-
tion fulfils the given requirements. According to the
authors, SoA fulfils all stated requirements. In con-
trast, RoA has a lack in security and providing ad-
equate interfaces. Unfortunately, the authors neither
justify their conclusion nor name mechanisms of SoA
and RoA that cover the name requirements.

4 IoT REQUIREMENTS
COMPARED TO SoA AND RoA

In the following, the fundamental aspects of SoA and
RoA are compared to common IoT requirements. At
first, each IoT requirement and its sub-requirements
is defined. Afterwards, mechanisms of SoA and RoA
that suits the requirement are named and rated. Ta-
ble 1 shows the results of the performed compari-
son. The first column names common IoT require-
ments that should be fulfilled by an IoT middle-
ware. Those are identified from various academic
papers like (Bandyopadhyay and Sen, 2011; Bonomi
et al., 2014; Guinard et al., 2011; Haller et al., 2009;
Kolozali et al., 2014; Pang et al., 2015). The reviewed
requirements are connectivity, compatibility, scalabil-
ity, robustness and security. At the next two columns
of the table rate the ability of SoA and RoA to han-
dle these requirements. For this, the symbol ”-” sig-
nalises that the current requirement cannot be fulfilled
by the architectural approach in a suitable way. Addi-
tionally, a ”o” shows that the chosen architecture can

Internet of Things Middleware: How Suitable are Service-oriented Architecture and Resource-oriented Architecture

231



handle this requirement partly. The symbol ”+” sig-
nalizes that the characteristics RoA or SoA are suit-
able to fulfil this requirement.

Table 1: IoT Requirements and their Accomplishment by
SoA and RoA.

Requirement SoA RoA
Connectivity

Interoperability o +
Addressability + +

Loose Coupling o +
Self-Connection o -

Searchable Things + +
Bi-Directional Communication + o

Compatibility
Middleware Connectivity o o

Back-/Forward Compatibility o o
Scalability

Various Number of Things + +
Latency o o

Real-Time Processing + -
Robustness

Drop out of Things + -
Validity of Data + -

Security
Authentication + +

Privacy + +

4.1 Connectivity

The term connectivity unifies all characteristics of an
IoT middleware to form a homogenous network out of
a heterogenous mass of things (Bandyopadhyay and
Sen, 2011; Bonomi et al., 2014). It is a fundamental
characteristic of the IoT that all things have the abil-
ity to communicate with each other without the need
of human interaction (Bandyopadhyay and Sen, 2011;
Haller et al., 2009). This sub-requirement is referred
to as interoperability. To enable a communication,
things have to be addressable (Haller et al., 2009).
Moreover, the coupling between the things has to be
loosely which means that things are modular and in-
dependent of each other and the communication chan-
nel of other things (Bandyopadhyay and Sen, 2011).
Another part of connectivity is the self-connection of
things which is bond to the discovery mechanism of
the network (Gubbi et al., 2013; Sundmaeker et al.,
2010). The possibility of the autonomously connec-
tion of new things is necessary because of the fact that
the IoT is a dynamic network which allows things
to move and connect to another middleware (Sund-
maeker et al., 2010). The last sub-requirement of con-
nectivity is the bi-direction communication (Bandy-

opadhyay and Sen, 2011; Haller et al., 2009; Spiess
et al., 2009). Thus, in some IoT use cases things
have to push data to an application or other things.
In this case, the pull method of the client-server prin-
cipal is not sufficiently. Creating a SoA based IoT
middleware means that things, parts of things or as-
sociations of things are interpreted as services. As
a result, a number of heterogenous things is turned
into a homogenous network of services. The services
collaborate irrespective their underlying technologies
by using their service interface (Bean, 2009; Haller
et al., 2009; Spiess et al., 2009). Resulting, the inter-
operability and loosely coupling of things is received.
Nevertheless, the architectural design of SoA does not
specify how the interface has to be build. So, the
designer of the IoT middleware has to define stan-
dard protocols that build the interface. Alternatively, a
translator has to be established as intermediary (Bean,
2009). Besides the effort of an initial implementation
and continuous maintenance (Bean, 2009), the inter-
mediary harms the requirement of loosely coupling by
establishing a dependence on the translator (Schmidt
et al., 2005). Another violation of the loose coupling
at a SoA occurs if a session state can be created dur-
ing the communication of two services. A possible
situation of this circumstance is the use of various se-
curity mechanisms (Hafner et al., 2009). Neverthe-
less, it is mentioned that the registration of services
can be too complex for IoT objects because of their
limited amount of computing power and data mem-
ory (Guinard et al., 2012). If a new thing needs to get
part of the network it just has to be published at the
Service Registry. The last mentioned sub-requirement
of connectivity is the bi-directional communication.
Because of the high degree of freedom, each service
can handle an arbitrary number of methods at its in-
terface. Moreover, SoA is not bound to the client-
server principal whereby the pushing of data is possi-
ble like it is needed for event handling (Spiess et al.,
2009). Like SoA the RoA approach can be adopted
as an IoT middleware. Thus, all things, part of things
or associations of things are interpreted as resources.
Those encapsulate the things by giving them a unique
interface and hiding their fundamental implementa-
tion. As a result, a homogenous network of indepen-
dent resources arises which only allows a collabora-
tion using the standard HTTP methods. The handling
of various message protocols like JSON and XML is
handled at a RoA by the use of content negotiation
or the use of different resources for each content rep-
resentation style (Richardson and Ruby, 2008). As a
result, the interoperability inside of a RoA network
is given. Additionally, the characteristic of stateless
connections supports the requirement of loosely cou-

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

232



pled things. In contrast to SoA, RoA do not need a
structure like a Service Registry to make resources
discoverable. Thus, all RESTful things can be found
easy if they are described via microformats or simi-
lar (Gubbi et al., 2013; Guinard et al., 2011). On one
hand, the use of HTTP ensures that also new things
are immediately integrated to the RoA network. On
the other hand, non-RESTful things need to get a
RESTful interface or proxy to become part of the
RoA network (Guinard et al., 2011; Richardson and
Ruby, 2008). The requirement of bi-directional com-
munication is contrary to the characteristic of RoA
that data can only be pulled (client-server principal).
Thus, the realisation of a bi-direction communication
is only possible if a high network traffic and latency
is accepted. One possible solution is the use of web
hooks which needs a specific and public URI that is
called by another resource if a specific event occurs
(Guinard et al., 2011).

4.2 Compatibility

The vision of a ubiquitous IoT intends the existence
of various IoT applications and also loose things.
Nevertheless, the IoT is a network where all compo-
nents should be able to communicate with each other.
Therefore, the compatibility between various middle-
ware implementations is necessary to enable a cross-
application collaboration. Thus, an IoT middleware
has to handle backward and forward compatibility to
avoid communication errors based on different proto-
col versions. The implementation of a SoA designed
middleware is based on a high degree of freedom, as
mentioned before. Therefore, the use of an intermedi-
ary to translate different transport and messaging pro-
tocols is necessary to ensure the communication in-
side a network and between various networks (Bandy-
opadhyay and Sen, 2011). The use of an ESB for this
translation task is suggested in (Schmidt et al., 2005).
As a result, the requirement of compatibility is ful-
filled. Besides translation messages the ESB can also
queue message and provides a synchronous as well as
asynchronous messaging. Nevertheless, the effort of
implementing an ESB respectively the extension of an
ESB needs to be considered. On one hand, the initial
effort is demanded on the number of various proto-
cols used by the connected things and networks. On
the other hand, a recurring effort appears by the con-
tinuous addition of new protocols and protocol ver-
sions. This dependence on the ESB results in possi-
ble single point of failure. RoA benefits from its tight
relation to REST and HTTP. Thus, the connection to
other RoA based network is automatically established
without any extra effort. In contrast, the things of

a non-RoA based network has to be covered by an
RESTful interface which can result in a high effort.
A smart gateway which is realised by a tiny server
that acts as a proxy for the things is recommended in
(Guinard et al., 2011). Nevertheless, the advantage of
this approach is that no central intermediary is needed
and thus no single point of failure is created. How-
ever, the case of incompatibility of protocols because
of the use of different versions is rare for a RoA mid-
dleware. The reason for this is that the HTTP protocol
is backwards compatible by default (Richardson and
Ruby, 2008). Moreover, all versions of HTTP support
the methods PUT, GET, POST and DELETE. Never-
theless, the forward compatibility is not guaranteed.
Thus, a solution to handle forward incompatibility is
to catch and handle HTTP error codes (Richardson
and Ruby, 2008) or to use the HTTP header to make
clear that the called resource fits the requirements.

4.3 Scalibility

The IoT paradigm assumes a dynamic and evolving
environment. Thus, the number of things connected
to a middleware can vary as well as the number of ap-
plications based on this middleware (Bandyopadhyay
and Sen, 2011; Kruger and Hancke, 2014). There-
fore, an IoT middleware has to perform well irrespec-
tive of the number of handled things (Chaqfeh and
Mohamed, 2012). This characteristic is referred to as
scalability. Moreover, scalability means that the num-
ber of accesses to things triggered by various appli-
cations should not affect the performance of the IoT
network spanned by the middleware. An indicator for
this circumstance is the latency which describes the
time needed to answer a request. Consequently, the
middleware has to handle and transfer the data gen-
erated by the things in-time. The number of things
connected to the network influences a SoA middle-
ware in different ways. On one hand the size of the
Service Registry grows or shrinks with the number of
services. On the other hand, the number of things in-
fluences the status monitor which has to handle more
heartbeats. Both circumstances can be handled by
providing flexible processing and storage power by
using cloud computing (Bonomi et al., 2014). Addi-
tionally, the number of calls of one as well as all ser-
vices influences the SoA middleware. The transmit-
ter can be scaled by using cloud computing (Schmidt
et al., 2005). Thus, the limiting factor delays on the
things which mostly have a small processing power.
Therefore, SoA supports different mechanisms to re-
lieve the load on the things. One aspect is the Ser-
vice Broker which can distribute messages to sim-
ilar services if one service is busy (Schmidt et al.,

Internet of Things Middleware: How Suitable are Service-oriented Architecture and Resource-oriented Architecture

233



2005; Spiess et al., 2009). Another aspect is the pos-
sibility to queue requests so that they can be handled
one after another without overloading the thing (Du
et al., 2011; Garces-Erice, 2009). Consequently, a
high number of requests can result in a high latency.
Another aspect that has influence on the latency is
the translation of each request by the ESB (Du et al.,
2011). Thus, also the handling of real time data is
influenced. To solve this problem, the use of a real-
time assurance mechanism at the ESB is proposed in
(Du et al., 2011). This mechanism is responsible to
prioritise all messages and giving them a deadline. A
similar approach is an Event Scheduler (Garces-Erice,
2009). The main focus of RoA is to handle a vari-
ous number of resources respectively things by han-
dling them loosely coupled and independent. More-
over, RoA has no central intermediary which han-
dles the connection between the resources. Thus, a
point-to-point communication is established between
the resources which avoids a performance influence
by a fluctuating number of things. Similar to SoA,
the communication bottleneck of RoA is the low pro-
cessing power of the things. As a result, several calls
of one resource at once has to be handled by the re-
source itself (Richardson and Ruby, 2008). The state-
lessness of a resource ensures that one access to the
resource is not influences by other, simultaneous ac-
cesses (Richardson and Ruby, 2008). The result is
that no connection state needs to be loaded and that
parallel processing is supported. Moreover, RoA pro-
vides a client side cache which allows the buffering of
cacheable data (Guinard et al., 2011). Another aspect
to handle multiple requests is the concept of a lay-
ered system which allows the redirection of requests
to sub-resources. The layered system concept results
in a higher latency because of the intermediary that is
embodied by the resource (Guinard et al., 2011). On
the contrary, the possibility to cache data and redi-
rect requests to sub resources can lower the latency
by handling the request faster (Guinard et al., 2011;
Richardson and Ruby, 2008). As mentioned before,
real-time processing is hard to handle using RoA. The
reason for that is that straight HTTP and REST only
support the pulling of data. Thus, the use of web
hooks to implement event handling and AtomPub for
implementing data streaming at a RoA middleware is
suggested (Guinard et al., 2011).

4.4 Robustness

The robustness of a network describes its ability to
handle the availability of things (Haller et al., 2009;
Kolozali et al., 2014). Another aspect of robustness is
the validity of measured and supported data (Kolozali

et al., 2014). A SoA based middleware can handle
the drop out of service by using a status monitor (Du
et al., 2011). Each service frequently sends a mes-
sage (heartbeat) to this monitor to show that it is still
working. In combination with an ESB the failure of a
service can be regulated by searching for an alterna-
tive service with equal functions (Haller et al., 2009).
Moreover, the ESB can support a validity check of
data by reading and checking all passing messages. A
disadvantage of this process is that the latency will in-
crease as well as the workload of the ESB. Based on
the lack of bi-direction communication and event han-
dling, the detection of dropped out resources at a RoA
networks is difficult. One solution can be to define
one or more resources which checks if other resources
are still available. The disadvantage of this solution is
that an information and traffic overhead will result out
of the frequently send GET requests to all resources to
get their status (Guinard et al., 2011). As a result, the
application designer has to handle a possible drop out
of a resource and implement an alternative behaviour
like the searching for similar resources. The advan-
tage of this approach is that the failure of one resource
is handled by each application itself which results in
an individual and therefore suitable solution. Never-
theless, the rising effort of the application design has
to be mentioned. This circumstance can be avoided
by extending a mashup software by an autonomous
error handling (Guinard et al., 2011). This solution
can also be used to check the validity of data at the
application layer. Moreover, the data validity check
can also be moved to the things layer.

4.5 Security

The creation of networks by linking-up real-world
things and connect them to the internet is not free
of dangers. The security of IoT, IoT application and
IoT architectures is an important aspect that should
be mentioned. The number of connected things and
the amount produced data offers a huge contact sur-
face for cyber criminals. Therefore, various security
aspects and typical attacks that have to be mentioned
while create an IoT middleware are analysed (Farooq
et al., 2015; Riahi et al., 2013; Gou et al., 2013). It
should be mentioned that an effective security level
can only be accomplished if all layers of the IoT struc-
ture are secured. Based on the fact that SoA is not
bound to specific technologies, a wide range of secu-
rity tools can be used. Standardised WS-Security in
combination with SOAP is suggested and by the use
of security tokens an authentication process is estab-
lished (Tiburski et al., 2015). Additionally, XML En-
cryption ensures the privacy of data and wards man-

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

234



in-the-middle attacks off (Tiburski et al., 2015; Fa-
rooq et al., 2015). Nevertheless, the implementation
of these security standards can result in a high effort
especially regarding the ESB which can be a secu-
rity vulnerability, too. Thus, Hafner et al. (Hafner
et al., 2009) created a blueprint for Security as a Ser-
vice (SeAAS). As already mentioned, RoA is based
on HTTP and REST. Therefore, HTTP Basic, HTTP
Digest or WS-Security Extension are suggested to
use for authentication (Richardson and Ruby, 2008).
However, both methods are not save (Lee et al., 2015).
HTTP Basic can be a victim of replay and injection at-
tacks while HTTP Digest is not save regarding man-
in-the-middle attacks. Therefore, the authors devel-
oped a method called ID-based Authentication which
performs authentication using private and public keys
in combination with the resource URIs. Furthermore,
the existing APIs of social networks can be used as a
proxy to authenticate users and manage their access
to resources (Guinard et al., 2011). The aspect of pri-
vacy can be fulfilled by the use of HTTPS instead of
HTTP which encrypts the transferred data (Richard-
son and Ruby, 2008; Clark and van Oorschot, 2013).

5 DISCUSSION AND
CONCLUSION

The performed analysis of SoA and RoA shows that
both approaches do not fulfil all requirements raised
by the IoT perfectly. Table 1 shows that SoA sup-
ports all requirements at least in an elementary way.
The deciding factors of SoA are the ESB and the free-
dom to choose the used protocols free. On one hand,
the ESB allows the management and monitoring of
all services and its communication which is useful
to provide real-time processing, robustness and secu-
rity. On the other hand, the ESB causes a high effort
by its initial implementation and continuous mainte-
nance. Moreover, the use of an intermediary results
in a single point of failure and harms the loose cou-
pling of things. Nevertheless, SoA cannot be used
as an IoT middleware without providing an ESB or
a similar intermediary. The high degree of freedom
to choose the service interface harms the interoper-
ability of services but allows to use use-case specific
protocols. Regarding Table 1, RoA does not support
all requirements of the IoT. The reason for not fulfill-
ing the requirements self-connection, real-time pro-
cessing and robustness is that the REST concept does
not allow the pushing of data. Thus, a bi-directional
communication can only be implemented with a huge
effort and by causing unnecessary traffic for exam-
ple by using web hooks. Omitting the lack of bi-

directional communication, RoA is well suited for
IoT applications because of its strict definition of a
unique interface which avoids the use of an interme-
diary. As a result, a lightweight and simple network
can be build. Moreover, RoA benefits from the de-
pendence on HTTP by embedding the IoT into the
existing internet. In contrast, SoA uses the internet as
an infrastructure to exchange its data instead of merg-
ing both approaches. All in all, SoA as well as RoA
can be suitable to build a IoT middleware. The de-
cision to one of the two approaches depends on the
specific use-case and the future use of the created net-
work. The analysis of SoA and RoA regarding var-
ious IoT requirements can be the basis for this de-
cision. Thus, RoA is recommended if no real-time
analysis or event-handling is necessary because of its
lightweight and connectedness to the existing inter-
net. In contrast, SoA should be used if complex pro-
cesses should be designed or real-time analysis are
needed. Moreover, the lack of security mechanisms
of RoA mentioned in (Guinard et al., 2012; Chaqfeh
and Mohamed, 2012) can be proven. Nevertheless,
the security mechanisms of RoA is suitable for com-
mon IoT applications. It is also possible to match
both approaches to provide from the lightweight of
RoA and the flexibility of SoA. Future researches can
build a mix-up architecture of SoA and RoA based
on the reviewed IoT requirements and mechanisms.
Moreover, the security mechanisms of both middle-
ware solutions need to be reviewed in more detail. For
this, the things layer and the application layers needs
to be included because of the high dependency in the
field of security. Another research topic is to evalu-
ate how strong the named IoT requirements depend
on each other and which architectural characteristics
are necessary to fulfil all requirements.

REFERENCES

Bandyopadhyay, D. and Sen, J. (2011). Internet of
things: Applications and challenges in technology and
standardization. Wireless Personal Communications,
58(1):49–69.

Bean, J. (2009). SOA and web services interface design:
principles, techniques, and standards. Morgan Kauf-
mann.

Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. (2014).
Fog Computing: A Platform for Internet of Things and
Analytics, pages 169–186. Springer International Pub-
lishing, Cham.

Chaqfeh, M. A. and Mohamed, N. (2012). Challenges
in middleware solutions for the internet of things.
In 2012 International Conference on Collaboration
Technologies and Systems (CTS), pages 21–26.

Internet of Things Middleware: How Suitable are Service-oriented Architecture and Resource-oriented Architecture

235



Clark, J. and van Oorschot, P. C. (2013). SoK: SSL and
HTTPS: Revisiting past challenges and evaluating cer-
tificate trust model enhancements. In 2013 IEEE Sym-
posium on Security and Privacy, pages 511–525.

Du, L., Duan, C., Liu, S., and He, W. (2011). Research
on service bus for distributed real-time control sys-
tems. In 2011 6th IEEE Joint International Infor-
mation Technology and Artificial Intelligence Confer-
ence, volume 1, pages 401–405.

Farooq, M. U., Waseem, M., Khairi, A., and Mazhar, S.
(2015). A critical analysis on the security concerns
of internet of things (IoT). International Journal of
Computer Applications, 111(7).

Fielding, R. T. and Taylor, R. N. (2000). Architectural
styles and the design of network-based software ar-
chitectures. University of California, Irvine Doctoral
dissertation.

Garces-Erice, L. (2009). Building an enterprise service bus
for real-time SOA: A messaging middleware stack. In
2009 33rd Annual IEEE International Computer Soft-
ware and Applications Conference, volume 2, pages
79–84.

Gazis, V., Grtz, M., Huber, M., Leonardi, A., Mathioudakis,
K., Wiesmaier, A., Zeiger, F., and Vasilomanolakis, E.
(2015). A survey of technologies for the internet of
things. In 2015 International Wireless Communica-
tions and Mobile Computing Conference (IWCMC),
pages 1090–1095. IEEE.

Gou, Q., Yan, L., Liu, Y., and Li, Y. (2013). Construc-
tion and strategies in IoT security system. In 2013
IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and
IEEE Cyber, Physical and Social Computing, pages
1129–1132.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
(2013). Internet of things (IoT): A vision, architec-
tural elements, and future directions. Future Gen-
eration Computer Systems, 29(7):1645 – 1660. In-
cluding Special sections: Cyber-enabled Distributed
Computing for Ubiquitous Cloud and Network Ser-
vices & Cloud Computing and Scientific Applications
Big Data, Scalable Analytics, and Beyond.

Guinard, D., Ion, I., and Mayer, S. (2012). In Search of
an Internet of Things Service Architecture: REST or
WS-*? A Developers’ Perspective, pages 326–337.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Guinard, D., Trifa, V., Mattern, F., and Wilde, E. (2011).
From the internet of things to the web of things:
Resource-oriented architecture and best practices. Ar-
chitecting the Internet of things, pages 97–129.

Hafner, M., Memon, M., and Breu, R. (2009). SeAAS-a ref-
erence architecture for security services in SOA. Jour-
nal of Universal Computer Science, 15(15):2916–
2936.

Haller, S., Karnouskos, S., and Schroth, C. (2009). The
Internet of Things in an Enterprise Context, pages 14–
28. Springer Berlin Heidelberg, Berlin, Heidelberg.

Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz,
F., and Barnaghi, P. (2014). A knowledge-based ap-
proach for real-time IoT data stream annotation and

processing. In 2014 IEEE International Conference
on Internet of Things (iThings), and IEEE Green Com-
puting and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom),
pages 215–222.

Kruger, C. P. and Hancke, G. P. (2014). Implementing the
internet of things vision in industrial wireless sensor
networks. In 2014 12th IEEE International Confer-
ence on Industrial Informatics (INDIN), pages 627–
632.

Laskey, K. B. and Laskey, K. (2009). Service oriented ar-
chitecture. Wiley Interdisciplinary Reviews: Compu-
tational Statistics, 1(1):101–105.

Lee, S., Jo, J. Y., and Kim, Y. (2015). Method for secure
RESTful web service. In 2015 IEEE/ACIS 14th In-
ternational Conference on Computer and Information
Science (ICIS), pages 77–81.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F.,
Metz, R., and Hamilton, B. A. (2006). Reference
model for service oriented architecture 1.0. OASIS
standard, 12:18.

Pang, Z., Zheng, L., Tian, J., Kao-Walter, S., Dubrova, E.,
and Chen, Q. (2015). Design of a terminal solution
for integration of in-home health care devices and ser-
vices towards the internet-of-things. Enterprise Infor-
mation Systems, 9(1):86–116.

Riahi, A., Challal, Y., Natalizio, E., Chtourou, Z., and
Bouabdallah, A. (2013). A systemic approach for IoT
security. In 2013 IEEE International Conference on
Distributed Computing in Sensor Systems, pages 351–
355.

Richardson, L. and Ruby, S. (2008). RESTful web services.
O’Reilly Media, Inc.

Schmidt, M. T., Hutchison, B., Lambros, P., and Phip-
pen, R. (2005). The enterprise service bus: Making
service-oriented architecture real. IBM Systems Jour-
nal, 44(4):781–797.

Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker,
O., d. Souza, L. M. S., and Trifa, V. (2009). SOA-
based integration of the internet of things in enterprise
services. In 2009 IEEE International Conference on
Web Services, pages 968–975.

Sundmaeker, H., Guillemin, P., Friess, P., and Woelfflé, S.
(2010). Vision and challenges for realising the internet
of things. Cluster of European Research Projects on
the Internet of Things, European Commision, 3(3):34–
36.

Tiburski, R. T., Amaral, L. A., Matos, E. D., and Hessel, F.
(2015). The importance of a standard security archit
ecture for SOA-based iot middleware. IEEE Commu-
nications Magazine, 53(12):20–26.

Wan, K.-M., Lei, P., Chatwin, C., and Young, R. (2006).
Service-oriented architecture. pages 998–1002.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

236


