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Abstract: A new clustering algorithm based on discrete Morse theory is proposed for cluster analysis in this paper. 

Firstly, an energy surface is defined on data set by Gaussian kernel functions. Secondly, a simplicial 

complex can be obtained by hull Triangulation on the energy surface. Finally, the optimization model based 

on discrete Morse theory is adopted to find cluster centers and clusters on a simplicial complex. It is a novel 

approach. The experimental results on some synthetic and UCI data sets have demonstrated that the new 

algorithm can discover clusters with arbitrary shapes and densities at different levels, moreover it can 

successfully divide data points overlapping into many meaningful clusters. The results show the feasibility 

and effectiveness of the new clustering algorithm. 

1 INTRODUCTION 

Clustering analysis (Han and Kamber,2006) is used 

to handle classification problem by mathematical 

methods, and is an important part of non-supervised 

pattern classification in pattern recognition. In recent 

30 years, it has been developed drastically. The aim 

of Clustering (Chan et al., 2003) (Kaufman and 

Rousseeuw, 2009) (Hubert et al., 1999) (Chen et al., 

1996)is that the intracluster similarity is maximized 

and the intercluster similarity is minimized. 

Clustering in the sample space is an optimization 

problem of objective function. There have been 

many kinds of clustering algorithms based on 

computational intelligence(CI) techniques, such as 

fuzzy control, neural networks, evolutionary 

computation, swarm intelligence, artificial life and 

DNA computation (Graves and Pedrycz, 2007) (Pal 

et al., 1993) ( Babu and Murty,1994) (Bader et al., 

2004). The CI-based clustering analysis models have 

a good ability to adapt to characteristics of objects 

and it can make up for the disadvantages of classical 

clustering algorithms. However, the data mining 

system should process more complex data sets with 

arbitrary shapes , arbitrary distribution and densities 

at different levels with the application fields of data 

mining technology expanding continuously. 

Therefore, new techniques are still a good choice to 

get more insight into cluster analysis.   

Morse theory appears in topology of smooth 

manifolds (Milnor,1963). Discrete Morse theory is a 

combinatorial analogue of Morse theory developed 

by Forman (Forman,1995) (Forman,1998). Making 

the points more dense does not allow one to use 

smooth methods to analyze the qualitative behavior 

of f. This problem was addressed by Edelsbrunner in 

(Edelsbrunner et al., 2003). Researchers find that 

discrete Morse theory is a discrete analogue of a 

technology called steepest descent method, which 

has extreme importance in optimization. In (Zhang 

and Liu, 2014), we propose a method to construct 

discrete Morse function that mirrors the large-scale 

behavior of f and has the minimum possible number 

of critical cells by optimization analysis on given f in 

3-D or higher dimension space and present an 

optimization model based on discrete Morse theory 

that can obtain an optimal value or approximate 

optimal one  

In this paper, we have proposed a new 

clustering algorithm based on discrete Morse 

optimization model. The algorithm is mainly to 

adopt to the thought of hierarchical clustering based 

on kernel density estimation. In our approach, local 

minima (the density attractors) are chosen to 

generate the center-defined data partition, and finally 

the center-defined clusters are iteratively merged 

into one cluster by cancelling critical cells. The 

experimental results on two synthetic data sets and 

UCI data sets have demonstrated that the new 

algorithm can discover clusters with arbitrary 

shapes, arbitrary distribution and densities at 
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different levels. The comparisons with DBSCAN 

method further show that the proposed algorithm can 

successfully divide data points overlapping in the 

feature space into many meaningful clusters. 

2 OPTIMIZATION MODEL 

BASED ON DISCRETE MORSE 

THEORY  

In this section we present a general discrete structure 

which will be useful for clustering and propose an 

optimization model based on discrete Morse theory. 

Now we will present some notation. A finite 

data set is denoted by
1 2{ , ..., } n

nX x x x R  , 

1 2[ , ,..., ]i i i idx x x x , 1, 2,...,i n . :h X R  is a map 

function defined on a data set X. A function 
1{( , ( )) | 1,2,... } n

i iS x h x i n R     is called a discrete 

surface. A q-simplex σ (denoted by ( )q ) is the 

convex hull of q+1 affinely independent points 

0 1( , ,... )qA a a a . The cone from a vertex x( ( )q

ix  ) 

to a q-simplex ( )q is the convex hull of x and ( )q  

which yields a (q+1)-simplex ( 1)q  . A  simplicial 

complex K is a set of simplices that satisfies the 

following conditions: 1. K  if K  and     

2. 
1 2     or 1 2 1 2, ,           if 

1 2, K   . 

2.1 The Discrete Structure:  
A Simplicial Complex 

In order to get discrete surfaces, we define a hull 

triangulation. Let the convex hull of 

1 2{ , ..., } n

nX x x x R   be ( )hull X . If ix X  is an 

interior point of ( )hull X , then there exists a 

neighbor in S of ( , ( ))i ix h x homeomorphic to n
R . 

Otherwise if ix X  is an boundary point of ( )hull X , 

then there exists a neighbor in S of ( , ( ))i ix h x  

homeomorphic to the halfspace of n
R . Clearly the 

hull triangulation is a n-dimensional manifold with 

boundary.  

We take Delaunay Triangulation as a tool of 

hull triangulation. Firstly we generate a Delaunay 

triangulation of 
1 2{ , ..., } n

nX x x x R  . A 1q  -

simplex is generated by q -simplex connecting one 

point ix X . For each simplex, the unique ball 

circumscribed about the simplex contains no data 

points other than the vertices. Secondly generate 

simplicial complex K by replacing the vertices with 

its corresponding vertices on the surface. a 

simplicial complex K is composed by the following 

way (Figure 1).  

 
 
 
  
 
 
 

          (a)  DataSet1 in 2D.              (b) D-Triangulation. 

 

 

 

 
 
 
 

        (c)  a simplicial complex             (d)    a surface  

Figure 1: The generating process of a simplicial complex. 

Figure1(b) denotes that D-Triangulation on 

DataSet1 in 2D and Figure1(d) means surface based 

on the probability density function(σ=1) on based on 

DataSet1 in 2D. 

Table 1 shows the running time of generating a 

simplicial complex K based on the probability 

density function (the window width =1) on a data 

set 
1 2{ , ..., } n

nX x x x R   

Table 1: The running time of generating a simplicial 

complex.  

data sets CPU (s) 

DataSet1                 (300 2-D points) 0.002 

DataSet2                 (500 2-D points) 0.003 

'Haberman s Survival       (306 3-D points) 0.018 

Iris                         (150 4-D points)   0.055 

2.2 Discrete Morse Theory 

Definition 1[12] (discrete Morse function). A 

function :f K R  is a discrete Morse function, if 

for every ( )p K  , the following two conditions 

hold: 
( 1) ( )#{ : ( ) ( )} 1p p f f            

and    ( 1) ( )#{ : ( ) ( )} 1p p f f                   (1) 

Definition 2[12] (critical simplex). Let :f K R  be 

a discrete Morse function. A simplex 
( )p is critical 

if the following two conditions hold: 

         ( 1) ( )#{ : ( ) ( )} 0p p f f        
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and   ( 1) ( )#{ : ( ) ( )} 0p p f f                   (2) 

A simplex that is not critical is called regular. 

Definition 3（discrete gradient vector field). A 

discrete gradient vector fieldV is a collection of 

pairs ( ) ( 1),p p    of simplices of K . for ,  , the 

following two conditions hold:  and 

( ) ( )f f  . 

Property 1.  A discrete Morse function f is 

generated on the discrete gradient vector field V , 

then the function f is descending alongV path . 

Definition 4 (level cut). Level cut on the simplicial 

complex K is a collection of simplices,   where a 

simplex  is included if values of all its 

vertices x  are below the threshold t . 

i.e, ( ) { | ( ) , }K t K h x t x      . 

Definition 5 (Simple homotopy). (Lewiner and 

Lopes,2003)A simple homotopy(i.e, a continuous 

deformation) is a succession of collapses and 

extensions. If two complexes are related by a simple 

homotopy, we say they have the same simple 

homotopy type.  

In this paper, discrete gradient vector field is 

generated based on discrete Morse theory by using 

simple homotopy expansions to grow from one 

subcomplex to the next. 

2.3 Optimization Algorithm: 
DVF-Algorithm 

The goal of our algorithm is to construct a discrete 

Morse function on the simplicial complex which can 

obtain the extreme value of given function. The 

algorithm is based on simple homotopy expansions 

which grow from ( 1)K t   to ( )K t  iteratively. Now 

we will present two definitions. 

Definition 6 (lower star). (Lewiner and 

Lopes,2003) The lower star ( )S x of a 

vertex x contains of all simplices that contain x as a 

face, including x itself, and hold ( ) max ( )g x g  .i,e. 

( ) { | , ( ) max ( )}
y

S x K x g x g y


 


    . 

Definition 7 (lower link). The lower 

link ( )L x of a vertex x  consists of all faces of 

simplices in the lower star that are disjoint from x . 

i,e. ( ) { | ( ), }L x K S x x           

According Definition6 and Definition7, we 

present a definition of the closed lower star of a 

vertex x : ( ) ( ) ( )S x S x L x  . 

DVF-Algorithm contains two steps: 

( , )ConstructDVF K g and ( , , , )CancelCriticalCell K g j p .

( , )ConstructDVF K g  generates critical cells C and 

constructs discrete gradient vector field V ; 

( , , , )CancelCriticalCell K g j p modifies C and V so that 

it can produce the minimum possible number of 

critical cells.  Algorithm1. ( , )ConstructDVF K g  

1Step  input a complex K , a mapping 

function
0:h K R ; 

2Step 0x K , if ( )L x  , add x  to C ; 

otherwise let ' '

0:h K R be the restriction of h ; 

3Step   find the ( )y L x  so that ' ( )h y  is the 

smallest; denote xy  and define [ ]V x  ; add all 

other 1-cells from ( )S x  to QueueZero , add all cells 

( )S x   to QueueOne such that    and 

_ _ ( ) 1num unpaired faces   ; 

4Step  assign the front cell 

from QueueOne to  , if _ _ ( ) 0num unpaired faces   , 

then  [ ( )]V pair    , delete ( )pair  from QueueZero ; 

add the cells ( )S x  to QueueOne such 

that   or ( )pair  and _ _ ( ) 1num unpaired faces   , 

until QueueOne  ; if QueueZero  , then assign the 

front cell  from QueueOne  to C ; add ( )S x   

to QueueOne  such that    and 

_ _ ( ) 1num unpaired faces   ; repeat 4Step , 

until QueueOne  and QueueZero   

5Step  Return to 2Step , until 
0K   

The algorithm1 works on the links of vertices. 

There is an alternative definition of 
'h  in the lower 

link of x  with the property that the vertex with the 

minimum value of 
'h  more closely approximates the 

direction of steepest decrease of h . In the alternative 

definition, we set   

           ' ( ) ( ( ) ( )) / ([ , ])h y h y h x l x y                (3)  

where ([ , ])l x y  is the length of the edge [ , ]x y  . 

The function _ _ ( )num unpaired faces  which returns 

the number of faces of  are in ( )S x  have not yet 

been inserted in either C or V . If 

_ _ ( ) 0num unpaired faces   in QueueZero , it is 

denoted that there is no ( )pair  for the cell  ; 

otherwise if _ _ ( ) 1num unpaired faces   in 

QueueOne , then there is exactly one ( )pair   for 

the cell  ,which is a candidate for homotopic 

expansion. In 2Step , If ( )L x   , x  is critical and is 

a local minimum . Otherwise, x  is paired with its 

lowest incident edge xy  , denoted [ ]V x  . this 

Novel Clustering based on Discrete Morse Technique

557



 

 

is a simple homotopy expansion. In 4Step , there is 

a pair [ ( )]V pair   , if two conditions hold: 

( )L x   and _ _ ( ) 1num unpaired faces   . The 

expansion proceeds until QueueOne   and 

QueueZero  , then a critical cell is created and the 

expansions then proceed from the new cell. The 

algorithm terminates because there are a finite 

number of 0-cells selected. Each cell in ( )S x  will be 

paired and included in V or inserted into C  by the 

algorithm1. 

In order to construct optimal discrete Morse 

function which has the minimum possible number of 

critical cells, we present 

Algorithm2 ( , , , )CancelCriticalCell K g j p . In the 

discrete gradient vector field V , it is necessary to 

wait to cancel until we found the pair 
1jC  , 

jC  connected by exactly one gradient path so that 

max ( ) max ( )h h  is minimized. In optimization 

model based on discrete Morse theory, the value of 

the parameter p that controls cancellation is as large 

as possible. In our new clustering framework, we 

obtain a different number of critical 0-cells by 

adjusting the parameter p , and the critical 0-cells 

can be taken as clustering centers.  

Algorithm2. ( , , , )CancelCriticalCell K g j p  

1Step  
jC  ; 

2Step  find all gradient paths 

1 2 1...
ii i il jC           with max ( ) max ( )

iilh h p   ;  if 

the pair 
1iil jC  , 

jC  connected by exactly one 

gradient path, let max{ ( )}
ii ilm h  ; 

3Step  if at least one im  is defined, pick 

max{ }j im m . if each cell  in the gradient path 

holds ( )h   , execute 4Step ; otherwise return to 

1Step ; 

4Step  find  the  unique  gradient  path 

1 1 2 2 1... j jC               ,thus 
1( )i iV    ，

i is a face of i  and 
1i i   ; 

5Step  delete  and   from C ; reverse 

direction from to , ( )i iV   ； 

6Step  repeat 1Step , until no
jC  to be 

selected. 

Then we propose a method to construct discrete 

Morse function. The method for constructing 

discrete Morse function on a simplicial complex K  

is motivated by the techniques of an extension of h  

to a discrete Morse function f  with the same 

modified Hasse diagram in  (King et al., 2005). Let 

x  be a vertex and let ( )S x  be its lower star. We 

record the order that cells from ( )S x  inserted into 

V or C  by Definition1 that if ( )V x  , then  will 

precede x . This algorithm ordering is 

1 2 2
, , , ,...,

ki i i ix   


 for 1,..., 2
j

i k   ( ( )iS x has 

2k  cells). Now we can define a discrete Morse 

function on ( )iS x as follows: given 0   

   ( ) ( )if h x   ; 

( ) ( )i if x h x ; 

                           ( ) ( )
ji if h x j   ;              (4) 

The definition for f extends to all vertices 

x X , and all cells K  . then f is a discrete 

Morse function on the simplicial complex K . 

According to Algorithm1, All other faces of 
 must have been inserted into V or C  at an earlier 

point, so  is the single face of  with greater f -

value. If C  , it shows that all faces of   inserted 

earlier and all of its cofaces are added later, so the 

conditions for a critical cell of a discrete Morse 

function are also satisfied by f . 

3 NEW CLUSTER FRAMEWORK 

BASED ON DISCRETE MORSE 

OPTIMIZATION MODEL  

In our density-based clustering framework, we 

choose discrete Morse theory as a clustering tool, 

which can efficiently partition each data point into 

the corresponding cluster. It's a novel method. The 

new cluster framework based on discrete Morse 

optimization model (CADMOM) is a graph-based 

theoretic (King et al., 2005) clustering method. Each 

tree represents a cluster, many trees can form a 

forest. The root node of each tree represents one 

vertex in bottom regions whereas most leaf nodes 

are regarded as vertices situated in the valley 

regions. 

Definition 8 (Kernel Density Estimation). 

(Fukunag, 1990)  The discrete Morse optimization 

model is based on the steepest descent characteristic 

on discrete gradient vector field, which follows 

negative gradient flow. Let n  data points in the d-

dimensional space, 
1 2{ , ..., }nX x x x , where the data 

vector is 1 2[ , ,..., ]i i i idx x x x , 1, 2,...,i n . The 

probability density of the data is given by the 

following kernel density estimation:  

ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods

558



 

 

             
1

1
( ) ( )

( )

N
i

i

x x
h x K

N 


                         (5) 

then we choose the Gaussian function as the 

kernel, which can be described as follows:  

                 
2

2

|| ||
( ) exp( )

2

i ix x x x
K

 

 
                  (6) 

We can obtain the local minima of the overall 

density function ( )h x  in their local regions, which 

are root nodes of trees and can determine 

mathematically clusters. 

3.1 The Formation of Initial Clusters  

Each cell in ( )S x will be paired and included in V or 

inserted into C by Algorithm1, so we can obtain the 

Hasse diagram of vector field. On 0-1 level，one 

vertex 
0v  following steepest descent path (V Path ) 

reaches the next vertex 
1v that can be called the 

predecessor of 
0v . 

2
v continues to look for its 

predecessor 
3v . If a node does not have a 

predecessor, we call it the root node of a tree. 

Correspondingly, the nodes cannot be the 

predecessor of other nodes, we call them leaf nodes.  

In this way, a series of branches is called a directed 

path, which is discrete gradient path. Clustering on 

discrete gradient vector field forms a directed tree. 

When all the data points are visited, a forest will be 

generated and each tree in this forest represents a 

cluster. Several V paths : ( ) ( 1) ( ) ( 1) ( 1) ( )

0 0 1 1 1, , , ,..., ,p p p p p p

r r       


 

can be obtained by Algorithm1. Data points can be 

quickly divided into the corresponding clusters by 

searching predecessors of nodes.  

In the new clustering framework, we can take 

0C  as a cluster center, whose cluster contains 

0 cells in V Path  taking a critical cell 
0C   as 

the end points. thus the initial clusters can be 

formed. 

3.2 The Mergence of Clusters   

Consider 0-1 level. A critical 1-simplex 
1C  is the 

start of exactly two gradient paths, if τ is connected 

to 
0v C by a single gradient path, it must be 

connected to some other vertex 
0w C by a single 

gradient path. If any 0-cell y V paths  that are 

from 
1C  to 

0v C  and from 
1C  to 

0w C  

holds ( )f y  , then we can choose 

min{max ( ) max ( ),max ( ) max ( )}h h v h h w    to 

merge clusters. These steps can be repeated until the 

desired number of clusters is obtained by 

Algorithm2.  

3.3 The New Clustering Framework 
based on Discrete Morse 
Optimization Model  

Through the above analyses, the total algorithm can 

be divided into two parts: constructing the simplicial 

complex on an energy surface and clustering on the 

simplicial complex. Now, we can describe the whole 

algorithm steps for our discrete Morse optimization 

model-based clustering framework as follows: 

1Step  Input the data set
1 2{ , ..., }nX x x x ; 

2Step Compute the probability density 

h(xi)(i=1;2;...;n) for each data according to (5) with 

Gaussian kernel in (6) ; 

3Step  construct the simplicial complex on a 

discrete surface according to 2.1; 

4Step  compute each initial clusters according 

Algorithm1; 

5Step  merge clusters that meet conditions 

based on hierarchical clustering (Wang et al., 2009) 

by Algrithm2; 

In this paper, the computation is based on a 

discrete surface generated by the density function, so 

we should restore clustering results to clusters about 

the data set 
1 2{ , ..., } n

nX x x x R  . the distribution of 

data points is determined by level sets. Now we 

present the new clustering framework, See Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Procedure of the new clustering framework. 

 

construct discrete Morse function f 

construct the discrete gradient vector field V 

N Y 

output the distribution of data points 

determined by level sets 

Input the data set X 

construct the simplicial complex 

K on a discrete surface 

outputV Path  taking
0C  as the end point 

meet the conditions? 

execute Algorithm2 
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4 EXPERIMENTAL RESULTS 

AND ANALYSIS  

In this section, we present the experimental results 

and analysis of our discrete Morse optimization 

model-based clustering framework on some 

synthetic and UCI data sets. The implementation of 

these algorithms is in Visual C++ 2010 . Matlab7.0 

and Geomview are adopted to display graphics. 

4.1 Parameter Setting  

As shown in the algorithm in Section 3.3, the new 

algorithm requires three input parameters, i.e., the 

window width  , the cancelling critical simplex 

parameter p , the threshold of the density  . the 

window width   can be set to a value in the scope 

of 0.1-2. the cancelling critical simplex parameter p  

can be set to a value in the scope of 0.01-0.5. the 

threshold of the density   is fixed 0  for all 

experiments. 

4.2 Experimental Results of Synthetic 
Data Sets  

The first data set, Dataset1, contains 300 points and 

has two clusters that are of irregular shapes. The 

new clustering algorithm is used for clustering in 

Figure 3(c) for ten times. Expected result can be 

achieved every time, see Figure 3(b). One cluster 

contains data points represented by '+', the other 

contains data points represented by '•'. The total 

processing time of our clustering framework is 1.3s.  

 

 

 

 

 

         (a) Dataset1.              (b) Final clustering result.                              

 

 

 

 

 

 

 

 (c)  D- triangulation        (d) D-triangulation 

Figure 3: Clustering 2D- Dataset1 using the new clustering 

algorithm.  

The second data set, Dataset2, contains 600 

points and has three clusters that are of different 

shape, size, density. The clusters partially overlap. 

The new clustering algorithm is used for Clustering 

in Figure 4(a) for ten times. Expected result can be 

achieved every time, see Figure 4(b). One cluster 

contains data points represented by '+', one contains 

data points represented by '•'. another contains data 

points represented by '×'. The total processing time 

of our clustering framework is 1.8s. 

 

 

 

 

 
 

             
           (a)  Dataset2.                (b) Final clustering result.                                     

Figure 4: Clustering 2D- Dataset2 using the new clustering 

algorithm. 

4.3 Experimental Results of UCI 

'Haberman s Survival data set and Iris data set are 

used to test our clustering algorithms in this section 

that are taken from UCI Machine Learning 

repository. Gemview is adopted to display graphics. 

In the window, there are some black dots (which are 

the vertices) and some colored balls, some with lines 

coming from them (these are the critical simplices, 

The balls are around the barycenter of the simplex 

and the lines go to the barycenters of its 

codimension one faces.  a purple ball represents a 

critical vertex.) 

The third data set, 'Haberman s Survival , 

contains 306 points represented by three features and 

consists of two classes that partially overlap in the 

feature space. The proposed clustering framework is 

used to address the 'Haberman s Survival  data set 

in 4D space. The proposed clustering framework is 

used for Clustering in Figure5(a). After 

implementation of Algorithm1 ( , )ConstructDVF K g , 

the number of critical simplices is (4,11,8,0): 4 0-

critical simplices, 11 1-critical simplices, 8 2-critical 

simplices, 0 3-critical simplices. a purple ball 

represents a critical vertex, a green ball represents a 

1-critical simplex, An orange ball represents a 2-

critical simplex, see Figure 5(b). Figure 5(c) and 

Figure 5(d) show the discrete gradient vector fields of 

0-1 level and 1-2 level. Figure 5(e) gives the result 

cancelling 1-2 level discrete gradient paths by 

performing Algorithm2 ( , , , )CancelCriticalCell K g j p , 

the number of critical simplices is (4,3,0,0). 8 2-
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critical simplices and 8 1-critical simplices are 

cancelled. 0-critical cells can be cancelled in 

ascending order by cancelling 0-1 level discrete 

gradient paths, the remaining ones are taken as the 

cluster centers separately. A cluster that the cluster 

center is 
0C   contains 0-cells in discrete gradient 

paths taking 
0C   as the end point. 

 
 
 
 
 

 

  (a)   D-triangulation .         (b) clustering result. 

 

 

 

 

        (c) 0-1 level DGP.            (d) 1-2 level DGP. 

 

 

 

 

           (e) Result cancelling 1-2 level DGP. 

Figure 5: Clustering 3D- 'Haberman s Survival using the new 

clustering algorithm. 

From Figure 5,We can see that: (a) Delaunay 

triangulation on the surface.(b) clustering result 

executing Algorithm1.(c) 0-1 level discrete gradient 

paths(denoted by gray lines). (d) 1-2 level discrete 

gradient paths(denoted by gray lines).(e) Result 

cancelling 1-2 level discrete gradient paths. 

The new clustering algorithm is used for 

clustering in Figure 5(a) for ten times. The value of 

 is in the scope of 0.5~2. The correct clustering 

rate is 98 percent due to the overlapping between the  

classes. The overall processing time is 4.3s. 

The fourth data set, Iris , contains 150 points 

and consists of three classes(Setosa , ersicolor, and 

Virginica) , with 50 points per classes, represented 

by four features . Setosa class is linearly separable 

from the remaining two classes, while the other two 

classes partially overlap in the feature space. The 

proposed clustering framework is used to address the 

Iris  data set in 5D space and used for Clustering for 

ten times.  is in the scope of 0.1~1. The correct 

clustering rate based on Iris data set is 96 percent 

due to the overlapping between the Versicolor and 

Virginica classes and the overall processing time 

was 5.1s. 

4.4 Comparisons with DBSCAN 
Methods  

The four data sets shown in 4.2 and 4.3 have been 

considered to illustrate the advantages of our new 

framework over other density-based clustering 

methods. The DBSCAN method  (Ester et al., 1996) 

was used to cluster the four data sets separately. We 

have set the values of [1,10]MinPts   and that of 

[0.1,1]Eps  . The DBSCAN method could produce 

a correct clustering of DataSet1, otherwise the 

DBSCAN method failed to find meaningful clusters 

in DataSet2, 'Haberman s Survival  and Iris  due to 

the overlapping in the clusters. However, the 

proposed density clustering framework based on the 

discrete Morse theory method succeeded in 

detecting the correct clusters, as shown in Figure 

4(b), Figure 5(e). Now we present comparisons with 

DBSCAN methods. See Table 2 and Figure 6. 

Table 2: Comparisons with DBSCAN methods. 

datasets 
Execution 

times 

DBSCAN 

(correct rate 

%) 

CADMOM 

(correct rate 

%) 

DataSet1 10 
class1:100; 

calss2:100 

class1:100; 

class2:100 

DataSet2 10 

class1:31.3; 

calss2:26.4 

calss3:60 

calss1:99.1; 

calss2:96.3 

calss3:100 

DataSet3 10 
class1:10.2; 

calss2:17.3 

class1:99.1; 

calss2:97.5 

Iris  10 

class1:13.5; 

calss2:10.7 

calss3:67.3 

class1:97.2; 

calss2:95.3 

calss3:100 

 

 

 

 

 

 

 

 

 

Figure 6: Comparisons with DBSCAN methods. 

Viewing the experimental results, the new 

clustering algorithm based on discrete Morse theory 

can produce satisfactory clusters and generate more 
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accurate clusters even in the case of the failure of 

classical clustering algorithms.  

5 CONCLUSIONS 

Inspired by an optimization model based on discrete 

Morse theory, we propose the new clustering 

framework that is mainly to adopt to the thought of 

hierarchical clustering based on kernel density 

estimation. The experimental results on some 

synthetic and UCI data sets have demonstrated that 

the new algorithm can discover clusters with 

arbitrary shapes and densities at different levels, 

moreover it can successfully divide data points 

overlapping to the feature space into many correct 

clusters. The results show the feasibility and 

effectiveness of the new clustering algorithm. 
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