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Abstract: We explore applying network based metrics to predict safety metrics of components in Nuclear Power Plants
(NPP). We first show how to model accident sequences as complex networks, then we conduct a statistical
study over the main network metrics to show that these are highly correlated with the RIF (Risk Increase
Factor) which is a very popular metric in nuclear safety studies.

1 INTRODUCTION

A Nuclear Power Plant is a complex system for which
the safety studies drive all the life cycle, starting from
the design phase and ending with the dismantling
step passing through both licencing and power gen-
eration phases. These studies are mainly based on de-
terministic approach. However, probabilistic safety
studies are now a recognized tool to achieve a more
global and systematic verification using quantitative
insight. This probabilistic approach is called Proba-
bilistic Safety Assessment (PSA) (WAS, 1975).
Notwithstanding the success that has PSA as a tool for
analyzing, priorizing and quantifying the risk in NPP,
it presents mainly two limitations:

• PSA computations are based on the reduction to
its normal disjunctive form of a boolean formula
corresponding to the so called Master Fault Tree
representing all the paths leading to an undesired
events. This problem is known to be an NP
hard (NP referring to non-deterministic polyno-
mial time) problem (Bollig and Wegener, 1996)
(Friedman and Supowit, 1990). Therefore, many
approximations are made to get the cutset list: el-
eminating negligible cutsets and using approxi-
mative formulae (i.e. Min Cut Upper Bound or
Sylvestre-Poincarré of first order to sum of dis-
junct products).
Some critical components may then be neglected
in the study if they dont appear in these frequent
cutsets.

• Even with approximations, PSA computation
times stay instable for big models (a small modi-
fication can make computation time change from
polynomial to exponential), which is not appro-
priate in an industrial context.

In (Hibti et al., 2016), some similiarities where
showed between complex network metrics (e.g. be-
tweenness centrality) and the multiple occurrences of
component failures in the cutset list wich is also an
indicator of safety importance.
In this paper, we propose to use complex networks
analysis to identify components that might be im-
portant based on their position on the system using
the different network centralities. We first provide a
method of modeling a set of sequences into networks,
then we study the association between the Risk In-
crease Factor (RIF) and different vertices centralites
in the obtained complex networks. Our aim here is to
predict high values of RIF which is a PSA metric rep-
resenting the increase of the risk. The remainder of
the paper is organized as follows: in the second sec-
tion we present some PSA notions; in the third sec-
tion we describe how to model a Functional Require-
ment Diagram (FRD) as a directed network, model a
real case of PSA, we give some specificities of the ob-
tained network. In the next section we perform some
statistical approaches (Tree classification and Logis-
tic regression) to study the RIF using the directed net-
work centralities, in other words, we aim to predict an
attribute using topological attributes of the obtained
complex network vertices.
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2 PROBABILISTIC SAFETY
ASSESSMENT AND ITS
IMPORTANCE METRICS

In this section, we explain the most basic notions of
the Probabilistic Safety Assessments, then we present
some risk importance metrics mainly used in the in-
dustry.

Probabilistic Safety Assessment (PSA) also called
“Probabilistic Risk Assessment”, with its systematic
investigation approach, is used as a complement to
the deterministic approaches. The genesis of mod-
ern PSA methodology was the Reactor Safety Study
(RSS) known as WASH-1400 (WAS, 1975).

It allows to prioritize the undesired event into ini-
tiating events, and establish for each initiating event
accident sequences resulting from the success or fail-
ure of the mitigation actions.

By studying the NPP as an integrated system, in-
cluding both technical and socio-organisational as-
pects, PSA supports risk management, identify the
accident sequences or scenarios, determinates how
likely these scenarios occur, establish for each one the
potential consequences. Thus, it provides an input
to for risk informed decision making (maintenance
activities, plant modifications, graded quality assur-
ance...).

PSA studies are organized in three levels, we fo-
cus on the level one which estimates the likelihood
that a reactor core could be damaged (melt).

A PSA study starts by identifying the spectrum of
initiating events that could possibly lead to the unde-
sired event (for instance Reactor core melt or massive
and early release).
An initiating event could be an important component
failure, an internal hazard like a fire or an external
hazard like a flood in the plant site. For each initiat-
ing event an accident sequence analysis is performed
regarding the plants response to the initiating event
effects.
All the senarios starting from the initiating event and
going through the success or failures of the safety sys-
tems or human actions dedicated to mitigate the ef-
fects of the initiating event are identified.

These sequences are summarized in the form of
event sequence diagrams (Functional Requirement
Diagrams), which are converted into Event Trees (for
each initiating event).
The sequences of the Event Trees are successions of
succes or failure of mitigation missions expressed in
Faul Trees. Those leading to unacceptable conse-
quences are evaluated (their frequencies are calcu-
lated and their cutsets are listed) using Fault Tree
Analysis.

Fault Trees Analysis (Ericson, 1999) models the
plant systems in detail. It is used by the analysts to
identify the causes of a system failure (which is a cas-
cade of OR and/or AND gates of potential compo-
nent failure). It also compute the failure probability of
each mission. To quantify the global risk, the Boolean
Fusion (Knuth, 2007) is used to get the normal dis-
junctive form. Thus, the risk is the sum through dif-
ferent minimal cut sets’ probability.

A PSA study involves different input data such as:

• Failure probabilities of different data plant’s com-
ponents. These probabilities are either fixed by
feedback records or by statistical methods.

• Initiating events frequencies, which are the occur-
rence frequency of a fault or hazard that may lead
to the undesired event.

• Common Cause Failure, which is the failure of
multiple components, belonging to the same sys-
tem, due to a single specific cause.

• Human Error Probabilities, represents failure of
an operator to conduct a manual actions. These
probabilities are estimated via Human Reliability
Analysis.

2.1 PSA Component’s Importance
Metrics

PSA has some importance measures used to iden-
tify the role of components in the risk of a NPP. If
Fussell-Vesely (FV) measure is usually used to quan-
tify the risk importance of a component, Risk Increase
Factor (RIF) is mostly used in measuring the safety-
importance of this component (Van der Borst M.,
2001). In table 1 we present the definitions of these
importance measures for a given component xi.

The following definitions are used in table 1:
R(xi = 0) is the risk estimation if we assume that

the component xi is perfectly reliable; R(xi = 1) is
the risk estimation supposing that the component xi is
failing or absent. Rbase represents the risk estimation
without any assumption on the component.

3 CONSTRUCTION OF THE
NETWORK OF AN EVENT
SEQUENCE DIAGRAM

As mentionned before, one of the PSA’s steps is the
accident sequence analysis where accident contexts
are defined and the sequences of successive mitiga-
tion functions are described. The progression of the
accident could go depending on the success or failure
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Table 1: Risk Importance Measures.

Measure Abbreviation Pinciple
Risk Decrease RD(xi) Rbase−R(xi = 0)
Fussell-Vesely FV (xi)

Rbase−R(xi=0)
Rbase

Risk Decrease Factor RDF(xi)
Rbase

R(xi=0)

Criticality Importance CR(xi)
R(xi=1)−R(xi=0)

Rbase
Risk Increase RI(xi) R(xi = 1)−Rbase

Risk Increase Factor RIF(xi)
R(xi=1)

Rbase

of the corresponding mitigation function either to a
state where the plant is considered safe or at least con-
trolled (acceptable consequence) or to an undesired
outcome such as the plant core melt or any degraded
state (unacceptable consequence).

These functions represent the system missions,
instrumentation and control missions that are initi-
ated either automatically or manually by the opera-
tors, in addition to human factors representing fail-
ure or success of human actions. It considers the
consequences of the potential failures on the NPP’s
safety, and produce a set of Functional Requirement
Diagrams (FRD) (Swaminathan and Smidts, 1999).
The figure 1 represents a simplified FRD correspond-
ing to an initiating event (IE), involving 3 mitigation
missions, with 2 consequences (acceptable: AC and
unacceptable: UA). A red transition is a failure of a
mission and a green one represents a success.

Figure 1: A simplified example of a Functional Requiere-
ment Diagram.

3.1 Methodology

In this section we describe the methodology to build
a network of an accident sequence. An accident se-
quences analysis in PSA is summarized in a FRD. So
our method aims to produce a network for each FRD.
We first produce a skeleton network using as edges the
different transitions leading to an unacceptable con-
sequence (UA) and as “macro-vertices” the differents
missions. Then we develop each “macro-vertex” into
a network. We remind that each mission corresponds
to a particular NPP system in a particular configura-
tion. Thus, the network of a “macro-vertex” repre-
sents the system’s components (pumps, diesel, valve,

acquisition,. . . ) as vertices, and the different flows
(fluid, electrical, and signal) between these compo-
nents are the directed edges, in addition to the di-
rected edges previously introduced which represents
the transitions of the FRD. These different compo-
nents are the vertices and these flows are the edges.

So, we obtain a network which models all the
safety systems used in the accident sequence mitiga-
tion for an initiating event in a state of the NPP; in
other words, a network for each FRD.

The obtained network involves different types of
edges (hydraulic, electrical, signal,..) and different
types of vertices (pumps, valves, diesels,...). Each
type of the modeled components has a specific car-
acterizing attributs that we choose to consider as at-
tributes of the vertices. So, the vertices are the safety
systems components, and the edges are the differents
flows between those).

For this study, we choose to consider the network
as simple (no type of edges) and directed since the
edges are oriented and we take in consideration as at-
tributes for the vertices, only the RIF and the network
centralities of the vertices.

3.2 A Real Case of Study

As an application case, we model the mitigations ac-
tions performed in order to conduct the reactor to a
safe state in the wake of the occurence of the “Uncon-
trolled Level Drop” (ULD) initiating event into a net-
work for the European Pressurized Reactor in a shut-
down state.

To mitigate the effects of the initiator we have to
ensure three safety functions: The first one is the in-
ventory control of the primary fluid, the second one is
the evacuation of the residual heat and the third one is
maintaining the integrity of the containment.

Using the method described before, the directed
network of the ULD has the following specificities:
The obtained network is relatively small. It caracter-
istics are summarized in the table 2. We recall that the
clustering coefficient of a graph measures the proba-
bility that the adjacent vertices of a vertex are con-
nected. Network analysis metrics reveal some char-
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Figure 2: Network of the study “Uncontroled Level Drop”; colors represent the different type of components.

Table 2: Summary of the ”Uncontroled Level Drop” net-
work caracteristics.

Network Directed & Attributed
# Vertices N = 1700
# Edges M = 2700
Density 0.009
Diameter 33

Figure 3: Degree distribution in the network of “Uncon-
troled Level Drop”.

acteristics of the structure of our systems, typically
types of components which are important for each
metrics, and component’s systems beloging for each
metrics. The figure 2 represents this network where
colors represents the type of component modeled.

The degree distribution of this network is illus-
trated in the figure 3.

4 STATISTICAL STUDIES OF
THE ATTRIBUTE RIF USING
NETWORK CENTRALITIES

We aim here to predict the RIF variable, which
as mentionned before is a measure of the safety-
importance of a component in PSA, using network
centralities.

The considered centralities are In-Degree, Out-
Degree, In-Closeness, Out-Closeness, Betweeness
(Freeman, 1979), Page-Rank (Brin and Page, 1998),
Hub-Score and Authority (Kleinberg, 1999).
So, our objective is to find:
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Figure 4: RIF observation values.

RIF(x)= f (In-Degree(x), Out-Degree(x),
In-Closeness(x), Out-Closeness(x), Betweeness(x),

Page-Rank(x), Hub-Score(x), Authority(x))

The RIF formula for each component xi is presented
before in table 1. This computation is intractable
since it involves computing the core damage risk un-
der the assumption that the studied component is fail-
ing (or absent) which is already instable. So, com-
puting RIF values of many components is laborious,
therefore, we have decided to build a small sample
composed by vertices found to be important by each
network centrality (highly ranked). We selected 20
best ranked vertices by each centrality. The sam-
ple contains 156 observations obtained as explained
above from around 1700 individuals (the network ver-
tices). To perform the prediction, we use two fa-
mous methods of classification in datamining which
are “Classification Tree” and “Logistic Regression”..

4.1 The RIF Variable

The RIF values taken over the sample are represented
in figure 4.

We observe in the figure 4 that the RIF variable
takes the same value for most of the observations ex-
cept some outliers. These outliers correspond to NPP
components whose failure have a high impact on the
Core Melting Frequency of the NPP (safety-important
components).
Moreover, the standard deviation of the RIF variable
is 4 times of the mean, this indicates that this variable
is very scattered and thus, it is difficult to adjust.
We can also based on the figure 4 simplify our model
by discretizing the RIF variable into two modalities:

• high RIF (RIF > 2) becomes the categoryRIF=1;

• low RIF (RIF < 2) becomes the category RIF=0.

4.2 Reduction and Discretization of
Predictors

In this part, we want firstly to identify the possible
correlations between the predictors using a graphical
analysis of the values distributions which are repre-
sented in the figure 5.

According to the histograms shown in the figure 5,
the In-Degree, the Out-Degree and the Betweenness
appear to havea similar values distribution, Hub Score
and Authority seem to be similar too.

Therefore, we take as an input for the logistic re-
gression performed later only the variables In-Degree,
In-Closeness, Page Rank and the Authority.

For the sake of precision, we choose to discretize
the selected predictors according to the discretization
revealed by their histograms, tables of RIF by each
predictors allow us to merge some categories for some
predictors. Thus, we obtain 2 modalities for each pre-
dictor. We recode the selected variable as presented
in table 3.

Table 3: Discretization of In-Degree, In-Closeness, Page
Rank and the Authority.

In-Degree In-Degree.b
(0.0000,0.0005] 1

else 0
In-Closeness In-Closeness.b

[0.0000,0.000783] 1
else 0

Page-Rank Page-Rank.b
[0.0000,0.00026] 1

else 0
Authority Authority.b

[0.0001, 0.0251] 1
else 0
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Figure 5: Values distributions of each network metric.

4.3 Classification Tree

The Classification Tree or “Decision Tree” divides
the predictor variables into different regions so that
the dependent variable (“target variable”) can be pre-
dicted more accurately. This method is one of the Sta-
tistical Learning methods (Hastie et al., 2001) used
when the target variable is categorial, by contrast with
the Regression Tree which is used when the target
variable is continuous.

We apply this method using all the predictors
(continuous values) and without any variable elimi-
nation in order to predict the RIF categories (0 and
1).

We denote that this method considers that the
RIF’s predictors are the In-Degree, Out-Degree, the
In-Closeness, the Out-Closeness, the Hub-Score and
the Authority and however, eleminates the Betwee-
ness and the Page-Rank.

Table 4: Confusion matrix of the Classification Tree.

From / To 0 1 Total % Correct answer
0 148 0 148 100%
1 5 3 8 37.50%

Total 153 3 156 96.79%

The confusion matrix for this method shows a suc-
cess of 96.79% to predict the value of RIF which is
good for a global prediction of RIF classes. How-

ever, we focus on the RIF = 1 category (high values
of RIF) where this method detects only 3 out of 8 val-
ues 1 which represents a recall of 37.50%.

4.4 Logistic Regression Study

Our aim, in this part, is to detect the high values
of RIF using vertices topological metrics (In-Degree,
Out-Degree, In-Closeness, Out-Closeness, Between-
ness, Page Rank, Hub Score and Authority) which
describe the components of the sample. We use in
this part the logistic regression in order to construct
the model of classification.

To perform the logistic regression, we consider the
selected predictors discretized as described in the sec-
tion 4.2.

It is known that the Logistic Regression is one
of the most common model analysis for multivariate
problems. It is also a method of Statistical Learn-
ing (Hastie et al., 2001). It gives the possibility to
measure the relation between an event’s occurrence,
which is a qualitative dependent variable, and the po-
tential predicting variables. The choice of explica-
tive variables to be consideried in the logistic regres-
sion model is based on prior knowledge of the studied
phenomena, which is in our case high values of the
RIF, and the statistical association between the vari-
able and the RIF.
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Table 5: Training Result of the logistic regression.

RIF / RIFPred 0 1
0 91 57
1 0 8

Table 6: Confusion Matrix of the logistic regression.

From / To 0 1 Total
0 91 57 148
1 2 6 8

Total 93 63 156

Considering the small size of our sample and the
fact that the class to predict is rare, we decide to
use the Leave One Out Cross Validation method to
validate this model in order to have more data to
build the model, and many testing samples. We re-
call that Leaveone out cross validation method con-
sists of leaving one observation for the validation and
building the model over the other (n− 1) observa-
tions; and performing this for each observation of the
initial sample.

Training Study. Let’s call Mpred the matrix of
prediction of P(RIF = 1/X) where X is an observa-
tion. The column ck is obtained from the logit model
where the training sample is obtained by excluding
the k considered for the test. Thus, Mpred corre-
sponds to n = 156 logit models. We observe that
values of Mpred are too small, in other words if we
compare to a sensitivity = 1/2 we will obtain just
values 0. We suggest to set the sensitivity of our
model to 0.4; we also compare the value predicted,
for each observation, to the mean value of the pre-
dictions obtained over the different training samples.
for example: for an observationXi=(InDegree(xi), In-
Closeness(xi), PageRank(xi), Authority(xi)) we com-
pute the mean m(X) of all RIF prediction obtained by
each training sample (156 sample), if the prediction is
>= m(X) we consider that it is a high value that we
replace by one, otherwise we replace it by 0. In this
way, we obtain the binary prediction matrixMpredb.
Finally, for an observation Xi, we consider that the
prediction obtained for RIF is 1 if over the (n-1) train-
ing prediction the majority are 1 otherwise the train-
ing prediction takes 0.

The average training error obtained for the model
is 36.5%. But this model doesn’t make any mis-
classification for the class RIF = 1 which is good for
our study.

Test Study. Concerning the prediction obtained
by the test samples, they are represented in Mpred in
the diagonal Mpred[k,k]. Values are also small, we
use the same method used in the training (compare
the prediction obtained to the mean of prediction ob-
tained) if the prediction is higher then this mean it is

considered as 1 otherwise it is considered 0. the lo-
gistic model has the confusion matrix represented in
the table 6.

In the safety studies, we focus more on the re-
call then on the precision. The recall(RIF = 1) ob-
tained by this method is 75% which is a good re-
sult, the test error obtained for this model is 38%(mis-
classification(RIF = 1) is 25%. We performed the
same study on the preductors with continuous values
the recall(RIF=1) is almost the same, which mean that
our discretization is good.

For our study, the logistic regression model gives
the best result since the recall of RIF = 1 is the high-
est (75%). This classification study can certainely be
improuved using a bigger sample.

5 CONCLUSION

In this paper, we describe how to model accident
sequences into directed networks, we apply this
network-based method to a real case the obtained
network is a complex network whith a low diameter
which make it a “smallworld network” where the cen-
tralities are interested to study. We give some speci-
ficities of the network.
We also perform some datamining approaches of clas-
sification in order to predict high values of RIF (non-
stable variable) using network centralities applied
over a set of vertices, we observed that the classifi-
cation tree gives a global good prediction but lower
on the high RIF (which is our target class), the lo-
gistic regression is then performed using an adequate
discretization of the predictors we could obtain an ex-
cellent model with a recall for the class RIF = 1 75%
we conclude that the best prediction is obtained by the
logistic regression using as predictiors the variables
(discretized) In-Degree, In-Closeness, Page Rank and
the Authority. In the future works, we will extend the
study to a bigger sample to impove the classification,
and then predict unknown RIFs. We also plan to test
other classification methods like SVM.
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