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Abstract: In data visualization, a family of methods is dedicated to the symmetric numerical matrices which contain
the distances or similarities between high-dimensional data vectors. The method t-Distributed Stochastic
Neighbor Embedding and its variants lead to competitive nonlinear embeddings which are able to reveal the
natural classes. For comparisons, it is surveyed the recent probabilistic and model-based alternative methods
from the literature (LargeVis, Glove, Latent Space Position Model, probabilistic Correspondence Analysis,
Stochastic Block Model) for nonlinear embedding via low dimensional positions.

1 INTRODUCTION

In visualization of high-dimensional data, the obser-
vations in the available sample are vectorial: the rows
or the columns of a numerical data matrix or table.
An extensive literature exists and diverse approaches
have been developped until today in this domain of
research. Among the existing methods, t-Distributed
Stochastic Neighbor Embedding (t-SNE or tSNE)
(van der Maaten and Hinton, 2008) is a recent method
which improves the previously proposed one called
Stochastic Neighbor Embedding (SNE) (Hinton and
Roweis, 2003). The idea of the SNE is to introduce
soft-max probabilities which transform the matrix of
distances defined in multidimensional scaling (MDS)
(Sammon, 1969; Chen and Buja, 2009) into vectors
of probabilities in order to deal with a Kullback-
Liebler divergence instead of an Euclidean distance.
As a dramatic improvement in comparison to former
researches on distance matrices for visualization,
tSNE is widely used today in various domains in
order to proceed to data analysis. For instance, this
method helps the researchers to improve any data
processing which asks for an effective reduction or
to proceed to the data analysis itself by looking at
a synthetic view (Mahfouz et al., 2015; Shen et al.,
2015; Delauney et al., 2016; Chen et al., 2017).
Nextafter, this introduction presents further the
notations, the purpose and the way it is achieved for
a survey on related probabilistic methods.

Data: Let’s have the available high-dimensional
data as a set of data vectors in a space with M dimen-
sions as follows:

X = {xi ∈ RM;1≤ i≤ N} .

Let define W = (wi j) from the distance between xi
and x j, for instance di j =‖ xi− x j ‖, with wi j = di j,
or more generally a function of di j. Typically, a weig-
hted nearest neighbors graph such as a heatmap with
for instance wi j = e−di j/τ for τ > 0 when di j is enough
small, and wi j = 0 otherwise. A weighted graph
G = (V,E,W ) is defined from V , E, and W which
stands respectively for the set of vertices (i or vi), ed-
ges (ei j or (i, j)), and weights wi j. An edge ei j comes
from a pair of vertices (vi, v j) in the graph of nearest
neighbors. It is also denoted Ē for the set of pairs of
vertices that are not neighbors.

Reduced Vectors: The purpose is to summarize
X by finding relevant lower dimensional representati-
ons:

Y = {yi ∈ RS;1≤ i≤ N} .
Generally S= 2 as the visualization appears in the two
dimensional plane, even if three dimensions or even
more remain possible. The paper is interested on the
modeling of low dimensional positions via their pai-
rwise distances/similarities plus bias/intercept terms.
The parameterization involved is as follows,

yT
i ỹ j +bi + b̃ j or ‖ yi− ỹ j ‖2 or δi j = δ(yi, ỹ j) . (1)

where δ(., .) is a function of a distance or similarity.
Note that ỹi and yi are not always chosen equal. In the
Euclidean case, it can be rewritten the latent terms as
follows,

bi + b̃ j +yT
i ỹ j = b̃i +

˜̃b j−
1
2
‖yi− ỹ j‖2 . (2)

This parameterization can be interpreted as descri-
bing latent variables in a low-dimensional Euclidean
space, for the two forms just above. Some other
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Table 1: Methods presented (third row) in the survey with the modeling in stake for δi j . The column named Probabilistic
means that the method has or has not a generative/model-based foundation with a probabilistic density/mass function.

Method name Probabilistic Modeling Penalization Input
MDS no Euclidean no X , W
Laplacian Eigenmap no Inner product no X , W
SNE, tSNE, ... no Divergence yes (implicit) X , W
LargeVis yes Bernoulli, weights yes (explicit) X , W
Glove yes Log-linear no X (or W )
Probabilistic CA yes Poisson no X (or W )
LSPM/LCPM yes GLM no W
SBM (re-parameterized) yes GLM no W

methods for visualization such as LLE, KPCA,
GPLVM are already compared in (Lee and Verleysen,
2007) for instance and are not presented in this
survey paper as they seem to not follow this para-
meterization. The methods such as linear principal
component analysis (PCA) or factor analysis (FA)
with the embedding (Cunningham and Ghahramani,
2015) of the type ‖ xi −Ωyi ‖2 with Ω a loading
matrix, are not detailed neither. Methods with an
embedding of the type ‖ yi−y(k) ‖2 where y(k) is the
position of a cluster as in Parametric Embedding (PE)
(Iwata et al., 2007), or Probabilistic Latent Semantic
Visualization (PLSV) (Iwata et al., 2008) are not
detailed but briefly discussed at subsection 3.5. In the
following sections it is considered only methods with
the parameterization given in (1) or (2).

Objective Function: For finding suitable values
of Y one can look for having di j and δi j enough simi-
lar (large or small) according to a relevant criterion.
The general form of the modeling of the whole set of
methods presented in this survey extends the former
MDS having for objective function, ∑i j(di j − δi j)

2.
It can be added the criterion ∑i j wi jδi j from Lapla-
cian Eigenmap (Belkin and Niyogi, 2003) (see also in
clustering, Spectral Clustering (von Luxburg, 2007))
as listed in Table 1. The general form is either a me-
asure of distance or gap between functions of di j and
δi j for non probabilistic approaches, or either a like-
lihood from a probabilistic model with an indepen-
dence hypothesis and the parameters depending on
δi j for modeling w, a random variable from W . In
the following, most of the methods include the con-
struction of a vicinity graph with edges wi j before mo-
deling the mapping otherwise such a graph is assumed
to be already available.

Illustration: As an example, the dataset in (Gi-
rolami, 2001) is visualized with the data X and W
where the later is for ten nearest neighbors and the
weights are equal to 1 for any observed edge and
to 0 otherwise. The visualization from a) CA+X
(Benzecri, 1980), b) CA+W , c) tSNE+X (van der

Maaten and Hinton, 2008), (d) LargeVis+W (Tang
et al., 2016) and (e) Kruskal’s non-metric MDS+X
are compared in Table 2. The considered indicators
are the average of the Silhouettes (Rousseeuw, 1987)
denoted S-Index and the Davies-Bouldin index (Da-
vies and Bouldin, 1979) denoted DB-Index.

Table 2: Indicators for comparing the quality of projection
from the five methods with the dataset of 1000 binarized
images of handwritten digits with 10 classes.

(a) (b) (c) (d) (e)
S-Index 0.01 0.43 0.50 0.51 0.03
DB-Index 5.82 1.69 0.97 1.34 2.29

If the visual map from CA+W is clearly better
than from CA+X , MDS performs between both. The
two other methods lead to better separated frontiers
for visualizing the natural classes but a graph with
only binary weights is used for CA and LargeVis in
this example.

The following sections present tSNE with its ap-
proximations and its variants, the recent generative
methods for visualization and the perspectives.

2 tSNE, APPROXIMATIONS AND
VARIANTS

In this section, tSNE is briefly presented and its vari-
ants for faster training or enhanced modeling.

2.1 t-Distributed Stochastic Neighbor
Embedding

The method tSNE (van der Maaten and Hinton, 2008)
minimizes the divergence between two discrete distri-
butions. It is first defined:

p j|i =
exp(−d(xi,x j)

2/2σ2
i )

∑ j′ 6= j exp(−d(xi,x j′)2/2σ2
i )

.

Each parameter σi is set such as the perplexity
2−∑ j p j|i log p j|i of the conditional distribution Pi =
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(p j|i) is equal to a positive value smaller than 50 given
by the user. These values are critical for accentuating
the frontiers between the natural classes, as observed
in Spectral Clustering where alternative computations
are available. In former approaches SNE (Hinton and
Roweis, 2003) and NCA (Goldberger et al., 2005)
the probabilities Pi are directly used in the objective
function. In tSNE it is considered a symmetric distri-
bution P as follows (with also pi|i = 0):

pi j =
p j|i + pi| j

2N
.

A distribution Q is defined with t-Student distributi-
ons (instead of the Gaussian ones in SNE/NCA), as
follows (with also qii = 0):

qi j =
(1+‖yi−y j‖2)−1

∑k 6=l(1+‖yk−yl)‖2)−1 .

This solves for the ”crowding effect” where the pro-
jections of the classes are not well separated. The low
dimensional positions yi are finally found by mini-
mizing the Kullback-Leibler divergence between the
two distributions P and Q, with the nonlinear and non-
convex objective function,

C(Y ) = DKL(P||Q) = ∑
i6= j

pi j log
pi j

qi j
.

2.2 Approximations

Several approximations have been introduced in the
literature in order to accelerate the computation of the
solution of tSNE -which has by default a quadratic
complexity for the size N- while keeping nearly opti-
mal values for Y . In (van der Maaten, 2013; van der
Maaten, 2014) a sparse approximation computes the
quantities p j|i only for Ni, the nearest neighbors of
xi, and keeps them null otherwise. A N-body simu-
lation and thus the Barnes-Hut (BH) algorithm (Ap-
pel, 1985) associated to fast nearest neighbors sear-
ches is proposed in (van der Maaten, 2014) in order
to lower the complexity to only O(N logN) for the
method BH-tSNE via tree-based procedures. See also
(Kim et al., 2016) for a brief overview of the techni-
cal details. Interesting findings have been proposed
recently in the literature in order to accelerate the trai-
ning (Pezzotti et al., 2016; Parviainen, 2016; Kim
et al., 2016) even further. A-tSNE (Pezzotti et al.,
2017) improves the BH-tSNE algorithm by genera-
ting a relevant visual map before a full learning via the
progressive visual analytics paradigm and approxima-
ted nearest neighbors training. The user can choose
to improve some areas of the projection for steerabi-
lity. Improvement or explaination of the training pro-
cedure by alternatives to the sequential approach in-
troduced for tSNE can be found in (Nam et al., 2004;

Yang et al., 2015). Next subsection presents the ex-
tensions of tSNE (and SNE) for improving the mo-
deling foundations.

2.3 Variants, Extensions

Several methods propose to manage the case where
several maps or several datasets are modeled. This
is mainly treated in the literature via weighted sums
for the probabilities qi j. More precisely, they are cal-
led multiple maps (van der Maaten and Hinton, 2012;
van der Maaten et al., 2012; Zhang et al., 2013; Xu
et al., 2014), multiple view maps (Xie et al., 2011),
hierarchical maps (Lee et al., 2015; Pezzotti et al.,
2016). Variants of tSNE deal with time series and
temporal data (Rauber et al., 2016) or graph layout
(Kruiger et al., 2017) with a repulsive term as an ad-
ditional penalization.

Other methods aim at improving tSNE (or SNE)
by changing the divergence or the function in the soft-
max of Q or eventually P. The Heavy-tailed Symme-
tric Stochastic Neighbor Embedding (HSSNE) (Yang
et al., 2009) is a generalization of tSNE. Instead of
the t-Student distribution it considers any other heavy-
tailed distribution or any monotonically decreasing
function. In (van der Maaten, 2009) it is proposed
the t-Student distribution with ν degrees of freedom
to optimize jointly with Y . For a spherical embed-
ding, the Euclidean distance is replaced by an inner
product, hence a von Mises-Fisher (vMF) distribution
is considered in vMF-SNE (Wang and Wang, 2016).
Spherical embeddings are also met in two interesting
alternative variants (Lunga and Ersoy, 2013; Lu et al.,
2016).

tSNE and SNE minimize Kullback-Leibler diver-
gences w.r.t. Y , hence alternative divergences (Bas-
seville, 2013) are possible for better robustness. A
weighted mixture of two KL divergences is preferred
in the method Neighborhood retrieval and visualiza-
tion (NeRV) (Venna et al., 2010). In (Lee et al., 2013),
it is proposed a different mixture of KL divergences,
a scaled version of the generalized Jensen-Shannon
divergence. In (Lee et al., 2015) it is proposed an ad-
ditional improvement via multi-scale similarities. In
(Yang et al., 2014) it is proposed the weighted sym-
metric stochastic neighbor embedding (ws-SNE) with
a connection between several divergences (β−, γ− ,
α− and Rényi-divergences). In (Narayan et al., 2015)
it is presented a variant named AB-SNE with a α-β
divergence. In (Bunte et al., 2012) it is developped
a systematic comparison of many divergence measu-
res and shown that no divergence is really better for
simulated noises, the best one needs to be chosen ac-
cording to each dataset. Considering models of diver-
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gence with a generative setting (Dikmen et al., 2015)
for the selection of the optimal extra parameters of
these divergences has also been proposed in (Amid
et al., 2015).

Nextafter, the presented models have an embed-
ding of the positions yi in their parameters, with dif-
ferent forms of objective functions.

3 PROBABILISTIC MODELS

In this section, the methods are defined via a proba-
bilistic and model-based foundation. They are ge-
nerally dedicated to the visualization/reduction of a
graph which is constructed from vectorial data.

3.1 Probabilistic CA

Correspondence Analysis (CA) (Benzecri, 1980; Le-
bart et al., 1998) is a matricial method which is ex-
tensively studied for visualizing the rows and the
columns of contingency tables. To perform CA
on a two-way table, the correspondence matrix is
F = X/x.. while x.. stands for its grand total, r =
(r1, . . . ,rN) for the row margins, and c = (c1, . . . ,cM)
for the column margins. A low-rank approximation
leads to F̂ = X̂/x.. where X̂ is the approximation of X
which can be rewritten according to a reconstruction
formula from the eigen vectors/values of a particular
matrix. By rewritting elementwise (Beh, 2004) this
matricial approximation, this leads to a Poisson ap-
proximation, a probabilistic version of CA:

xi j ∼ P
(
x.. ri c j

(
1+yT

i ỹ j
))

,

or from the approximation1 at the first order of the
exponential function,

xi j ∼ P
(

x.. eyT
i ỹ j+logri+logc j

)
.

This also explains why CA can be seen as not fully
linear but this suggests also that from a graph ma-
trix with cells proportional to wi j (or pi j from tSNE)
instead of xi j, a better visualization is expected.

3.2 Glove

Glove (Pennington et al., 2014) is based on a log-
bilinear regression model in order to learn a vector
space representation of words. The weighted regres-
sion for this model can be written as follows:
C(Y ) = ∑i, j h(xi j)(yT

i ỹ j +bi + b̃ j− logxi j)
2

= ∑i, j h(xi j)(y̆T
i

˘̃y j− logxi j)
2 .

1It has also been proposed in the literature to alter the
soft-max with alternative polynomial expressions but not
for visualization.

The function h(.) removes noisy cells in the criterion,
it is equal to (xi j/100)3/4 for xi j < 100 and equal to
1 otherwise. For the second line above, it is also de-
noted y̆i = (bi,1,yT

i )
T and ˘̃yi = (1, b̃i, ỹT

i )
T such as

it is recognized a weighted factorization of the matrix
with cell values logxi j, except that a component of the
reductions is constrained to the value 1. This leads to
the approximation,

xi j ≈ eyT
i ỹ j+bi+b̃ j ,

such as Glove can be seen as a weighted version of
CA, solved via a constrained factorization: a variant
of MDS or Isomap (Tenenbaum et al., 2000) with par-
ticular weights. The original paper (Pennington et al.,
2014) explains how to construct the matrix (xi j) from
raw textual data but any symmetric matrix (wi j) may
be used for visualization. In (Hashimoto et al., 2016)
it is introduced a fully generative model, based on a
negative binomial distribution NegBin, such that:

xi j ∼ NegBin
(

θ,
θ

θ+ e−||yi−ỹ j ||2+bi+b̃ j

)
,

where θ controls the contribution of large xi j as an
alternative to the function h(.).

3.3 Latent Space Position Models

In data analysis, the models named latent space posi-
tion models (LSPM) are based on a parameterization
of the generalized linear models as seen in (Hoff et al.,
2002) in the binary case. In contrast to the other met-
hods presented herein, the determistic parameters yi,
bi and b̃ j are replaced by random variables with same
notation in the current subsection. In the latent cluster
position models (LCPM) the positions yi are modeled
with a Gaussian mixture as a prior for their clustering
(Handcock et al., 2007).

For LCPM, let denote v a p×N×N array of co-
variates with vi j a p-dimensional vector of covaria-
tes for (i, j), β the p-dimensional vector of covari-
ate coefficients, yi the S-dimensional position vec-
tor of i, b = (b1, · · · ,bN) the vector of sender ef-
fects, b̃ = (b̃1, · · · , b̃N) the vector of receiver effects,
and h(.) a link function. This leads to the likelihood
function of the observed network w = (wi j) as fol-
lows:

f (w|θ,v) = ∏i, j f (wi j|h−1(ηi j)) .

For a complete bayesian model, bi and b̃ j are Gaus-
sian with means 0 and respective variances σ2

b and σ2
b̃.

It is written:

ηi j = v>i jβ+δ(yi,y j)+bi + b̃ j .
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The clustering is modeled through a mixture mo-
del with G components where each one is a S-
dimensional Gaussian with mean µk, spherical vari-
ance with parameter σ2

k and mixing probability λk,

yi ∼ ∑G
g=1 λkGS(µk,σ2

kId) .

Alternative distributions such as a t-Student one seem
not have been tested yet for this model. For binary
graphes, a Bernoulli distribution is usually conside-
red for the modeling with h(.) a logit function. The
estimation of Y appears difficult because of the prior
and posterior distributions which are highly nonlinear.
Latent space models are able to find the natural clas-
ses and to select their number according to the best
fit. They can facilitate principled visualization in a
probabilistic setting. Theory on these models can be
found in (Rastelli et al., 2016) and faster inference in
(Raftery et al., 2012) even if the application of these
models may be confined to moderated sizes of graphs
for the current available implementations. The next
method can be seen as a regularized LSPM with an
efficient implementation and no bayesian priors.

3.4 LargeVis

LargeVis (Tang et al., 2016) introduces a probabilis-
tic parametric model dedicated to the visualization
of a nearest neighbors graph. The model is defined
for not only the set of the nearest neighbors but also
all the furthest ones which are forced into a nega-
tive interaction. It is closely related to the previous
approach LINE (Tang et al., 2015b) (see also (Cao
et al., 2015) for an alternative matrix-based learning
and (Tang et al., 2015a) for a semi-supervised variant)
which is non generative. A likelihood for the graph G
can then be written as follows,

L(Y ) = ∏
(i, j)∈E

p(ei j = 1)wi j ∏
(i, j)∈Ē

(1− p(ei j = 1))γ .

Where,

P(ei j = 1) = g(||yi−y j||2) ,
stands for the probability that a edge ei j exists bet-
ween vi and v j. For the function g(.), it can be chosen,

g(τ) = 1/(1+aτ) or g(τ) = 1/(1+ exp(τ)) .

while γ is a common weight for the non neighbor
vectices. For a spherical version with g(yT

i y j), a vMF
distribution function induces an embedding over a sp-
here as in subsection 2.3. LargeVis recalls a Bernoulli
distribution which has been altered for improving its
properties of separability of the clusters by adding the
weigths and the penalization. Concerning this mo-
deling, two remarks are proposed :

- Let’s have w̄=∑(a,b)∈E wab, p̃i j =wi j/w̄, γ̃= γ/w̄,
q̃i j = p(ei j = 1). By rewriting L(.), it is obtained
a new function to minimize w.r.t. Y ,

`γ(Y )

= − logL(Y )
w̄ +∑(i, j)∈E p̃i j log p̃i j

= ∑(i, j)∈E p̃i j log p̃i j
q̃i j
− γ̃ ∑(i, j)∈Ē log(1− q̃i j) .

Hence, it is recognized a criterion in two parts.
The term on the left side is roughly similar to the
criterion of tSNE as a divergence but without (q̃i j)
normalized to sum to 1 and without t-Student dis-
tributions. The other term on the right side is for
a penalization. They insure the local and global
projections respectively.

- It seems appealing to try to improve other distri-
butions such as a Poisson one which may replace
the first term,

P(ei j = wi j) = p(ei j = 1)wi j ,

to get eventually an expressive quantity for the
non observed edges with P(ei j = 0). A probabilis-
tic interpretation -when wi j is an integer- remains
the product between the likelihood of the obser-
ved edges with the likelihood of the non observed
edges with a weighting for regulating the impor-
tance of each one:

LP (Y ) = ∏
(i, j)∈E

(δ̃i j)
wi j e−δ̃i j

wi j!
∏

(i, j)∈Ē

e−γ δ̃i j .

Here δ̃ is the result from a function of the quantity
δi j such as the exponential one. In this alterna-
tive likelihood, the weighting is modeled explici-
tely and the model is fully generative. The term
to the left with a Poisson mass distribution for E
recalls LSPM without bayesian priors. When in
δ̃i j an exponential function is chosen, the term to
the right for Ē recalls the penalization in Elastic
Embedding (Carreira-Perpiñan, 2010), except the
weighting. Additional weighting is via the para-
meters with respectively, δ̃i j = eδi j+logα for E and
δ̃i j = eδi j+logwi j for Ē. With α > 0, this paramete-
rization may lead to a weighting similar to Elastic
Embedding for the non observed edges.

3.5 Stochastic Block Model

As presented in (Matias and Robin, 2014; Daudin
et al., 2008) the stochastic block model (SBM) is de-
fined for a random graph on a set V = {1, . . . ,N} of
N nodes (i or vi). Let’s have z = {z1, . . . ,zN} stands
for N independent and identically distributed (i.i.d.)

IVAPP 2018 - International Conference on Information Visualization Theory and Applications

360



discrete hidden random variables with possible va-
lues in {1, . . . ,K}. Let’s have fγ(·;γziz j) a conditio-
nal density function or mass distribution with para-
meter γ = (γk`)1≤k,`≤K . The variables wi j are random,
i.i.d. conditionally to (zi,z j) and aggregated into the
random variable w = (wi j)(i, j)∈E with a given distri-
bution. SBM has for conditional likelihood the follo-
wing expression, where zi and z j needs to be integra-
ted out by adding their distribution,

f (w|z) = ∏(i, j)∈E f (wi j|zi,z j)
= ∏(i, j)∈E fγ(wi j|γziz j) .

The links between the edges and the structure of the
network are sometimes explained by covariates: vi at
the node level as in (Tallberg, 2004) via a multino-
mial probit model for the membership of the verti-
ces or vi j at the edge level as in (Mariadassou et al.,
2010) via a regression term within the expectations.
This modeling concerns mainly the clustering part
of the stochastic block model which needs to be re-
parameterized for inducing a nonlinear visualization
(if a posteriori methods such as Parametric Embed-
ding (Iwata et al., 2007) are not used). For visualiza-
tion purposes with this model, further parameters can
be embedded. This results into adding the N latent
variables yi via δ(yi,y j) or its corresponding cluster
version δ(y(k),y(`)) with eventual bias terms (bi and
b̃ j or the cluster versions b(k) and b̃(`)). In the bi-
nary case when g(.) is the sigmoidal function, fγ can
be written with a Bernoulli mass distribution function
with parameters,

γk` = g(‖ y(k)−y(`) ‖2) .

This re-parameterization of SBM recall LSPM but
with a different clustering framework as the mixture
model is not a prior but directly introduced in the data
modeling.

A limitation of the approaches above may be seen
in diagonal co-clustering (Tjhi and Chen, 2006): this
suggests that the quantities γziz j could not be fully free
parameters. The extra parameters for the visualiza-
tion needs to be added in the posterior probabilities
for instance. This leads in the variational EM for the
inference of SBM (with common parameters or not)
to consider the probability that a datum belongs to a
cluster as one of the following expression:

Qyi(zi = k;γ) ∝ e−‖yi−y(k)‖2 as in PLSV ,
Qyi(zi = k;γ) = ∑k′ hkk′τik′ as in SOM .

For the later case at the bottom, such algorithm in-
troduces the quantities τik′ as the free parameters and
hkk′ as a smoothing matrix from the neighboor no-
des in the Kohonen’s network or self-organizing maps
(SOM) (Kohonen, 1997).

4 CONCLUSION AND
PERSPECTIVES

In this survey, it is proposed an unified overview of
the literature on data visualization with tSNE and with
the recent alternative symmetric generative methods2

depending on bivariate latent positions. Several links
between these methods are explained for helping the
comparisons of their objective functions. These com-
parisons suggest eventual variants of several existing
methods such as: CA estimated approximatively via
Glove for large matrices, LSPM or SBM regularized
via a probabilistic penalization for the non observed
edges, or the visualization with the mixture models
extended to symmetric matrices via SBM for a sym-
metric self-organizing map for instance, as future ap-
pealing perspectives.
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