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Abstract: In this paper we consider a mobile platform with two cameras directed towards the floor mounted the same
distance from the ground, assuming planar motion and constant internal parameters. Earlier work related to
this specific problem geometry has been carried out for monocular systems, and the main contribution of this
paper is the generalization to a binocular system and the recovery of the relative translation and orientation
between the cameras. The method is based on previous work on monocular systems, using sequences of inter-
image homographies. Experiments are conducted using synthetic data, and the results demonstrate a robust
method for determining the relative parameters.

1 INTRODUCTION

In robotics research, it is of interest to accurately track
the position of a mobile robot relative to its surround-
ings. The emergence of artificial intelligence and au-
tonomous vehicles in recent years demand robust al-
gorithms to handle such problems. During the years
of research in the field many kinds of sensors have
been used—LIDAR, rotary encoders, inertial sensors
and GPS, to mention a few—and often in combina-
tion. The type of sensor one chooses to work with re-
stricts what algorithms that can be used, and how the
resulting map of the robot and its surroundings will
look.

One sensor of particular interest for the robotics
and computer vision community is the image sensor
and there are many reasons why it is popular. One
important factor is that the wide range of algorithms
used in computer vision, e.g. visual feature extraction
and pose estimation, can be used in this setting; how-
ever, from an industrial point of view image sensors
are an often considered design choice since they are
relatively cheap compared to other sensors. Further-
more, they are often available on consumer products,
such as smartphones and tablets, where similar tech-
niques can be used, e.g. in Augmented Reality (AR).
With image sensors one is not limited to sparse 3D
clouds of feature points, but can model the map using
dense and textured 3D models.

Visual SLAM systems have been developed for
nearly three decades, with (Harris and Pike, 1988)

being one of the first. Since then, several improve-
ments have been made, and with the aid of modern
computing power, a variety of methods for real-time
SLAM are available. Among the more recent once are
MonoSLAM (Davison et al., 2007), LSD-SLAM (En-
gel et al., 2014) and ORB-SLAM2 (Mur-Artal and
Tardós, 2017), where the latter includes support for
monocular, stereo and RGB-D cameras.

2 RELATED WORK

In epipolar geometry, the fundamental matrix, intro-
duced by (Faugeras, 1992) and (Hartley, 1992), has
been a tool for many algorithms concerning scene
reconstruction; however, planar motion is known to
be ill-conditioned, see e.g. (Hartley and Zisserman,
2004). The problem geometry considered in this pa-
per is forced to planar motion, which is common in
e.g. indoor environments. To overcome this issue
algorithms that take advantage of planar homogra-
phies have been devised, which by construction are
constrained to planar motion and therefore do not
suffer from being ill-conditioned. Some early work
on planar motion using homographies include that
of (Liang and Pears, 2002) and (Hajjdiab and La-
ganière, 2004). More recent work on ego-motion re-
covery in a monocular system using inter-image ho-
mographies for a planar scene has been covered in
(Wadenbäck and Heyden, 2013) for a single homogra-
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phy and by the same authors for several homographies
in (Wadenbäck and Heyden, 2014). In (Wadenbäck
et al., 2017) the same methods are used to calibrate
the fixed parameters initially, transforming the subse-
quent problem to a two-dimensional rigid body mo-
tion problem.

The stereo rig problem involving two cameras
with fixed relative orientation is investigated for auto-
calibration in (Hartley and Zisserman, 2004). In (Ny-
man et al., 2010) a method for multi-camera plat-
form calibration using multi-linear constraints is de-
veloped; however, this method does not rely on the
inter-image homographies, but rather using the cam-
era matrices.

3 THEORY

3.1 Problem Geometry

In this paper we consider a mobile platform with two
cameras directed towards the floor mounted the same
distance from the ground. By a suitable choice of
the world coordinate system the cameras move in the
plane z= 0 and relative to the ground plane positioned
at z = 1. Both cameras are assumed to be mounted
rigidly onto the platform and no common scene point
is assumed to be visible in the cameras simultane-
ously. Furthermore, the mobile platform’s center of
rotation is assumed to be located in the first camera
center. In this setting the second camera center is con-
nected to the first by a rigid body motion.

The 3D rotations are parametrized using Tait-
Bryan angles

RRR(ψ,θ,ϕ) = RRRx(ψ)RRRy(θ)RRRz(ϕ), (1)

where RRRx, RRRy and RRRz denote the rotation around the
respective coordinate axes with a given angle. The
problem geometry is illustrated in Figure 1.

3.2 Camera Parametrization

As in (Wadenbäck and Heyden, 2013), consider two
consecutive images, A and B, for the first camera. The
camera matrices are then

PPPA = RRRψθ[III | 000],
PPPB = RRRψθRRRϕ[III | − ttt],

(2)

where RRRψθ is a rotation θ around the y-axis followed
by a rotation of ψ around the x-axis. The movement
of the mobile platform is modelled by a rotation ϕ
around the z-axis, corresponding to RRRϕ and translation
vector ttt.

z = 1

plane normals

z = 0

Figure 1: The problem geometry considered in this paper.
The cameras are assumed to move in the plane z = 0 and
the relative orientation between them as well as the tilt to-
wards the floor normal is assumed to be fixed as the mobile
platform moves freely.

The camera matrices for the second camera can be
parametrized as

PPP′A = RRRψ′θ′RRRηTTT τττ[III | 000],
PPP′B = RRRψ′θ′RRRηTTT τττRRRϕ[III | − ttt],

(3)

where RRRψ′θ′ is the tilt, defined as for the first cam-
era. Furthermore, RRRη is a fixed rotation by η degrees
around the z-axis relative to the first camera, and τττ is
the rigid body translation vector between the first and
the second camera center. The matrix TTT τττ corresponds
to a translation by τττ defined as TTT τττ = III− τττnnnT , where
nnn = (0, 0, 1)T is a floor normal.

3.3 Homographies

Given point correspondences xxx1 and xxx2, in homoge-
neous coordinates, the homography HHH transforms the
points such that xxx2 = λHHHxxx1, where λ 6= 0 is due to uni-
versal scale ambiguity. In (Wadenbäck and Heyden,
2013) the homography for the first camera is derived
and is given by

λHHH = RRRψθRRRϕTTT tttRRRT
ψθ . (4)

Similarly, the homography HHH ′ for the second camera
is given by

λ′HHH ′′′ = RRRψ′θ′RRRηTTT τττRRRϕTTT tttTTT−1
τττ RRRT

η RRRT
ψ′θ′ . (5)

3.4 Parameter Recovery

By separating the fixed angles from ϕ and the transla-
tion ttt the following relation holds

RRRϕTTT ttt = λRRRT
ψθHHHRRRψθ = λ′TTT−1

τττ RRRT
η RRRT

ψ′θ′HHH
′′′RRRψ′θ′RRRηTTT τττ, (6)

It is shown in (Wadenbäck and Heyden, 2013) how
to recover the parameters for the monocular case, and
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by doing so the parameters ψ, θ, ϕ and ttt aswell as ψ′
and θ′ can be recovered; the latter two from treating
the second camera as a monocular system. Further-
more, we shall assume that all homographies HHH are
normalized such that detHHH = 1.

3.4.1 Recovering the Relative Translation τττ

The relative translation and rotation can be separated
by putting (3.4) in the form

TTT τττRRRϕTTT tttTTT−1
τττ = λ′RRRT

η RRRT
ψ′θ′HHH

′′′RRRψ′θ′RRRη, (7)

and multiplying with the transpose from the left on
both sides yield

TTT T
ttt−−−τττRRRT

ϕ TTT T
τττ TTT τττRRRϕTTT ttt−−−τττ = λ′RRRT

η RRRT
ψ′θ′HHH

′′′T HHH ′′′RRRψ′θ′RRRη . (8)

The left hand side of (3.4.1) can be simplified to

L =




1 0 `1
0 1 `2
`1 `2 `3


 , (9)

where

`1 = τx− tx− τy sinϕ− τx cosϕ,
`2 = τy− ty + τx sinϕ− τy cosϕ,

`3 = k1τx + k2τy + cτ2
x + cτ2

y + |ttt|2 +1,
(10)

and
k1 = 2(tx cosϕ− ty sinϕ− tx),
k2 = 2(tx sinϕ+ ty cosϕ− ty),
c = 2(1− cosϕ) .

(11)

The eigenvalues of L are given by λ2 = 1 and λ1, λ3
such that λ1λ3 = `3− `2

1− `2
2 = 1. Furthermore, the

right hand side of (3.4.1) has the same eigenvalues
as HHH ′′′T HHH ′′′, as they are similar. Since the sum of the
eigenvalues is the trace of the corresponding matrix,
the following relation holds

trHHH ′′′T HHH ′′′ = 2+ `3, (12)

which is independent of η. By letting h = trHHH ′′′T HHH−
3−|ttt|2 the relation becomes

k1τx + k2τy + cτ2
x + cτ2

y−h = 0 . (13)

The other invariants do not give any new relations
for τττ since, detL = 1 and 1

2

(
(trL )2− trL 2

)
= trL .

3.4.2 Solving for the Relative Translation τττ

With only one pair of homographies one cannot deter-
mine τττ explicitly; however, using multiple pairs one

equation on the form (13) for each pair of homogra-
phy is given, which yields a system of equations

k(1)1 τx + k(1)2 τy + c(1)(τ2
x + τ2

y)−h(1) = 0,

k(2)1 τx + k(2)2 τy + c(2)(τ2
x + τ2

y)−h(2) = 0,
...

k(n)1 τx + k(n)2 τy + c(n)(τ2
x + τ2

y)−h(n) = 0 .

(14)

The system in (14) is over-determined for n > 2,
hence minimizing

min
τττ∈R2

n

∑
i=1

∣∣∣k(i)1 τx + k(i)2 τy + c(i)(τ2
x + τ2

y)−h(i)
∣∣∣
2
, (15)

gives the desired result. This can be re-formulated as

min
τττ∈R2
‖KKKτττ+ cccτττT τττ−hhh‖2

2, (16)

where

KKK =




k(1)1 k(1)2

k(2)1 k(2)2
...

...
k(n1 ) k(n)2



, ccc =




c(1)

c(2)
...

c(n)


 and hhh =




h(1)

h(2)

...
h(n)




(17)

By introducing a new variable r = |τττ|2, an equivalent
problem is obtained

min
τττ∈R2, r=|τττ|2

‖KKKτττ+ cccr−hhh‖2
2 = min

xxx∈R3, r=|τττ|2
‖MMMxxx−hhh‖2

2, (18)

where xxx = (τx, τy, r)T and MMM = [KKK | ccc], where the
objective function can be written as

‖MMMxxx−hhh‖2
2 = xxxT QQQxxx+dddT xxx+hhhT hhh, (19)

where QQQ = MMMT MMM and dddT = −2hhhT MMM. In conclusion,
one may consider minimizing f (xxx) = xxxT QQQxxx + dddT xxx,
subject to x2

1 + x2
2− x3 = 0. Note that, the constraint

can be written as xxxT AAAxxx+bbbT xxx = 0, where

AAA =




1
1

0


 and bbb =




0
0
−1


 . (20)

The Lagrangian is given by

L (xxx;λ) = xxxT QQQxxx+dddT xxx+λ(xxxT AAAxxx+bbbT xxx), (21)

and solving ∇xxxL (xxx;λ) = 000 results in

xxx =−1
2
(QQQ+λAAA)−1(ddd +λbbb) . (22)

The constraint ∇λL (xxx;λ) = 0 yields a rational equa-
tion in λ, which can be turned into finding the roots of
a fifth degree polynomial. This in turn can be trans-
lated into an eigenvalue problem, and solved robustly.
Using this approach solving (16) takes∼100 µs which
is suitable for real-time applications. Furthermore,
due to the precision of modern eigenvalue solvers, the
error is usually negliable.
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3.4.3 Solving for the Relative Orientation η

Given τττ from the previous step consider (3.4) and
multiply the first homography with the matrix corre-
sponding to the translation τττ. This yields

TTT τττRRRT
ψθHHHRRRψθTTT−1

τττ ∼ RRRT
η RRRT

ψ′θ′HHH
′′′RRRψ′θ′RRRη, (23)

where η is the only unknown parameter. Define
WWW = TTT τττRRRT

ψθHHHRRRψθTTT−1
τττ and WWW ′ = RRRT

ψ′θ′HHH
′′′RRRψ′θ′ and

note that WWW and WWW ′′′ share the same eigenvalues since
they are similar and the corresponding eigenvectors
are rotated η degrees.

Let us recall that the null space of a matrix is
spanned by the right-singular vectors corresponding
to zero—or due to noise, vanishing—singular val-
ues. Using the same approach as in (Wadenbäck and
Heyden, 2014) we conclude that nulldimWWW ′′′TWWW ′′′ = 1.
Consequently, the eigenvectors spanning the null
spaces, xxx ∈ N (WWW TWWW ) and xxx′′′ ∈N (WWW ′′′TWWW ′′′), can be
obtained using SVD—this ensures that we work with
real eigenvectors.

We will use the following theorem to recover η
robustly, using all available pairs of homogaphies.

Theorem 1. Let YYY ,YYY ′′′ ∈ R3×N and non-zero. Fur-
thermore, let RRRη = RRRz(η) be a rotation matrix, cor-
responding to a rotation of angle η around the third
axis. Then

min
η∈(−π,π]

λ6=0

‖YYY ′′′−λRRRηYYY‖F , (24)

is solved when

ηopt = α+

{
0, if yyyT

3 yyy′3 > 0,
π, otherwise,

(25)

where α may be expressed using the programming
friendly atan2 function,

α = atan2
(
yyyT

1 yyy′2− yyyT
2 yyy′1, yyyT

1 yyy′1 + yyyT
2 yyy′2,

)
. (26)

Here yyyi denotes the column vector of dimension N
corresponding to the i:th row of YYY . The vectors yyy′i are
defined analogously. The angles are considered as
equivalence classes, where η ≡ η+ 2πk, k ∈ Z, with
the class representative being in the interval (−π,π].

Proof. Using the relation between the Frobenius
norm and the trace, the square of the objective func-
tion can be simplified

‖YYY ′′′−λRRRηYYY‖2
F = tr

[
(YYY ′′′−λRRRηYYY )(YYY ′′′−λRRRηYYY )T ]

= trYYY ′′′YYY ′′′T −λ trYYY ′′′YYY T RRRT
η

−λ trRRRηYYYYYY ′′′T +λ2 trRRRηYYYYYY T RRRT
η .

(27)

Since the trace is invariant under cyclic permutations
it follows that the last term is independent of η. Fur-
thermore,

trYYY ′′′YYY T RRRT
η = tr

((
YYY ′′′YYY T RRRT

η
)T)

= trRRRηYYYYYY ′T . (28)

Combining these observations (24) is equivalent to
solving

min
η∈[−π,π)

λ 6=0

λ2‖YYY‖2
F −2λ trRRRηYYYYYY ′′′T . (29)

The reader can easily verify that the optimum is
reached when η is on the form (24).

In conclusion, the angle η may be obtained using
Theorem 1 where the i:th column of YYY corresponds to
the eigenvector spanning the null space of WWW T

i WWW i—
the matrix YYY ′′′ is defined analogously.

4 EXPERIMENTS

4.1 Synthetic Data

In order to validate the theory and evaluate the al-
gorithm synthetic data was generated in form of se-
quences of images mimicking those taken by a mo-
bile platform as described in Section 3.1. A high-
resolution image of a planar scene, in this case a tex-
tured floor, was chosen to yield many key-points. Fur-
thermore, different paths simulating the mobile plat-
form was defined. In order to simulate the tilt the
original image was transformed around a given point
along the pre-defined path and then cropped, such that
the center point in the cropped image coincide with
this point. The parameters used in the transforma-
tion serve as ground truth, and the resolution used in
each image is 400× 400 pixels. The field of view
of the simulated camera is normalized to 90 degrees,
which affects the impact of the distortion of the im-
ages caused by the cameras being tilted.

4.2 Homography Estimation

The homography estimation was done by extract-
ing SIFT keypoints (Lowe, 2004) from every frame,
keeping the most prominent once as candidates for
key-point matching. The remaining key-points are
then matched between subsequent images only, us-
ing a brute-force matcher based on the K Nearest
Neighbor algorithm. From the matched key-points a
random subset is chosen iteratively in the RANSAC
framework and from these a homography is esti-
mated. The homography with the highest amount of
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Figure 2: Path of the simulated mobile platform for the first camera (left) and the second camera (right). The red dots represent
the absolute position of the camera and the blue squares are the extracted images. The impact of the tilt is illustrated by the
frames not being square, but rather slanted. Note that the second camera path is not elliptic as the translational components
are affected by the rotation of the mobile platform.

inliers is chosen, where the maximum allowed repro-
jection error for a point pair to be considered as an
inlier is five pixels.

4.3 Parameter Recovery

4.3.1 Monocular Case

The parameters were recovered using the method pro-
posed in (Wadenbäck and Heyden, 2014) for both tra-
jectories, treated as two independent monocular sys-
tems, using five homographies to determine the tilt,
rotation and translation in each step.

4.3.2 Recovering the Relative Translation

The optimal relative translation vector was obtained
by solving (16) using the optimization scheme pro-
posed in Section 3.4.2.

4.3.3 Recovering the Relative Orientation

Using the closed form solution presented in Theo-
rem 1 the relative rotation around the z-axis was es-
timated for the five pairs of homographies used in the
previous step. The computations involves finding the
vectors spanning the null spaces in order to compute
the matrices used in the closed form expression (24)
for η which is computationally inexpensive.

4.4 Test Cases

4.4.1 Elliptic Path

This case simulates the mobile platform moving in an
elliptic path while rotating between the images. The
test case was choosen as it includes general motions
which generates many different combinations of val-
ues for the nonfixed parameters. The sequence of
images for both cameras used in this case is shown
in Figure 2. The parameters used in this experi-
ment are ψ = 3.3◦, θ =−1.2◦, ψ′ = 5.1◦, θ′ =−4.6◦,
τττ = (100, 80) and η = 30◦.

The results from analyzing the two paths indepen-
dently are shown in Figure 3 and the estimation of the
relative pose is shown in Figure 4.

4.4.2 Rotation Around the First Camera Center

Estimating the tilt in a monocular system with only
rotations and no translation is generally hard. A pos-
sible benefit of a binocular system is that the rigid
body motion between the cameras results in a trans-
lational component in the second camera. The gen-
erated paths are shown in Figure 5. All fixed angles
are set to 0◦ and the relative translation τττ = (800, 0).
Furthermore, the mobile platform is moving with a
constant rotation.
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Figure 3: Estimated parameters for the first camera (left) and the second camera (right). In all plots the blue circles represent
the ground truth. The red dots are the estimated parameters for the angles (first three subplots) and in the last subplot the red
dots and the green diamond are the error in tx and ty respectively. The error in translation is measured in pixels. The estimates
have been calculated using five homographies at each frame.
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Figure 4: Estimated value of τττ = (τx, τy) and η using five
pairs of homographies at each frame. The magnitude of the
translational component |τττ| is also shown. The red dots are
the estimated parameter and the blue circles represent the
ground truth.

Since (3.4.1) degenerates, as k(i)1 = k(i)2 = 0 for all
homographies, one cannot expect to recover the com-
ponents of τττ but it is possible to recover |τττ|, as shown
in Figure 6.

4.4.3 Mean Error vs. Number of Homographies

The relation between the accuracy and the amount
of homographies used to estimate the relative pose is
shown in Figure 7. The same setup as in Section 4.4.1
was used but the amount of homographies varied.
From the figures one can see that it is not a significant
improvement in the parameter estimation of the rel-
ative pose after approximately twenty homographies.
In practice this means that the calibration could be
done initially, and then be used to track the position
of the mobile platform, without re-computation of the
fixed parameters.

5 CONCLUSION

This paper has extended the work of (Wadenbäck and
Heyden, 2014) to binocular vision. A method has
been deviced to robustly estimate the relative trans-
lation and orientation of the two cameras using sev-
eral pairs of homographies, by reusing the computa-
tions from the cameras treated as two monocular sys-
tems. The translational component is recovered by
solving a non-convex problem, which can be turned
into an eigenvalue problem. The proposed optimiza-
tion scheme is robust and suitable for real-time appli-
cations. Furthermore, when solving for the relative

Relative Pose Estimation in Binocular Vision for a Planar Scene using Inter-Image Homographies

573



Figure 5: Path of the simulated mobile platform for the first camera (left) in the second test case, and for the second camera
(right). The red dots represent the absolute position of the camera and the blue squares are the extracted images. Due to
the rigid body motion connecting the cameras the second camera rotates around the first camera center causing a non-zero
translational component.

0 10 20 30 40 50
Homography number

795.0

797.5

800.0

802.5

805.0

|τ
|

Figure 6: Estimated value of |τττ| using five pairs of homo-
graphies at each frame. When considering only rotations
for the first camera, the components of τττ cannot be obtained
by the proposed method. The red dots are the estimated pa-
rameter for the magnitude and the blue circles represent the
ground truth.
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Figure 7: Mean error for the relative translation and rota-
tion as a function of the number of pairs of homographies
used in the optimization step. The error for the translational
component is measured in the Euclidean norm. The mean
error is computed from 49 pairs of homographies estimated
from the sequence described in Section 4.4.1.

rotation, the closed form solution presented in The-
orem 1 is computationally inexpensive. Experimen-
tal results from synthetic data have demonstrated that

the method has an acceptable accuracy for most prob-
lems, and highlighted problems where the method
fails to recover both of the translational components;
it is also shown that in this case the magnitude can be
recovered accurately.
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