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Abstract: Considering the recent achievements of CNN, in this study, we present a CNN-based kernelized correlation 
filter (KCF) online visual object tracking algorithm. Specifically, first, we incorporate the convolutional 
layers of CNN into the KCF to integrate features from different convolutional layers into the multiple 
channel. Then the KCF is used to predict the location of the object based on these features from CNN. 
Additionally, it is worthying noting that the linear motion model is applied when do object location to reject 
the fast motion of object. Subsequently, the scale adaptive method is carried out to overcome the problem of 
the fixed template size of traditional KCF tracker. Finally, a new tracking update model is investigated to 
alleviate the influence of object occlusion. The extensive evaluation of the proposed method has been 
conducted over OTB-100 datasets, and the results demonstrate that the proposed method achieves a highly 
satisfactory performance.  

1 INTRODUCTION 

Visual object tracking, which is a crucial component 
of computer vision system, has widespread 
applications, including surveillance, traffic control, 
and automatic drive (Yilmza, 2006), (David, 2008), 
(Arnold, 2014). The adoption of the online-based 
discriminative learning method has arguably 
constituted a breakthrough in visual object tracking 
(Babenko, 2009), (Hare, 2016), (Zhang, 2014). 
Given an initial image patch containing the target, 
the classifier is trained to distinguish the appearance 
and its background. This classifier can be evaluated 
exhaustively in many locations, in order for 
detection to be carried out in subsequent frames. 
After locating the object’s position, a new image 
patch is provided to update the model. 

Although the discriminative learning method has 
resulted in a great deal of progress in visual object 
tracking, issues of tracking bounding box drift and 
object loss still occur as a result of factors such as 
occlusion, scale variance, background clutter, and 
illumination changes. Specifically, the root causes of 
these issues from a features view can mainly be 
attributed to the following: (i) object features are not 
robust enough to distinguish the object from the 

background; (ii) ideal features cannot be obtained 
because of the occlusion; (iii) object appearance is 
changed drastically by pose, illumination, and scale, 
among others. In general, the features extracted from 
training data cannot adequately describe the object, 
which results in the object imprecisely being located 
from a given image patch. 

To solve those problems, different machine 
learning-based algorithms are proposed. Hare et al. 
(Hare, 2016) present a framework for adaptive 
visual object tracking using structured output 
prediction, which is based on a kernelized structured 
output SVM to provide adaptive tracking. Henriques 
et al. (Henriques, 2015) take advantage of the fact 
that the convolution between two image patches in 
time domain can be transformed into an element-
wise product in frequency domain, which can 
specify the desired output of a linear classifier for 
several translations, or image shifts, simultaneously. 
To solve occlusion problem, Yang et al. (Yang, 
2016) recently extend the correlation filter-based 
method through fusing the feature color name 
histograms of oriented gradients (CN-HOG), which 
consists of CNs and HOG, and is robust to partial 
occlusion. 
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Figure 1: Object tracking system overview. 

Correlation filter based tracking algorithm have 
shown favorable performance recently. Nonetheless, 
scale variance and tracking model update strategy 
limit their accuracy enhancement. In this paper, we 
separate tracking algorithm into two parts: object 
localization and scale estimation. During object 
localization, motion model is applied to locate the 
search window, which can solve fast motion 
problem. Since multiple channels can be applied in 
kernelized correlation filter (KCF) for the image 
features, features extracted from the different 
convolutional layers in search window are integrated 
into the object representation to improve the tracking 
accuracy, and it is then convolved with the KCF 
tracker to generate a response map, in which the 
maximum value of location indicates the estimated 
target position. Then, a scale adaptive method is 
proposed to overcome the problem of the fixed 
template size in the traditional KCF tracker. 
Furthermore, a new tracking model update strategy 
is exploited to avoid the model corruption problem. 

2 PROPOSED METHOD 

With the aim of locating the object precisely and 
solving the scale variation problem, we separate 
tracking algorithm into two parts: object localization 
and scale estimation. Figure 1 illustrates the main 
steps of our method. 

2.1 Object Localization 

During object localization, the search window is first 
estimated by motion model to overcome the fast 
motion problem. Since multiple channels can be 

applied in KCF for the image features, features 
extracted from the different convolutional layers in 
search window are integrated into the object 
representation, and it is then convolved with the 
KCF tracker to generate a response map, in which 
the maximum value of location indicates the 
estimated target position. 

2.1.1 Motion Model 

The location of the object is predicted in a search 
window which is usually obtained by padding object 
position got from previous frame. However, if the 
object moves fast, it will be out of the search 
window. To this point, a simple linear motion model 
with constant velocity is applied to roughly estimate 
the location of object in frame t  based on the 
predicted position in frame 1t - , and then search 
window is obtained by padding predicted object 
position based on motion model. 

Given the velocity 
t
v -1

 in frame t -1 , the 

velocity 
t
v  in frame t  is updated as 
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where 
t t t
p x y= [ , ]  is the center location of the 

object at frame t  and T
F

=
1  is the time gap between 

two adjacent frames, F  is frame rate of the video. 
After getting the velocity of the object in frame 

t , the predicted location of the object by motion 
model at frame t + 1  is defined as 

t t t
p p vT+ = +

1
                         (2) 
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2.1.2 Kernelized Correlation Filter 

Viewing the correlation filters as classifiers, they 

can be trained by finding the relation between the i -
th input xi  and its regression target 

i
y  from the 

training set, and then use linear regression to finish 
prediction (Li, 2014). To utilize correlation filter to 
linear non-separable samples, we hope to find a 
nonlinear mapping function (kernel) which can map 
those samples to a higher dimension to make them 
linear separable, which is called kernelized 
correlation filter (KCF). The key innovation of KCF 
is the use of the structure of circulant matrices. A 
circulant matrix is used to learn all the possible 
shifts of the object from base sample. The 
coefficient â  encodes the training samples, 
consisting of all shifts of base sample in the 
frequency domain. The learning equation is 
expressed as 

xx

y
l¢

=
+

ˆ
ˆ
k̂

a                              (3) 

where ^ denotes the Discrete Fourier Transform 

(DFT) of a vector. xx¢k  is the kernel correlation 
function between signals x  and ′x . The training 
label matrix y  follows a Gaussian distribution that 

smoothly decays from the value of 1 for the 
estimated target bounding box to 0 for other shifts. 
The division represent an element-wise division and 
l  is a regularization parameter that controls 
overfitting. 

The final object position is determined by  
ˆarg max( (k ))fδ = xz  between the current and the next 

patch. z  is the spatial index with maximum 
response in ˆ(k )f xz . The response for each location is  

xz xzk kf F-= 1ˆ ˆ ˆ( ) ( )a .                    (4) 

2.1.3 Convolutional Feature Integration 

Based on the deep feature analysis for object 
tracking in (Wang, 2015), we know that different 
layers encode different feature types: deeper layers 
capture the semantic concepts of object categories, 
while lower layers encode more discriminative 
features. Convolutional layers from VGG 
(Simonyan, 2014) are applied to represent object 
appearance. We focus only on the accurate object 
position in the tracking. In this case, fully connected 
layers can be removed to save processing time, as 
they exhibit little spatial resolution. 

The outputs of the selected convolutional layers 
are used as multi-channel features. Suppose the 
multiple data representation channels are 

concatenated into a vector x = [x x x ]
D

,
1 2
,..., , the 

Gaussian kernel correlation function ¢xxk  is defined 
as 
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The features from different convolutional layers 
are complementary to another; therefore, our method 
can fuse both the semantic and discriminative 
information for object location. It should be noted 
that spatial resolution is gradually reduced with an 
increase in convolutional layer depth due to the 
pooling operators used in CNN, which results in 
insufficiently accurate object location. This issue is 
addressed by resizing each feature map to a fixed, 
larger size. Let h  denote the feature map and x  be 
the upsampled feature map; then, the feature vector 
for the i -th location is 

x h
i ik k

k

b= å                            (6) 

where the interpolation weight 
ik

b  depends on the 

positions of the neighboring feature vectors i  and 
k , respectively. Note that this interpolation occurs 
spatially, and can be seen as location interpolation. 

2.2 Scale Estimation 

Scale variation poses a significant challenge in 
correlation filter-based trackers. The desired tracker 
should not only precisely locate the object, but also 
be adaptive to the object size variations. 

Following object location, we employ object 
padding to enlarge the image representation space. 

Let 
T
s ( , )

x y
s s=  denote the current frame’s 

template size and N  be the number of scales. For 

eachn Î N Nì üê ú ê úï ï- -ï ïï ïê ú ê ú-í ýê ú ê úï ïï ïë û ë ûï ïî þ

1 1
, ...,

2 2
, an image patch 

n
J  of size 

n n
x y

a s a s´  centered on the estimation location is 

cropped, and its corresponding convolutional feature 
is extracted. Here, a  is the scale factor. Since data 
with a fixed size is necessary for the dot-product in 
KCF, we resize each image patch into 

T
s  by means 

of bilinear interpolation. The final response is 
calculated by Eq. (4) to obtain the largest value for 

arg max ( )nJf z , where 
n
J  has already been resized 

to the fixed size
T
s . 

By combining position prediction and scale 
estimation, the proposed tracker can not only 
enhance accuracy, but also deal with scale variation. 
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Figure 2: The first column are the images of sequence 
tiger from OTB-2015, where the red bounding boxes 
indicate the tracking object. the response maps in the 
second column are corresponding to the tracking object. 
When the object is severely occluded (a), the response 
map fluctuates intensely and the peak value of the 
response map is not clear enough (b). When the object is 
not occluded (c), the peak value of the response map is 
sharp and clear (d). 

2.3 Model Update 

To keep the tracker robust, tracking model online 
updating is very important for the tracking algorithm. 
Most existed trackers update the tracking models at 
each frame by using predicted result got from last 
frame without considering whether the result is 
accurate or not (Danelljan, 2014), (Ning, 2016). This 
may cause a deterministic failure once the object is 
severely occluded or totally missed in the current 
frame. In our study, we utilize the average of five 
tracking results with highest peak value to update 
tracking model, which is named multi-model update 
strategy. 

The peak value of the response map got by KCF 
can reveal the confidence degree about the tracking 
results to some extent. The ideal response map 
should have only one sharp peak. The higher the 
correlation peak value is, the better the location 
accuracy is. It can be seen in Figure 2. For model 
update, a pool with five tracking results from 
previous frames is fixed, where each result has only 
sharp peak and highest peak value. When new result 
is obtained, if it is satisfied with only one sharp peak 
and its peak value is larger than any of them in the 
pool, the pool will be updated by deleting the result 
with smallest peak value and adding the new one.  

Then the proposed tracking model will be 
updated online as follows 
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where h  is the weight for each element in the pool, 

it is calculated based on peak value 
ˆarg max( (k ))fδ = xz . 

An overview of the proposed method is 
summarized in Algorithm 1. 

3 EXPERIMENT RESULTS 

In order to evaluate our method’s performance, we 
carry out experiments on the OTB-100 (Wu, 2015) 
benchmarks. It covers 11 types of challenge 
scenarios including illumination variation (IV), scale 
variance (SV), occlusion (OCC), deformation 
(DEF), motion blur (MB), fast motion (FM), in-
plane rotation (IPR), out-of-plane rotation (OPR), 
out-of-view (OV), background clutters (BC) and low 
resolution (LR). We use one-pass evaluation (OPE) 
matrix as suggested in (Wu, 2015) to assess our 
method. Furthermore, to analyze the effectiveness of 
motion model and model update strategy, we test 
different version of proposed method on OTB-100. 
We implemented our method in MATLAB on an 
Intel i7-4770K 3.50GHz CPU with 24GB RAM, and 
it can arrive 4 frames per second. 
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Table 1: Comparison of tracking results of SKCF, SKCF-
Motion, SKCF-Multi-model and SKCF-MM. 

Tracker Precision Success 
SKCF 0.840 0.578 

SKCF-MOTION 0.851 0.603 
SKCF-Multi-model 0.857 0.615 

SKCF-MM 0.868 0.639 

3.1 Evaluation on Different Version 
Proposed Method 

To demonstrate the effect of motion model and 
multi-model update strategy, we denote the 
algorithm without motion model and with traditional 
model update strategy as SKCF, with motion model 
and traditional model update strategy as SKCF-
Motion, without motion model and with multi-model  
update strategy as SKCF-Multi-model and with both 
motion model and multi-model update strategy as 
SKCF-MM. The characteristics and tracking results 
are summarized in Table 1. 

As shown in Table 1, SKCF-MM shows the best 
tracking accuracy and robustness. Without motion 
model, SKCF-Multi-model gets poor performance 
because of fast motion of the object. with traditional 
model update strategy, the appearance model update 
in every frame, the tracking bounding box may drift 
because of occlusion. As shown in experimental 
results, both motion model and multi-model update 
strategy improve the tracking performance 
observably.  

3.2 Evaluation on SKCF-MM 

We evaluate SKCF-MM with 9 state-of-the-art 
trackers including KCF (Henriques, 2015), HCF 
(Ma, 2015), DeepSRDCF (Danelljan, 2015), C-COT 
(Danelljan, 2016), SAMF (Li, 2014), DSST 
(Danelljan, 2014), CFNet (Valmadre, 2017), SRDCF 
(Danelljan, 2015) and CSK (Henriques, 2012).  

Figure 3 shows the performance of SKCF-MM 
with other 9 trackers including top 5 are deep 
learning-based methods. Although the performance 
of SKCF-MM is lower than C-COT, the tracking 
speed is 16 times faster than it which is 0.25 FPS.  
Our method’s effective performance can be 
explained by three major factors. Firstly, motion 
model can solve fast motion problem. Secondly, our 
model update strategy can reduce the influence of 
occlusion. Thirdly, scale estimation is performed 
after locating the object, which improves accuracy.  

 

(a) The precision plots of OPE on OTB-100 

 
(b) The success plots of OPE on OTB-100 

Figure 3: The precision and success plot of OPE on OTB-
100. The numbers on the legend indicate the average 
precision scores for the precision plot and the average 
AUC scores for success plot. 

 

Figure 4: Tracking results over two video sequences with 
scale variation. 

3.3 Scale Variation Evaluation 

To demonstrate the effectiveness of our proposed 
algorithm on scale variation, two typical sequences 
reflecting scale variation are shown in figure 4, 
which represents our method and KCF. From the 
figure, we can observe that our method, which is 
developed by KCF, can be adaptive to scale 
variation. 
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4 CONCLUSIONS 

In this paper, we present a novel means of solving 
the problems of scale variation and appearance 
model representation. We presented empirical 
results of different version based on our method, in 
which we measured the quantitative performance of 
them. These results demonstrate that motion model 
and multi-candidate model update strategy can 
largely improve the algorithm's performance.  

Furthermore, the scale variation problem is 
addressed by means of proposed adaptive scale 
approach. Moreover, we presented empirical results 
of various challenging video clips, in which we 
measured the quantitative performance of our 
tracker in comparison with a number of state-of-the-
art algorithms. Sufficient evaluations on challenging 
benchmark datasets demonstrate that SKCF-MM 
tracking algorithm performs well against most state-
of-the-art correlation filter-based methods. 
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