
An Approach for Modeling Polyglot Persistence

Cristofer Zdepski, Tarcizio Alexandre Bini and Simone Nasser Matos
Federal Technological University of Parana, Av Monteiro Lobato, s/n - Km 04, 84016210, Ponta Grossa, Parana, Brazil

Keywords: NoSQL, Database Design, Polyglot Persistence, Logical Level Design.

Abstract: The emergence of NoSQL databases has greatly expanded database systems in both storage capacity and
performance. To make use of these capabilities many systems have integrated these new data models into
existing applications, making use of multiple databases at the same time, forming a concept called ”Polyglot
Persistence”. However, the lack of a methodology capable of unifying the design of these integrated data
models makes design a difficult task. To overcome this lack, this paper proposes a modeling methodology
capable of unifying design patterns for these integrated databases, bringing an overview of the system, as well
as a detailed view of each database design.

1 INTRODUCTION

The popularization of Web 2.0 brought an dramati-
cally increase in data generation. Nowadays databa-
ses easily exceed petabytes scale, with daily increase
rates in the terabytes scale. As an example we can
take the Facebook database, which in 2014 had a size
of 300 petabytes, and a daily increase rate of 600 tera-
bytes, according to (Wilfong and Vagata, 2014). Thus
the recent changes, mainly caused by Web 2.0, at the
level of users, infrastructure and applications charac-
teristics has transformed the use of relational model
an increasingly difficult task.

Relational databases have been the market leaders
for the past 40 years due to their great ability to adapt
to most problems. The long time of existence also
gives it a high level of maturity, and is still the most
recommended for many applications, mainly the ones
that need a high level of consistency on data mani-
pulation and storage. One of the main characteris-
tics of relational databases is the implementation of
ACID properties (Atomicity, Consistency, Isolation
and Durability). These properties ensures a strong
consistency and guarantees validity of data even in the
event of errors, like power or network failures.

Despite meeting the needs of many different cur-
rent applications, the relational model begins to show
problems when dealing with very large databases,
mainly with performance problems. The main reason
is in fact that they were not designed to be scaled, es-
pecially when it comes to horizontal scalability. The
inherent need for dynamic schema of Web 2.0 appli-

cations also brings out some weaknesses of the relati-
onal model by working with static schemas.

Inspired by this limitations, NoSQL databases
have emerged as the solution to the growing need
of systems for information. As they expand over
the Internet its data increases even faster. Accor-
ding to (Sadalage and Fowler, 2012) and (Cattell,
2011) the biggest goal of NoSQL databases is their
scalability skills that are required for next genera-
tion web applications. While relational databases rely
on high consistency, provided by ACID properties,
many NoSQL databases works with BASE (Basically
Available, Soft state, Eventually consistent) proper-
ties which aims to provide high levels of availability
and resilience even though this may compromise con-
sistency for a few moments.

There are many different NoSQL databases no-
wadays and their data structures vary from one anot-
her. According to (Sadalage and Fowler, 2012; Has-
hem and Ranc, 2016; Kaur and Rani, 2013; Abra-
mova et al., 2014) NoSQL databases can be classi-
fied into the following data models, grouped by their
main characteristics: (1) Key-value; (2) Document-
Oriented; (3) Column-family; (4) Graph databases.
Even among the different categories, the concept of
”schema-less” is widely used in the NoSQL databa-
ses. Many of them have no schema definition or data
constraints. Even object creation that is mandatory in
relational databases is often not required in NoSQL
databases as they are created when used.

Database design spends a great deal of time on
developing conceptual, logical, and physical models.

120
Zdepski, C., Bini, T. and Matos, S.
An Approach for Modeling Polyglot Persistence.
DOI: 10.5220/0006684901200126
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 120-126
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



The main purpose of these models is to ensure that the
structures needed to store the data will be properly
constructed and will meet the system requirements.
Even so, database design is not commonly applied
to NoSQL databases. The so-called ”schema-less” in
NoSQL databases may give the impression of an at-
tempt to eliminate the need for data modeling, but the
modeling aims more than just the schema definition.
Database modeling mainly seeks a better understan-
ding and easier visualization of the data structures to
be used.

(Sadalage and Fowler, 2012) mentions that the al-
legation of absence of schema in NoSQL databases
is misleading. Even if the database does not consider
a schema associated with the data being stored, such
a schema must be defined by the application because
data needs to be understood by the application in or-
der to be processed or stored. If the application fails
to parse the data, we have a schema mismatch and
the application could not function. Therefore, even
in ”schema-less” NoSQL databases, it is important to
have a suitable design so that the data can be properly
stored and processed.

The correct use of NoSQL databases have to be al-
ways considered. Despite its current popularity, many
applications do not justify the use of a NoSQL data-
base and, if done, can lead to more losses than gains.
Some systems will require the use of a NoSQL data
model only for part of their data, while the other parts
may be more suitable for another NoSQL or even a
relational data model.

Complex applications can take better advantage of
using different data models for storing and processing
different parts of their data. An e-commerce system
could, for example, be implemented according to Fi-
gure 1. This would bring distinct structures to system
parts, making the best use of the capabilities of each
data model. Still, an unified view would simplify the
visualization of interactions between the parts, allo-
wing an overview of the system as a whole.

Figure 1: Suggested E-Commerce Platform Database.

These kind of complex applications are the object
of study of this paper. It explores a proposal for mo-

deling systems based on what we can call a ”Polyglot
Database System”, which uses multiple different data
models, each one with their own particular objectives.
This paper aims to propose a modeling methodology
capable of integrating multiple different data models
into a single system, making the best of each one and
maintaining an unified view of the system as a whole.

This paper is organized as follows. Section 2 pre-
sents some fundamental concepts of database design
and related works. Section 3 presents the suggested
modeling proposal and finally, Section 4 concludes
and presents future works.

2 BACKGROUND AND RELATED
WORKS

The absence of design methodologies for NoSQL da-
tabases is a topic already explored by several authors
who proposed different solutions. Many of these so-
lutions are limited to specific data models or steps in
database design and none attempts to explore a met-
hodology that can standardize the complete design of
databases for emerging data models in conjunction
with existing ones. The combination of multiple da-
tabases with different data models in a single system,
called by (Sadalage and Fowler, 2012) of ”Polyglot
Persistence” is also a topic barely explored in data-
base design.

It is a consensus among several authors such as
(Rob and Coronel, 2007; Ramakrishnan and Gehrke,
2000; Martyn, 2000) that the database design is es-
sentially divided into 3 steps: (1) Conceptual Design,
(2) Logical Design and (3) Physical Design. Con-
ceptual design aims to translate the requirements into
a conceptual database schema. According to (Korth
and Silberschatz, 1986), the model developed at this
step provides a detailed overview of the whole system
context. It is well known that the conceptual design is
technology-independent and for this reason it can be
applied to both relational database and NoSQL.

Unlike the conceptual design, the logical design
brings the conceptual model previously developed to
a step much more dependent on the adopted data mo-
del. According to (Rob and Coronel, 2007), the lo-
gical design realizes the translation of the conceptual
model for the internal model of a DBMS (Database
Management System) and for this reason it is depen-
dent on data model to be employed. Many of the spe-
cificities of each database should be explored, such as
the supported data types and the format the data will
be stored, such as tables, documents or nodes and ed-
ges.

In the physical design step physical peculiarities

An Approach for Modeling Polyglot Persistence

121



of each database software are treated. These pe-
culiarities involve specific types of data, forms of
storage, partitioning, clustering capabilities among
others. (Martyn, 2000) mentions that the main pur-
pose of physical design is to make the data model
machine efficient. The physical definition is neces-
sary to ensure a better match of the data to the storage
software. In the same way that the schema definition
is necessary for the application to function properly,
the physical definition is necessary to ensure the effi-
ciency of the database.

The challenge for modeling NoSQL databases be-
gins with conversion from the conceptual to logical
model. (Banerjee and Sarkar, 2016) suggests the de-
finition of a rule-based conversion system capable of
transforming the conceptual model into logical and
later into a physical model compatible with the four
categories of NoSQL databases. However, the model
does not explore the possibility of using multiple da-
tabases and therefore does not define the boundaries
between them.

The NoSQL Abstract Model (NoAM) is proposed
by (Bugiotti et al., 2013) and explored later by (Bu-
giotti et al., 2014) defining a methodology capable of
creating a model for the aggregate-based databases.
Its methodology proposes that the same model can be
used for the elaboration of the three data models ba-
sed on aggregate and the definition of which to use
can be done in the physical design step. This could be
a problem due to capabilities of each data model can
change the logical modeling, such as how to obtain
the data. As an example, key-value databases gene-
rally do not have data searching capabilities, and this
could affect the logical design of the database. So de-
fining the data model after the logical design can lead
to erroneous definitions that would need to be subse-
quently adjusted.

A very relevant point in a design involving
NoSQL databases is the way of querying the data.
Due to many of these databases do not have complex
query structures like joins, they need to be designed
for greater query efficiency and simplicity, as descri-
bed in (Li et al., 2014). In a context with multiple
databases a concern with query should be even grea-
ter, since a query that involves several databases can
bring even more complexity to the process.

A final concern is the graphical notation capa-
ble of representing the new data structures created
by these databases. While relational databases work
only with tables and rows, NoSQL databases bring
aggregates or graph structures and their representa-
tion clearly in existing logical models can be a dif-
ficult task. In order to solve this deficiency, (Jova-
novic and Benson, 2013) suggests a modeling style

that uses IDEF1X to represent the aggregate structu-
res. But graph structures still can not be represented
by this modeling style.

We can therefore note that several efforts exist in
order to elaborate processes capable of assisting in the
design of these NoSQL databases, but generally are
isolated efforts in specific areas. The absence of a
model capable of unifying the whole process, joining
several data models when necessary and exploring the
best characteristics of each one, motivated us to ela-
borate our proposal.

3 PROPOSAL

Complex database systems can usually be divided
into subsystems that are quite different from each ot-
her. Some subsystems have needs that would be better
met by NoSQL databases due to their need for sca-
lability, availability and performance. However, ot-
her subsystems have needs that would best be met
by classic relational databases because of their con-
sistency and atomicity. Often a single database sy-
stem, being relational or NoSQL, would not be able
to satisfy both the consistency and atomicity scenario
and the scalability, availability and performance re-
quired by these complex database systems given the
wide range of concepts between them. Taking this
as a premise, many of these systems can best be im-
plemented by using multiple integrated databases, in
order to extract the best usage for each one. Our pro-
posal aims to create a methodology for designing po-
lyglot database systems, allowing from an overview
of the entire system to its specific details.

The main difference between our proposal and the
others presented is the subdivision of the conceptual
model into subsystems. These units represent the pos-
sible divisions between the multiple data models re-
quired to implement the database system. Part of the
modeling has to be the definition of the target data
model, checking their requirements to find the best
option for that subsystem. The basis of this methodo-
logy is the classic database design as cited in section
2 and it follows the three stages defined therein. Our
methodology subdivides the steps of the database de-
sign in order to allow the segmentation of the model
in subsystems, as shown in Figure 2.

As the conceptual model is technology-
independent, we propose the use of the entity-
relationship model (ER). It is a widely known and
exploited model and allows a detailed definition of
the entities and their relationships on the database.
Our proposal does not intend to modify or extend this
step of database design. The proposed modifications

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

122



Figure 2: Proposed Design Steps.

begin with the logical design step, as described in the
following sections.

3.1 Segmentation Unit Definition

As the definition of a polyglot database system, mul-
tiple databases with multiple data models are used on
their conception. Each data model has to be allocated
to parts of the system where it better suits and taking
full advantage of its features. To make this possible, is
necessary to define the borders between each subsy-
stem, defining what we will call by segmentation unit.

Segmentation in this context consists on divide the
conceptual model in parts according to main featu-
res to be implemented. Main goal here is to define
the subsystems that is fully functional units and in-
dependent of other units. This does not means that
units cannot relate to each others, but that a unit can-
not depend on this relation to be functional. To help
us understand the concept, let us consider a simpli-
fied e-commerce system as illustrated in Figure 3. It
illustrates an e-commerce system, consisting of five
subsystems: (1) Shopping Cart, (2) Costumer Regis-
tration, (3) Product Registration, (4) Completed Or-
ders and (5) Product Recommendation. The entities
for each unit are surrounded by a rounded rectangle.
These units share some entities such as Product, but
all can operate independently.

Figure 3: E-Commerce System Segmentation Units.

Sometimes an entity may be shared by two or
more segmentation units. Examples can be seen in

Figure 3 such as the entity Product. The Shopping
Cart, Completed Orders and Product Recommenda-
tion shares an entity that is owned by the Product Re-
gistration subsystem, the Product. When that hap-
pens, the entities must be replicated between units,
with necessary attributes for each segment. There is
no need for replicas to be exactly equals, but they need
an identification that allows them to be interrelated
and synchronized between units. This is also neces-
sary to maintain the functional independence of the
unit.

The main reason for definition of segmentation
units is the capability of use multiple different data
models at the same system. Segmentation units define
cut points on the system that can be used to split on
multiple different data models, as necessary. At this
point, we have not yet settled the target database, just
the cut points that will not corrupt the conceptual mo-
del, making possible the division. Once this is done,
it is possible to detach any of the segmentation units
from the model, and work as an independent system.

This definition does not necessarily means that we
will use different data models on implementation. As
multiple segmentation units can share the same data
model, there is no reason for the implementation on
multiple databases in this case.

3.2 Consistency Unit Definition

When working with NoSQL databases, one of the
most common features is the so-called eventual con-
sistency, provided by BASE properties. This raises
concerns about the consistency of data sets. While
data does not need to be consistent across the entire
database, some data groups need to be consistent to be
considered valid. These groups are what we called by
Consistency Units. The definition of such a unit also
allows data fragmentation, common practice to ens-
ure horizontal scalability. In the context of aggregate-
oriented databases, consistency units form the aggre-
gates themselves, since they are the atomic operation
unit of the database.

A practical example is the Completed Orders
subsystem shown in Figure 4. The order data as well
as the order items, product and costumer must com-
pose a consistency unit since they must always be
consistent with each other or the order data will be
invalid. If for the eventual consistency property, in
some situation a query returns the order without all
their items, we have an inconsistency that may cause
a system failure. So they have to be fully consistent.
The same does not happen with the Order Status His-
tory entity. As this a historical query entity, an even-
tual inconsistency will not affect the system. As the

An Approach for Modeling Polyglot Persistence

123



model in Figure 3 is a simplified example, other seg-
mentation units are formed by only one unit of con-
sistency.

Figure 4: Completed Orders Consistency Units.

This consistency concern does not exist with
ACID databases because it is guaranteed for the en-
tire database, but at this point we do not yet have the
definition of which data model will be applied to that
segmentation unit. The definition of these consistency
units will aid in this task by defining the insepara-
ble data units and consistency constraints that may in
some cases lead to change the selected data model.

The definition of consistency units is also affected
by the way the data is queried. Since some NoSQL
databases do not have complex query structures, such
as joins, data must also be designed to be extracted in
the best way. Many of these databases are only ca-
pable of extracting data from a complete consistency
unit at a time, such as key-value databases. Therefore,
in our case, including historical status data within the
order can increase the amount of unnecessary data re-
ceived by the application, as the historical data is not
always used.

3.3 Target Data Model Definition

With proper knowledge about the subsystems and
their consistency needs, the next step is to define the
best data model to be adopted for each segmentation
unit. This can be the classic relational model or any
of the NoSQL database categories described. The de-
finition requires prior knowledge of features from the
data models to tailor the data to the specified perfor-
mance, scalability and consistency requirements. The
important thing is to identify which data model better
suits the needs for each subsystem.

To help a better understanding of target data mo-
del definition, let’s again consider the segmentation
units defined in Figure 3. Since each of the segmenta-
tion units has its own characteristics, it is necessary to
evaluate them individually to determine the best data
model to be adopted.

At the Shopping Cart subsystem, we have only
one unit of consistency, that is the cart with products
and quantities selected by the customer. The product
does not belong directly to this unit, as the costumer,
but they are referenced by it. An important require-
ment to consider in this subsystem is performance and
availability. The unavailability of this system or slo-
wness could cause the loss of a potential customer.
Eventual consistency would also be acceptable as it
would not cause system losses. Therefore, a NoSQL
database would be a good candidate. An important
thing to be considered is the need for searches. Be-
cause the shopping cart is always customer-related, it
can be said that no searches will be required to find
the shopping cart. These two factors justify the im-
plementation of this subsystem with a key-value data
model.

The subsystem of Product Registration is respon-
sible for the products and their prices. As it is a sim-
plified view, we also have only one consistency unit,
composed by the product and its price history. In
this case, searches may be required to find products
through their attributes such as name or price. Avai-
lability is also a vital factor as data is accessed by
other subsystems, including the Shopping Cart and
Product Registration. Consistency also needs a little
more consideration because product prices are being
handled, but we can still think about eventual consis-
tency. For this scenario, we can consider a document-
oriented model as a good candidate, since it allows
searches and also high availability. A column-family
can also be used.

In the Completed Order and Costumer Registra-
tion subsystems, consistency is the main factor to be
considered. Availability is always a relevant factor
but in this case consistency is preferred. Once you
place an order, your values and quantities need to be
100% consistent, to avoid problems with payment in-
tegrations. For this reason, a data model with ACID
properties would fit well, so a relational data model
can be used.

The last of the subsystems is the Product Recom-
mendation. This subsystem is based on searches on
the latest purchases related to customers and products,
usually with relationships such as ”Customers who
bought the product X also bought the product Y”.
This type of search is related to navigation between
purchases and customers, in a structure like a graph.
Consistency here is not so necessary, as it is a re-
commendations system only and an eventual incon-
sistency will not cause any losses. By performance
characteristics and query model, a graph data model is
recommended. They are especially designed for this
kind of situation. As graph databases are normally

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

124



ACID compliant, consistency will not be a problem.
As we can see, the definition of the data model that

is most appropriate to each subsystem requires a kno-
wledge of the subsystem itself and the data models,
in order to discover the most relevant characteristics
in each case. Our example is merely illustrative and a
more detailed scenario may lead to decisions different
from those described here.

3.4 Logical Data Model Design

The last step in the logical design of our proposal
deals with the individual logical design of each of
the previously selected data models. It is beyond the
scope of this paper the detailing of this process that
must be individualized for each of the data models to
be adopted. The goal here is to outline the objectives
to be achieved with this process.

As the objective of the conceptual design step is
the translation of the conceptual model into the in-
ternal model of a DBMS (Rob and Coronel, 2007)
the previous steps just prepared the template for this
translation, defining the target data model and the
consistency units. This translation consists in trans-
form the consistency units and its entities and attri-
butes into the data structures of the target data model.
On a document-oriented data model, this means trans-
form the consistency unit in an aggregate, as this is
the atomic unit of this data model, and define its col-
lection. On a key-value data model, the consistency
unit is also the aggregate, but the key have to be defi-
ned.

The definitions of each of the data models must be
treated in a specific way due to the particularities of
each one. Even between aggregate-oriented databa-
ses, features such as search capabilities, data storage
format, and others can determine essential differences
in data models.

4 CONCLUSION AND FUTURE
WORKS

NoSQL databases have emerged to improve the soft-
ware capabilities of storage and performance, provi-
ding ways to work with the so-called ”Big Data”. Ho-
wever, the use of these data models is still largely ba-
sed on best practices and examples and there are few
initiatives to standardize the documentation and met-
hodologies for modeling such databases. Most of the
related works presented on this paper are based on
specific data models, notations or starts an entirely
new modeling process, without taking advantage of
existing knowledge about database design.

Our solution aims to bring a design standardiza-
tion, providing a unified methodology capable of wor-
king with several data models integrated into a single
system. The concept is to extend the existing database
design by adding the steps required to model complex
systems with multiple integrated data models. To ex-
plore this methodology we have described a simpli-
fied example, but with definitions compatible with a
complex system.

This work is the initial phase of a larger work see-
king for a complete modeling strategy for database
systems that use the so-called ”Polyglot Persistence”.
Future works can explore the logical and physical de-
sign steps of each of existing data models, such as
aggregate-oriented and graph data models. A graphi-
cal notation for represent the segmentation and con-
sistency units is also a necessity for bringing more vi-
sual understanding to the design diagrams. This need
for a graphical notation is also a necessity for the lo-
gical design of the data models, as described by (Jo-
vanovic and Benson, 2013) about aggregate-oriented
data models, but also applies to graphs.

REFERENCES

Abramova, V., Bernardino, J., and Furtado, P. (2014).
Which nosql database? a performance overview.
Open Journal of Databases (OJDB), 1(2):17–24.

Banerjee, S. and Sarkar, A. (2016). Logical level design of
nosql databases. In 2016 IEEE Region 10 Conference
(TENCON), pages 2360–2365.

Bugiotti, F., Cabibbo, L., Atzeni, P., and Torlone, R. (2013).
A logical approach to nosql databases.

Bugiotti, F., Cabibbo, L., Atzeni, P., and Torlone, R. (2014).
Database design for nosql systems. In International
Conference on Conceptual Modeling, pages 223–231.
Springer.

Cattell, R. (2011). Scalable sql and nosql data stores. Acm
Sigmod Record, 39(4):12–27.

Hashem, H. and Ranc, D. (2016). Evaluating nosql docu-
ment oriented data model. In Future Internet of Things
and Cloud Workshops (FiCloudW), IEEE Internatio-
nal Conference on, pages 51–56. IEEE.

Jovanovic, V. and Benson, S. (2013). Aggregate data mo-
deling style. SAIS 2013, pages 70–75.

Kaur, K. and Rani, R. (2013). Modeling and querying data
in nosql databases. In 2013 IEEE International Con-
ference on Big Data, pages 1–7.

Korth, H. F. and Silberschatz, A. (1986). Database System
Concepts. McGraw-Hill, Inc., New York, NY, USA.

Li, X., Ma, Z., and Chen, H. (2014). Qodm: A query-
oriented data modeling approach for nosql databases.
In 2014 IEEE Workshop on Advanced Research and
Technology in Industry Applications (WARTIA), pages
338–345.

An Approach for Modeling Polyglot Persistence

125



Martyn, T. (2000). Implementation design for databases:
the ‘forgotten’ step. IT Professional, 2(2):42–49.

Ramakrishnan, R. and Gehrke, J. (2000). Database mana-
gement systems. McGraw Hill.

Rob, P. and Coronel, C. (2007). Database Systems: Design,
Implementation, and Management. Course Techno-
logy Press, Boston, MA, United States, 8th edition.

Sadalage, P. J. and Fowler, M. (2012). NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot Persis-
tence. Addison-Wesley Professional, 1st edition.

Wilfong, K. and Vagata, P. (2014). Scaling the facebook
data warehouse to 300 pb. Accessed: 2017-09-10.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

126


