
HIOBS: A Block Storage Scheduling Approach to Reduce
Performance Fragmentation in Heterogeneous Cloud Environments

Denis M. Cavalcante, Flávio R. C. Sousa, Manoel Rui P. Paula,
Eduardo Rodrigues, José S. Costa Filho, Javam C. Machado and Neuman Souza

LSBD, Departament of Computer Science, Federal University of Ceara, Fortaleza, Brazil

neuman@ufc.br

Keywords: Cloud Resource Fragmentation, Cloud Block Storage Scheduling, Service Level Agreements (SLAs),
Heterogeneous Storage Resources, I/O throughput (IOPS).

Abstract: Cloud computing is a highly successful paradigm of service-oriented computing and has revolutionized the
usage of computing infrastructure. In the cloud storage, the service user has requirements regarding availa-
bility and performance. Once the cloud resources are shared among multi-tenants, a service level agreement
(SLA) is defined by the service provider and the user. The multi-tenant characteristic of the cloud implies a
heterogeneity of SLA requirements from users. At the same time, cloud providers should upgrade their in-
frastructure with modern storage nodes to attend data-driven applications, resulting in a heterogeneous cloud
environment. The heterogeneity of both SLA requirements and storage resources makes the volume schedu-
ling problem complex to guarantee SLAs. This paper presents HIOBS, an SLA-aware approach for block
storage scheduling in heterogeneous cloud environments to reduce the performance fragmentation of the avai-
lable storage resources, thus increasing the chances of new SLA requirements to be met. We demonstrate
through experiments that our method improves more than 40% the rate of SLA violations while using fewer
storage nodes.

1 INTRODUCTION

Cloud computing is a highly successful paradigm
of service-oriented computing and has revolutionized
the way computing infrastructure is abstracted and
used. Scalability, elasticity, pay-per-use pricing, and
economies of scale are the primary reasons for the
successful and widespread adoption of Infrastructure
as a Service (IaaS) (Agrawal et al., 2011). In IaaS
model, cloud providers usually offer services of com-
puting, raw (block) storage and networking to service
users (Manvi and Shyam, 2014). In that case, a conso-
lidated cloud environment has to handle loads of he-
terogeneous applications and requests as well as he-
terogeneous equipment classes, representing different
options in configuring computing power, networking
and storage (Reiss et al., 2012).

Users of cloud block storage service (CBS-
Service) often have at least two possibilities of Ser-
vice Level Agreements (SLA) requirements regarding
availability and performance (Frey et al., 2013) (Yao
et al., 2014). The performance aspect, for exam-
ple, may have heterogeneous performance demands

because data analytics workloads are often CPU-
intensive but other times are I/O-intensive (Lee and
Katz, 2011). Those heterogeneous resource demands
led cloud providers to support performance customi-
zation not only for CPU resources, but for disk I/O
throughput resources as well. Popular cloud storage
services on the market such as Amazon Web Services
(AWS) platform and Google Cloud Platform support
the determination of performance characteristics in
terms of SLA-IOPS (Amazon, 2017) (Google, 2017),
in which the Input/Output Operations Per Second
(IOPS) is defined by a Service Level Objective (SLO).
SLOs are specific measurable characteristics of the
SLA such as availability, throughput, frequency, re-
sponse time, or latency (Yao et al., 2015). In cloud
storage service, I/O throughput SLA is defined as the
I/O throughput of users volume is higher or equal to a
specific number of input/output operations per second
in at least 99.9% of time.

Figure 1 shows the basic flow of a CBS-Service
with heterogeneous SLA-IOPS support. First, the
service user requests the provisioning of a new vo-
lume with custom SLA-IOPS requirements. Next,

90
M. Cavalcante, D., R. C. Sousa, F., Paula, M., Rodrigues, E., S. Costa Filho, J., Machado, J. and Souza, N.
HIOBS: A Block Storage Scheduling Approach to Reduce Performance Fragmentation in Heterogeneous Cloud Environments.
DOI: 10.5220/0006686800900099
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 90-99
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

the CBS-Service sends the cloud block storage pro-
visioning request (CBS-Request) to the cloud block
storage scheduler (CBS-scheduler) which takes the
volume placement decision. A failed provisioning
request prevent any usage of the demanded volume.
A succeeded provisioning request enables the service
user to perform data access into the new storage vo-
lume where the cloud provider promises to be able to
serve data access into the new volume according to
the SLA-IOPS.

The volume placement decision is taken accor-
ding to the following three points: (a) the storage and
performance (SLA-IOPS) requirements of the CBS-
Request, (b) the storage and performance available
capacities of the cloud block storage resource Pool
(CBS-Pool), in which the available capacities of the
CBS-Pool is often the aggregation of all the storage
nodes (SNs); and finally (c), the CBS-scheduler algo-
rithm, which aims to select the best storage node (SN)
to host the new volume within a short period of time.

A popular and open source on market platform for
CBS-Service (OpenStack, 2017a), Cinder, is part of a
larger project of cloud computing, OpenStack (Open-
Stack, 2017b). OpenStack is also composed of ot-
her projects where each manages a different cloud
resource, like computing, networking, object storage
and so on. OpenStack-Cinder is a very scalable im-
plementation of a cloud block storage service. Se-
veral CBS-Scheduler algorithms are available in Cin-
der source code, but they do not consider performance
metrics such as IOPS.

The works (Yao et al., 2014) and (Yao et al., 2015)
addressed lacking of support for performance require-
ments in block storage scheduling algorithms. They
both modeled their solutions considering IOPS to
schedule new volumes onto storage resources. Howe-
ver, both works did not evaluate their solutions for he-
terogeneous cloud environments regarding IOPS ca-
pacity. Scheduling algorithms to heterogeneous en-
vironments have been proposed in (Lee, 2012), but it
focused its solutions to the management of computing
resources.

It is already known that honoring a variety of
SLA-IOPS and yet guarantying a certain level of
Quality of Service (QoS) imposes a robust con-
straint and increases the complexity of a schedu-
ling decision (Wang and Veeravalli, 2017). The he-
terogeneous aspect of a cloud environment implies
in additional importance to the subject because a
naive design of a CBS-Scheduler may lead to cloud
IOPS-resource fragmentation (Sridharan et al., 2011).
Cloud IOPS-resource fragmentation happens when
the CBS-Scheduler takes poor scheduling decisions
that cause inefficient utilization of storage perfor-

mance. Hence, in order to meet QoS, extra resources
are utilized which increases service provider expendi-
tures. A detailed example of IOPS-resource fragmen-
tation is explained in section 3.

Figure 1: Cloud Block Storage Service.

The lacking of suitable algorithms may lead cloud
providers to add extra storage resources to reach the
desired level of QoS regarding performance require-
ments. That occurs because they do not efficiently
provision volumes increasing the matching between a
CBS-Request and a storage node. To the best of our
knowledge, this is the first paper to formulate and ex-
plore the problem of how to schedule block storage
volumes with the goal of reducing IOPS-resource
fragmentation for heterogeneous cloud environment
with support to heterogeneous SLA-IOPS.

The major contributions of this paper are as fol-
lows:

• The presention of HIOBS, an SLA-aware appro-
ach for block storage scheduling in heterogene-
ous cloud environments. While other approaches
have been proposed and evaluated their solutions
for homogeneous SLA IOPS requirements and
cloud storage resources, our approach is desig-
ned and assessed to address the complexity of he-
terogeneity of CBS-Requests in terms of perfor-
mance(SLA IOPS) and storage resources.

• The implemention and performance of a set of ex-
periments to evaluate our approach against the de-
fault OpenStack-Cinder approach as well as the
best approach proposed by the related work (Yao
et al., 2014). We demonstrate through experi-
ments that our method not only minimizes SLA
violations but also uses fewer storage nodes.

HIOBS: A Block Storage Scheduling Approach to Reduce Performance Fragmentation in Heterogeneous Cloud Environments

91

Organization: This paper is organized as follows:
Section 2 discusses related work. Section 3 explains
HIOBS’s theoretical aspects and the implementation
of the solution. The evaluation of HIOBS is presented
in Section 4. Section 5 presents the conclusions.

2 RELATED WORK

OpenStack-Cinder (OpenStack, 2017a) implements
cloud block storage as a service by managing phy-
sical storage resources. The core functionality of cin-
der is to support the creation and deletion of volumes
as well as the attachment of volumes to virtual ma-
chines by a self-service Web API. These volumes are
allocated to storage nodes. Theoretically, while the
maximum storage capacity of a storage node is not re-
ached, more volumes can be assigned to that storage
node. Cinder scheduling algorithms can reduce infra-
structure costs by increasing the sharing of physical
storage resources, but they lack support for any per-
formance guarantee demanded by SLA requirements.

The paper (Tremblay et al., 2016) categorizes
four research challenges: workload characterization,
storage node characterization, storage node selection
and online storage node tuning. Our proposed algo-
rithm may be classified as a storage node selection
research. In the paper, the necessity of better algo-
rithms for software-defined storage (SDS) solutions is
raised. It is proposed a workload Aware Storage Plat-
form (WASP), which advantage on deployment auto-
mation and the deployability of the SDS solutions, al-
lowing applications to specify the expected workload,
determining storage node solutions to serve the wor-
kload, and performing timely reconfiguration based
on the changing behavior of the workload over time.
The paper only suggests directions, not applying any
experimentation of its ideas.

In the work (Yao et al., 2014), the authors use the
OpenStack Cinder as a study case for volume sche-
duling in the cloud. They proposed a volume sche-
duling algorithm with the goal of enabling the cloud
management based on IOPS ratio performance to mi-
nimize SLA IOPS violations. The authors conside-
red the available storage and IOPS capacities from
storage nodes for allocating each new volume request.
Precisely, they explored many heuristics at combining
IOPS ratio and storage capacities of the storage nodes.
Although the paper presented efficiency at reducing
the SLA IOPS violations at considering the available
IOPS ratio capacity to select the most suitable storage
node, the paper did not evaluate heterogeneous IOPS
ratio for SLA IOPS requests and storage nodes.

The work (Yao et al., 2015) aimed to solve the

volume scheduling problem as well as in (Yao et al.,
2014). However, in (Yao et al., 2015), the problem
was modeled as a NP-complete problem (Yao et al.,
2015) and treated as a Vector Bin Package Problem
(Gary and Johnson, 1979) with d dimensions. Where
each dimension d represents the capability of a sy-
stem resource like CPU, memory, IOPS ratio, storage
capacity and so on. Then they proposed an objective
function to minimize the number of storage nodes
used to meet the volume requests’ requirements. For
this reason, the authors proposed a heuristic based on
Standard Best Fit (BF) heuristic named Modified Vec-
tor BFD (MVBFD) to process a set of volume reque-
sts arrived for each short period. This proposed algo-
rithm was also not evaluated for heterogeneous SLAs
requests and storage nodes. That work also did not
analyze the size of the time window and its impact on
processing volume requests.

3 HIOBS APPROACH

HIOBS is an SLA-aware approach for block storage
scheduling in heterogeneous cloud environments to
improve the QoS of the SLA IOPS requirements.
SLA IOPS requirements make the cloud block storage
scheduling problem more challenging because they
are directly impacted by the IOPS capacity of the
storage nodes. The main difficulty to provide QoS
to SLA IOPS requirements in heterogeneous environ-
ments is to handle the performance fragmentation of
the available IOPS of the storage nodes.

3.1 Cloud Block Storage Heterogeneous
Problem

Consider that a user of the cloud block storage ser-
vice needs two new volumes to attach to its virtual
machines. Those two volumes will be used by data-
driven applications with different SLA IOPS requi-
rements, i.e. performance requirements, for working
properly. The first application needs a volume capable
of at least 150 IOPS whereas the second application
needs at least 300 IOPS. Also, consider that a cloud
block storage provider has available three storage no-
des with heterogeneous IOPS capacity. The IOPS ca-
pacities of the A, B and C storage nodes are 150, 250
and 350 respectively. Consider now, in the Figure
2, that the user firstly requested Volume 1 with SLA
IOPS of 150. A scheduling policy as in (Yao et al.,
2014) that takes into account the available IOPS of
storage node may choose the storage node C because
it has the largest available IOPS capacity to host the

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

92

Volume 1. When the user requests the second vo-
lume with SLA IOPS of 300, the cloud provider has
no longer any storage node available to provide the
requested IOPS to the Volume 2. In this work, we
define this problem as a performance fragmentation
of the total available IOPS of the storage nodes. As
consequence, the problem described may lead to poor
performance of cloud user applications.

Figure 2: Performance Fragmentation Problem.

3.2 HIOBS Cloud Block Storage
Scheduling

When a cloud user demands a new volume with SLA
requirements, a cloud block storage scheduling al-
gorithm should analyze the CBS-Request to select
the proper storage node to host the new volume.
This process should be properly handled by any ser-
vice of cloud block storage. From our understan-
ding of the OpenStack-Cinder, we extended its cloud
block storage scheduling framework with more pha-
ses where it is possible to insert, change, append or
remove behaviors from each phase. As shown in Fi-
gure 3, the four phases of this framework are: (1)
retrieval of the meta-data of each storage node, (2)
filtering storage nodes by removing those ones non-
capable according to some criteria, (3) evaluation of
the preference of each storage node according to HI-
OBS function cost and (4) selection of the storage nod
to host the new volume. Below, it is described how
HIOBS uses this framework to handle volumes CBS-
Requests with SLA requirements for cloud heteroge-
neous environments.

3.2.1 HIOBS Retrieval Storage Nodes
Meta-data Phase

From each storage node available to the cloud, HI-
OBS maintains four meta-data where two of them
are dynamic. The static meta-data are the maxi-
mum storage capacity and the maximum IOPS capa-
city. The dynamic meta-data are the total used storage
and the total used IOPS. The dynamic meta-data are
evaluated every time a new volume CBS-Request is
accepted. In the scenario where a storage node has

Figure 3: Cloud Block Storage Scheduling.

100 GB and 400 IOPS for maximum storage capacity
and maximum IOPS capacity respectively, if two vo-
lumes requesting 10GB and 200 IOPS are allocated
to that storage node, the total used storage and the to-
tal used IOPS are evaluated as 20 GB and 400 IOPS.
From these 4 meta-data, it is possible to evaluate the
available storage and IOPS capacities meta-data.

3.2.2 HIOBS Filtering Phase

HIOBS uses available storage capacity as the criterion
to remove non-capable storage nodes. HIOBS deci-
sion avoids problems related to insufficient storage by
discarding storage nodes with no available storage ca-
pacity to attend the volume CBS-Request.

3.2.3 HIOBS Cost Evaluation Phase

The intuition behind HIOBS cost evaluation phase
is fundamentally based on avoiding the performance
fragmentation problem mentioned at Section 3.1.
This mission seems difficult because volume reque-
sts arrive one at a time in unknown order as stated
by (Yao et al., 2014). Once the cloud block storage
framework schedules volumes immediately, HIOBS
also does not know beforehand the IOPS demanded
by next volume CBS-Request. By this means, HI-
OBS evaluates the fragmentation cost of every storage
node according to the Equation 1 where b is the avai-
lable IOPS capacity of a storage node and v is the SLA
IOPS requirement of the new volume request.

FragmentationCost = b− v; (1)

3.2.4 HIOBS Selection Phase

After fragmentation cost evaluation of every storage
node in the previous phase, HIOBS selects the storage
node with the smallest fragmentation cost to host the
new volume CBS-Request. This decision reduces the

HIOBS: A Block Storage Scheduling Approach to Reduce Performance Fragmentation in Heterogeneous Cloud Environments

93

performance fragmentation problem presented in Fi-
gure 2. The same scenario is presented below, but
now using HIOBS approach to exemplify how the
performance fragmentation is reduced. In Figure 4,
the volume 1 requested 150 IOPS and was scheduled
to the storage node A which supports 150 IOPS. The
volume 2 requested 300 IOPS and was scheduled to
the storage node C which supports until 350 IOPS.
This way, by using our approach, the volume require-
ment was met.

Figure 4: HIOBS Block Storage Scheduling Example.

3.3 HIOBS Algorithm

In Algorithm 1 we show the pseudo-code of the im-
plemented algorithm. The worst case complexity of
the algorithm is O(n logn), where n is the number of
storage nodes. This algorithm has two inputs: the
available storage nodes list snl and the current volume
CBS-Request vr. As output, the algorithm returns the
best storage node to meet the volume requirement.
From the Line 2 to 7, it is verified which storage nodes
have available storage capacity sn.availableStorage
to attend the volume storage vr.STORAGE. Only the
volumes that meet the storage capacity filtering are
added to the f ilteredStorageNodeList as described at
line 4.

At Line 9, HIOBS evaluates the available IOPS
of each storage node of the filtered storage nodes
f ilteredStorageNodeList. Next, the available IOPS
b.availableIOPS and the SLA IOPS volume require-
ment vr.SLA IOPS are processed to evaluate the frag-
mentation cost of each storage node as described at
Line 10. A storage node with zero value for per-
formance fragmentation cost FragmentationCost me-
ans that its available IOPS will not be fragmented
at all whether the current volume CBS-Request be
scheduled to that storage node. The greater the posi-
tive f ragmentationCost value, the higher the storage
node performance fragmentation is whereas negative
values mean, a storage node does not have availa-
ble IOPS anymore. In our implementation, HIOBS
puts a storage node with negative f ragmentationCost
value as the last option to host a volume using the
BIG CONSTANT value as shown at Line 11. As the
final step at Line 16, HIOBS picks the storage node

with smallest fragmentation cost to host the new vo-
lume.

Input: vr (volumeRequest), snl (storageNodeList)
Output: selectedStorageNode

1 f ilteredStorageNodeList.clear()
2 foreach Storage Node sn in the snl do
3 sn.availableStorage = sn.TOTAL STORAGE

− sn.usedStorage
4 if sn.availableStorage >= vr.STORAGE then
5 f ilteredStorageNodeList.append(sn)
6 end
7 end
8 foreach Storage Node sn in the

f ilteredStorageNodeList do
9 sn.availableIOPS = sn.TOTAL IOPS −

sn.usedIOPS
10 sn. f ragmentationCost = sn.availableIOPS −

vr.SLA IOPS
11 if sn. f ragmentationCost < 0 then
12 sn. f ragmentationCost =

BIG CONSTANT
13 end
14 end
15 sortByFragmentationCost(f ilteredStorageNodeList)
16 return min(f ilteredStorageNodeList)

Algorithm 1: HIOBS Performance Fragmentation Cost Al-
gorithm.

4 EXPERIMENTAL EVALUATION

4.1 Compared Approaches

The authors of the work (Yao et al., 2014) descri-
bed and evaluated several approaches including the
ones implemented by the OpenStack-Cinder as well
as their proposals based on IOPS. Among those, we
chose the default OpenStack-Cinder approach based
on available storage capacity and the best approach
(SLA-Aware to homogeneous cloud environments)
proposed by (Yao et al., 2014) to compare against
our (HIOBS). Based on the phases of the Cloud Block
Storage Scheduling framework mentioned at Section
3.2, we summarized the compared approaches at Ta-
ble 1.

We decided not to compare HIOBS with the met-
hod presented in (Yao et al., 2015) because their block
scheduling algorithm considers more than one CBS-
Request at a time. Meanwhile, all approaches in Table
1 have the similarity to make a scheduling decision at
the moment that a new volume CBS-Request arrives.

4.2 Block Storage Simulator

To prove the effectiveness of the HIOBS and evaluate
our approach against the other two previously descri-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

94

Table 1: Approaches in comparison.

Phase Cinder SLA-aware HIOBS
1 Avail. Stor. Avail. Stor. Avail. Stor.
2 Avail. Stor. Avail. Stor. Avail. Stor.
3 Avail. Stor. Avail. IOPS IOPS Matching
4 Avail. Stor. Avail. IOPS IOPS Matching

bed in Table 1, we performed a set of experiments on
a simulator of a cloud block storage schedule.

The original simulator was designed to evaluate a
cloud block storage using different scheduling poli-
cies in which SLA IOPS requirements were homoge-
neous as well as the cloud environment1. Homogene-
ous SLA IOPS means that all volume CBS-Requests
demand the same IOPS. Homogeneous cloud envi-
ronment means that all storage nodes have the same
IOPS capacity. On the original simulator design,
the IOPS consumption of each volume CBS-Request
is performed according to the Equation 2. In other
words, the total IOPS capacity of a storage node is
split evenly between its allocated volumes.

IOPS = MaxStorageNodeIOPS/TotalAllocatedVolumes;
(2)

The original design of the simulator has poor ma-
nagement for heterogeneous SLA IOPS requirements
and storage nodes. The Equation is not able to split
the total IOPS capacity of a storage node between
its allocated volumes accurately because the volu-
mes with higher IOPS demands will suffer more SLA
IOPS penalties. For example, if two volume CBS-
Requests, A and B, with SLA IOPS requirements of
400 and 500 respectively, are allocated to a storage
node with 900 IOPS capacity. The original volume
IOPS consumption gives 450 IOPS to each volume,
which means that SLA IOPS of B suffers unnecessary
SLA violation.

We extended the simulator with a new IOPS cont-
rol mechanism to better control the volume IOPS con-
sumption for heterogeneous SLA IOPS and storage
nodes2. The IOPS control mechanism limits the max-
imum IOPS use of each volume to the SLA IOPS re-
quirement, i.e., each volume can consume only the
amount of IOPS it requested. Considering the previ-
ous example, but with the new version of the simu-
lator, both volumes, A and B, would have their SLA
IOPS attended without any SLA violation. The extra
IOPS demanded above a storage node capacity is split
evenly as SLA IOPS penalty to its allocated volumes.
This mechanism is exemplified at the Figure 5, where
at t1 a storage node with 2000 IOPS capacity hosts
volume 1, 2, 3 with 800, 500 and 500 SLA IOPS re-
spectively. At t2, the volume 4 with 600 SLA IOPS is

1https://github.com/ipapapa/OpenStackCinderSimulator
2https://github.com/ResearchLSBD/HIOBS

Figure 5: IOPS consumption Control.

Table 2: Experiment Setup.

Volume Size (GB) 100, 500, 1000
Number of Iterations 50
Seconds per Iteration 120000

Mean Volume Duration (s) 600 (Poisson)
Mean Arrival Time (s) 20 (Poisson)

Total Volume CBS-Requests 5000
Number of Storage Nodes 2-20

also allocated to the same storage node. At this time,
the storage node is at an overloaded state. At t3, the
IOPS control handles the extra 400 IOPS above the
storage node IOPS capacity by limiting the maximum
IOPS of each volume evenly, i.e., the IOPS of the four
volumes will by reduced by 100 IOPS.

4.3 Environment Description

Table 2 describes our experiment parameters based on
the setup used by the work (Yao et al., 2014). Our
experiment ran 50 iterations of 120000 minutes. At
every iteration, a new workload was created randomly
based on the following parameters: size of volumes
100GB, 500GB or 1 TB; arrival time and the duration
of each volume sampled from a Poisson distribution
with a mean of 20 and 600 respectively. The number
of volumes requested during one iteration was limited
to 5000 CBS-Requests or the maximum of requests
made during the experiment execution.

4.4 Simulation Setup

We have proposed different scenarios for experimen-
tation as shown in table 3. The second column shows
the possible values for the SLA IOPS requirement of
each volume CBS-Request. The third column shows
possible values of the maximum I/O throughput of a
storage node.

The first scenario is the same homogeneous one
evaluated by (Yao et al., 2014), where each volume re-
quest demands an SLA IOPS of 450 and each storage
node of the cloud block storage has an IOPS capacity

HIOBS: A Block Storage Scheduling Approach to Reduce Performance Fragmentation in Heterogeneous Cloud Environments

95

of 1948.
To assess our algorithm with heterogeneous va-

lues for SLA IOPS and storage node IOPS capacity,
we considered the Scenarios 2 and 3, where each
volume requests an SLA IOPS of 200, 300 or 850.
These SLA IOPS were chosen to simulate an envi-
ronment where hte majority of applications do not
demand high SLA IOPS, whereas the minority have
critical and high demands for SLA IOPS.

The storage node IOPS capacities for the Scena-
rio 2 were chosen to simulate an environment where
25% of the IOPS capacity is low, 50% of IOPS capa-
city is average, and 25% of the IOPS capacity is high.
The storage node IOPS capabilities for the Scenario
3 were chosen to simulate an environment where the
minority of storage nodes, i.e., 40%, can provide a
high IOPS capacity of 4000, whereas the majority,
i.e., 60%, can provide only low IOPS capacities of
500 and 700.

Table 3: Scenarios Setup.

Scenario SLA (IOPS) S.N. (IOPS)
1 450 1948
2 200,300,850 974,1948,2922
3 200,300,850 500,700, 4000

4.5 Experiment Results

For each scenario described at Table 3, we present
three metrics to explain the results, comparing the ap-
proaches described at the Table 1:

• SLA Violation per Number of Nodes describes
the behavior the rate of SLA violations for diffe-
rent numbers of storage nodes until any approach
reaches zero SLA violation.

• SLA Violations per Approach was chosen to
compare the results before of the moment of rea-
ching zero SLA violations (the minimum number
of nodes to have zero SLA violations), once that
condition is too strict and not easily reachable by
cloud providers.

• Volume Speed per Approach shows the distri-
bution of IOPS consumption obtained by each ap-
proach.

4.5.1 Scenario 1 (Homogeneous)

Evaluating the number SLA violations per number of
storage nodes for the Scenario 1 in Figure 6(a), we
note that our approach had less SLA violations than
the SLA-aware approach and the OpenStack-Cinder
default approach. While Cinder default approach re-
quires more than twenty nodes to reach zero SLA vi-
olations, HIOBS and the SLA-Aware baseline require

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of Nodes

SL
A

vi
ol

at
io

ns

HIOBS
SLA-aware
OpenStack-Cinder

(a) SLA Violation per Number of Nodes

10%

20%

30%

3.29% 3.47%

35.75%

Approaches

SL
A

vi
ol

at
io

ns

HIOBS
SLA-aware

OpenStack-Cinder

(b) SLA Violations per Approach

H
IO

BS
4

no
de

s

SL
A

-a
w

ar
e 4

no
de

s

O
pe

nS
ta

ck
-C

in
de

r 4
no

de
s

H
IO

BS
6

no
de

s

SL
A

-a
w

ar
e 6

no
de

s

O
pe

nS
ta

ck
-C

in
de

r 6
no

de
s

H
IO

BS
8

no
de

s

SL
A

-a
w

ar
e 8

no
de

s

O
pe

nS
ta

ck
-C

in
de

r 8
no

de
s

H
IO

BS
10

no
de

s

SL
A

-a
w

ar
e 1

0
no

de
s

O
pe

nS
ta

ck
-C

in
de

r 1
0

no
de

s

100

200

300

400

Vo
lu

m
e

Sp
ee

d
(I

O
PS

)

(c) Volume Speed per Approach

Figure 6: Scenario 1.

only ten storage nodes to reach zero SLA violations.
Unlike the other approaches, HIOBS notably reduced
the SLA violations even when the minimal number of
storage nodes was not properly set up to support the
SLA IOPS of volume requests. Considering the mo-
ment before reaching zero SLA violations, i.e. eight
nodes, the default OpenStack-Cinder approach faces
the worst performance with 35.75% of SLA violati-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

96

ons. HIOBS and the SLA-aware (Yao et al., 2014)
approaches face similar SLA violations around 3.3%
as shown at the Figure 6(b).

Analyzing the results of volume speed per appro-
ach as illustrated at the Figure 6(c), the volume reque-
sts under the SLA-aware and our approach obtained
the IOPS consumption closer to the claimed than the
default OpenStack Cinder capacity approach. Com-
paring ours and SLA-aware approaches, SLA-Aware
has slightly better volume speed as shown at around
six and eight nodes. This happened because the
SLA-aware approach does not seek greater resource
sharing, i.e, it always seeks to allocate new volumes
to the storage nodes that have the highest available
IOPS.

4.5.2 Scenario 2

Evaluating the number of SLA violations per number
of storage nodes for the Scenario 2 in Figure 7(a), we
can easily see that our approach had much fewer SLA
violations than the others approaches from four nodes
until ten nodes. Using the minimum number of no-
des before reaching zero SLA violations as shown in
Figure 7(b), our approach faced only 8.53% SLA vi-
olations, while SLA-aware and Cinder default appro-
aches faced 28.16% and 47.09% SLA violations re-
spectively. This improvement happened because our
approach has complied better the SLA IOPS require-
ments, even reducing significantly the fragmentation
of the available IOPS of the storage node. In other
words, once the requirements are being met without
allocating the current volumes to storage nodes with
the most available IOPS, new volume requests have
more chances to be met even with big requirements.

Our approach also required fewer storage nodes
than the SLA-aware baseline to reach zero SLA vi-
olations. On the other hand, Cinder default method
was not able to reach zero SLA violations with less
than twenty nodes. Analyzing the volume speed per
approach in Figure 7(c), the HIOBS and SLA-aware
approaches had better performance than Cinder de-
fault approach, which faced some IOPS consumption
below the smallest SLA IOPS requirements.

4.5.3 Scenario 3

Studying the number of SLA violations per number
of storage nodes for the Scenario 3 in Figure 8(a), our
approach achieved similar results to the Scenario 2
where it was needed two less nodes than the SLA-
aware approach to reach zero SLA violations. From
four nodes until before reaching zero SLA violations,
it is again possible to verify that our approach had
less SLA violations than the other approaches. While

2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

Number of Nodes

SL
A

vi
ol

at
io

ns

HIOBS
SLA-aware
OpenStack-Cinder

(a) SLA Violation per Number of Nodes

10%

20%

30%

40%

50%

8.53%

28.16%

47.09%

Approaches

SL
A

vi
ol

at
io

ns

HIOBS
SLA-aware

OpenStack-Cinder

(b) SLA Violations per Approach

HIOBS SLA-aware OpenStack-Cinder

200

400

600

800

Vo
lu

m
e

Sp
ee

d
(I

O
PS

)

(c) Volume Speed per Approach

Figure 7: Scenario 2.

our approach faced 12.34% for SLA violations, SLA-
aware and Cinder Default faced 27.01% and 59.45%
respectively as shown in Figure 8(b). The volume
speed per approach also had similar proportional re-
sults to the Scenario 2 as illustrated in Figure 8(a).

5 CONCLUSION AND FUTURE
WORK

This work presented HIOBS, an SLA-aware approach
for block storage scheduling in heterogeneous cloud
environments to improve QoS of the SLA IOPS re-

HIOBS: A Block Storage Scheduling Approach to Reduce Performance Fragmentation in Heterogeneous Cloud Environments

97

2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

Number of Nodes

SL
A

vi
ol

at
io

ns
HIOBS
SLA-aware
OpenStack-Cinder

(a) SLA Vilolations per Number of Nodes

10%

20%

30%

40%

50%

60%

12.34%

27.01%

59.42%

Approaches

SL
A

vi
ol

at
io

ns

HIOBS
SLA-aware

OpenStack-Cinder

(b) SLA Vilolations per Approach

HIOBS SLA-aware OpenStack-Cinder
0

200

400

600

800

Vo
lu

m
e

Sp
ee

d
(I

O
PS

)

(c) Volume Speed per Approach

Figure 8: Scenario 3.

quirements. SLA IOPS requirements makes the cloud
block storage scheduling problem more challenging
because they are directly impacted by the IOPS capa-
city of the storage nodes. We evaluated our approach
by considering the homogeneous environment scena-
rio proposed by (Yao et al., 2014) as well as two dif-
ferent heterogeneous scenarios.

As seen in the results, our approach significantly
improved QoS, i.e., it presented less SLA violations in
comparison to the other methods since it reduced the
performance fragmentation of the available storage
nodes, thus increasing the chances of new SLA IOPS
requirements to be properly attended. Our strategy
also manages volume requests to use fewer storage

nodes once it maximizes the resource sharing at al-
locating as much possible volumes into one storage
node. On the other hand, SLA-aware approach requi-
res more nodes to meet the requirements, since it con-
siders the available IOPS at the cost evaluation phase,
thus giving preference to nodes not used yet. Our ap-
proach is not the fastest at providing IOPS consump-
tion as observed in the homogeneous scenario, due to
the high resource competition from maximizing re-
source sharing, thus delaying HIOBS to reach the vo-
lume speed near to the requested.

As future work, we intend to implement HIOBS
in a production-like environment and validate our vo-
lume scheduling solution conducting a set of experi-
ments in the cloud block storage OpenStack Cinder.
As new directions to improve HIOBS, we plan to test
new scenarios for heterogeneous SLA requirements
and cloud storage resources as well as for new distri-
butions to arrival and duration time of SLA requests.
Also, we will explore techniques such as volume mi-
gration and forecasting models to predict future SLA
requirements, thus making the volume scheduling ba-
sed on HIOBS more robust.

ACKNOWLEDGEMENTS

This work was partially funded by Lenovo, as part of
its R&D investment under Brazil’s Informatics Law,
by grant from Capes/Brazil and also by LSBD/UFC.

REFERENCES

Agrawal, D., Das, S., and El Abbadi, A. (2011). Big data
and cloud computing: Current state and future op-
portunities. In Proceedings of the 14th Internatio-
nal Conference on Extending Database Technology,
EDBT/ICDT ’11, pages 530–533, New York, NY,
USA. ACM.

Amazon (2017). Elastic Block Store (EBS). https://aws.
amazon.com/ebs/.

Frey, S., Reich, C., and Lüthje, C. (2013). Key performance
indicators for cloud computing slas. In The Fifth In-
ternational Conference on Emerging Network Intelli-
gence, EMERGING, pages 60–64.

Gary, M. R. and Johnson, D. S. (1979). Computers and in-
tractability: A guide to the theory of np-completeness.

Google (2017). Optimizing Persistent Disk and Local
SSD Performance. https://cloud.google.com/compute/
docs/disks/performance.

Lee, G. (2012). Resource allocation and scheduling in hete-
rogeneous cloud environments. PhD thesis, UNIVER-
SITY OF CALIFORNIA, BERKELEY.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

98

Lee, G. and Katz, R. H. (2011). Heterogeneity-aware re-
source allocation and scheduling in the cloud. In Hot-
Cloud.

Manvi, S. S. and Shyam, G. K. (2014). Resource mana-
gement for infrastructure as a service (iaas) in cloud
computing: A survey. Journal of Network and Com-
puter Applications, 41:424–440.

OpenStack (2017a). Cinder. https://wiki.openstack.org/
wiki/Cinder.

OpenStack (2017b). Open Source Cloud Computing Soft-
ware. https://www.openstack.org.

Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and Ko-
zuch, M. A. (2012). Heterogeneity and dynamicity of
clouds at scale: Google trace analysis. In Proceedings
of the Third ACM Symposium on Cloud Computing,
page 7. ACM.

Sridharan, M., Calyam, P., Venkataraman, A., and Berry-
man, A. (2011). Defragmentation of resources in vir-
tual desktop clouds for cost-aware utility-optimal allo-
cation. In Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on, pages 253–
260. IEEE.

Tremblay, B., Kozubal, K., Li, W., and Padala, C. (2016). A
workload aware storage platform for large scale com-
puting environments: Challenges and proposed di-
rections. In Proceedings of the ACM 7th Workshop
on Scientific Cloud Computing, pages 27–33. ACM.

Wang, X. and Veeravalli, B. (2017). A genetic algorithm ba-
sed efficient static load distribution strategy for hand-
ling large-scale workloads on sustainable computing
systems. In Intelligent Decision Support Systems for
Sustainable Computing, pages 7–31. Springer.

Yao, Z., Papapanagiotou, I., and Callaway, R. D. (2014).
Sla-aware resource scheduling for cloud storage. In
2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet), pages 14–19.

Yao, Z., Papapanagiotou, I., and Callaway, R. D. (2015).
Multi-dimensional scheduling in cloud storage sys-
tems. In 2015 IEEE International Conference on
Communications (ICC), pages 395–400. IEEE.

HIOBS: A Block Storage Scheduling Approach to Reduce Performance Fragmentation in Heterogeneous Cloud Environments

99

