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Abstract: Environmental monitoring is an important aspect in sustainable development. The use of remote sensing in 

the mining industry has evolved significantly and allows for improved mapping and monitoring 

environmental impacts related to mining activities. The aim of this study was to measure land cover changes 

caused by granite quarrying activities located between Rustenburg and Brits towns, North West Province, 

South Africa using Landsat time series data. Landsat data used in the study were acquired in the years 1973, 

1986, 1998 and 2015. Each image was classified using supervised classification and change detection was 

subsequently applied to measure land cover changes. Furthermore, the normalized difference vegetation index 

(NDVI) was used to highlight the dynamics in vegetation in the quarries. Accuracy assessment of the 

classification resulted in an overall accuracy and Kappa coefficient of 75% and 0.71, respectively. The results 

of post –classification change detection revealed a significant increase of 907.4 ha in granite quarries between 

1973 and 2015. The expansion in granite quarries resulted in development of water bodies (2.07 ha) within 

the quarries. Correspondingly, there were significant losses in vegetation (782.1 ha) and bare land (119 ha). 

NDVI results showed variability in mean NDVI values within the digitized quarries. The overall mean NDVI 

values trends showed that most granite quarries had the highest vegetation in 1998, while the least vegetation 

cover was observed 1986.

1 INTRODUCTION  

Land cover monitoring and management is an 

important concept in sustainable development 

(Demirel et al., 2011). Increases in human-induced 

land use and land cover changes  have called for the 

need to monitor and quantify environmental changes 

of such activities (Pierre and Sophie, 2016). 

 Mining activity is amongst anthropogenic factors 

that lead to environmental degradation. This activity  

has resulted in many organizations implementing 

systems aimed at monitoring and managing 

environmental impacts of surface mining operations 

(Latifovic, 2005; Demirel et al., 2011).  Monitoring 

activities that lead to environmental degradation 

requires continuous observations using automated 

techniques such as remote sensing (Günther et al., 

1995; Lein, 2014). In recent years, remotely sensed 

data have been applied in environmental management 

of mining operations and areas affected by mining 

(Paull et al., 2006). Latifovic et al. (2005), used 

Landsat data to investigate land cover changes 

resulting from oil sands mining development. Duncan 

and Kuma (2009), assessed land use changes in an 

open pit gold mining. Similarly, Charou et al. (2010), 

used data acquired from Landsat, SPOT and ASTER 

satellites sensors to monitor impacts of mining on 

water resources and land use in Greece. Musa and 

Jiya (2011) investigated the impacts of tin mining on 

vegetation cover using Landsat data. Mouflis et al. 

(2008), conducted a study to investigate the impacts 

of marble quarry expansion using Landsat remotely 

sensed data. In the same way, Koruyan et al. (2012) 

employed ASTER and Landsat data to investigate 

impact of marble quarries expansion on vegetation. 

Granite quarrying activity in South Africa started 

in Bon-Accord area, near Pretoria in the late 1930s. 

Since then, the quarrying industry increased 

drastically owing its expansion to improved mining 

technologies. Quarrying activity however, results in 

severe environmental impacts (Abu and Abdelall, 

2014). Damage to biodiversity is the most common 
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environmental impact associated with quarrying 

activities (Lameed and Ayodele, 2011). Removal of 

vegetation, destruction of natural habitat and 

wetlands are some of the direct biological impacts 

caused by quarrying (Koppe, 1997). Quarrying 

activities can also have severe impacts on landscape 

patterns (Mouflis et al., 2008), hydrological systems 

through sediments erosion (Gonzalez et al., 2006), 

noise and air pollution through blasting and drilling 

(Jain, 2015). In the present study, we evaluated the 

effectiveness of remote sensing techniques in 

monitoring land cover changes within granite 

quarries between Brits and Rustenburg towns in the 

North West Province, South Africa. The objective of 

the study involves utilizing Landsat time series data 

over the period of 42 years (1973-2015) to assess land 

cover changes. Assessing and monitoring impacts of 

quarrying and mining on the environment is critical 

in achieving the goals of sustainable development.  

2 STUDY AREA  

The study area is located between two towns namely 

Rustenburg and Brits which are found in the North 

West Province, South African (Figure 1). The area 

was selected based on the geology and the known 

location of the granite quarries. The geology of the 

area is dominated by the rock of the Bushveld Igneous 

Complex (BIC) which constitutes the most  

voluminous mafic layered intrusion in the world 

(Cawthorn et al., 2006). Granite deposits of interest 

to the study are found in the Main Zone of the 

Rustenburg Layered Suite of the BIC. The Main Zone 

comprises of a thick succession of norite and gabbro-

norite, with minor anothorsite and pyroxenite layers 

(Nex et al., 1998; Cawthorn et al., 2006).  

3 METHODOLOGY  

3.1 Sampling Design and Reference 

Data 

Quarries were sampled based on their spatial 

coverage and the distance between them. A minimum 

distance of 200 m between the quarries and spatial 

coverage of 1 hectare were set out as a limit for 

quarries analysed in this study. This was to avoid 

overlap of samples and to enhance comparison with 

the spatial resolution of remotely sensed data. 

Consequently, forty quarries were selected for the 

study. The use of accurate reference data is essential 
 

 

Figure 1: Location of study area and Google EarthTM 

image showing granite quarries and surrounding landscape.  

to calibrate and evaluate land cover classification in 

remote sensing (Lillesand et al., 2014). As a result, 

Google EarthTM was used as a source of reference data 

for the study. The high spatial resolution offered by 

Google EarthTM allows for easy discrimination of 

major natural land cover features as well as built 

environments, including houses, industrial facilities 

and roads. Granite quarries were located by using 

geographical coordinates of known granite quarries. 

The coordinates were overlain on Google Earth that 

aided digitizing process and were subsequently 

converted to shapefiles in ArcGIS® (ESRI 2016, 

ArcMap 10.4, Redlands, California, USA). Google 

EarthTM images used for digitizing granite quarries 

were acquired in April 2015 corresponding with 

remotely sensed data used in the study. Google Earth 

was launched in 2005 (Potere, 2008) and therefore, 

digitization could not be done for dates earlier than 

that.  

3.2 Data Acquisition 

A series of Landsat data acquired from the United 
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States Geological Survey (https://earthexplorer. 

usgs.gov/) was used for this study.  Landsat was 

preferred for this study due to the availability of 

historic dataset. In addition, several studies have 

shown the effectiveness of Landsat imagery in land 

cover mapping and monitoring of mining 

environments as discussed in the previous section. 

The list of Landsat data used in the study is given in 

Table 1.  

Table 1: Landsat data used in the study. 

Image dates Sensor 

10 March 

1973 
Landsat 1 Multispectral Scanner 

18 May 

 1986 Landsat 5 Multispectral Scanner 

16 March 

1998 
Landsat 5 Thematic Mapper 

16 April 

2015 

Landsat 8 Operational Land 

Imager/Thematic Infrared 

Sensor 

3.3 Processing and Analysis 

3.3.1 Radiometric Calibration  

The Landsat images were radiometrically calibrated 

using absolute calibration method. This method 

enables comparison of images acquired at different 

times from different sensors (Chander et al., 2009). 

Data was calibrated by firstly converting the Digital 

Numbers (DNs) to at-sensor spectral radiance. The 

second step involved converting at-sensor spectral 

radiance to exoatmospheric Top of Atmosphere 

(TOA) reflectance using equations adopted from 

(Chander et al., 2009). 

3.3.2 Image Classification 

Classification of multispectral images was achieved 

using supervised classification method. Supervised 

classification depends on the user to identify areas on 

the image that are known to belong to each land cover 

category. The most common algorithm used for 

supervised classification is the maximum likehood 

classifier (MLC) algorithm (Sun et al., 2013) which 

was also used for this study.   

3.3.3 Accuracy Assessment  

Accuracy assessment is necessary to measure the 

degree of correctness in image classification (Foody, 

2002). It is considered to be the most important step 

in land cover change detection studies (Congalton and 

Green, 2008). Error matrix was used to evaluate the 

classification accuracy. Error matrix is a square of 

array numbers set out in rows and columns which 

express the number of samples allocated to each land 

cover feature relative to reference data. Accuracy 

assessment in this study was evaluated using 

reference data obtained from Google EarthTM. A 

random set of 189 points were overlaid on Google 

EarthTM, the name of each class was then recorded 

using visual interpretation of features on Google 

Earth. The recorded class names in the reference data 

were then compared to classes generated from 

Landsat using supervised classification. An error 

matrix was then generated and subsequently, overall, 

producer’s and user’s accuracies were computed.  

Kappa coefficient is a common technique used in 

accuracy assessment to measure the difference 

between the actual agreement and chance agreement 

in the error matrix (Congalton and Green, 2008). The 

results of kappa ranges from -1 to +1 where positive 

one indicates perfect agreement, zero indicates 

change agreement while a negative value indicates 

less than chance agreement (Fleiss and Cohen, 1973; 

Viera and Garrett, 2005). 

3.3.4 Change Detection  

In land use and land cover (LULC) investigations, the 

purpose of change detection is to detect and define 

location of changed areas when comparing images 

from different times and to measure the amount of 

change (Singh, 1989). There are various methods of 

change detection such as image differencing, image 

regression, vegetation index differencing, post 

classification comparison, image rationing etc. (Mas, 

1999; Lu et al., 2004). This study used post 

classification and normalized difference vegetation 

index change detection methods to evaluate land 

cover changes within granite quarries. 

Post-classification 

Post-classification technique involves classification 

of each of the images independently, followed by a 

comparison of the corresponding pixel labels to 

identify areas where change has occurred (Singh, 

1989; Deer, 1995). Post-classification method was 

applied on the multispectral images to quantify land 
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cover changes within the 40 digitized granite 

quarries.  

Normalized Difference Vegetation Index 

(NDVI) 

Normalized Difference Vegetation Index is a widely 

known index for measuring vegetation vigour from  

spectral data (Gandhi et al., 2015). NDVI is defined 

as the ratio of the difference between the near-

infrared band (NIR) and the red band, and the sum of 

these two bands (Tucker, 1979). NDVI is aimed at 

separating healthy green vegetation from all other 

features (such as soil moisture, man-made features 

and water) and therefore any feature with prominent 

vegetation would yield high NDVI value. Very low 

NDVI values (0.1 and below) correspond to barren 

areas, sand or snow. Moderate values represent land 

cover types such as shrubs and sparse grassland (0.2 

to 0.3) (Lam et al. 2008; Pettorelli 2013; Gandhi et al. 

2015) while high values indicate dense vegetation 

(0.6 to 0.8) (Jackson and Huete, 1991). Bare soil is 

represented with NDVI values close to 0 and water 

bodies are presented with negative NDVI values 

(Gandhi et al., 2015). 

4 RESULTS   

4.1 Accuracy Assessment  

Error matrix presented in Table 2 was completed only 

on imagery acquired in 2015 due to availability of 

reference data during the same time. The overall 

accuracy was 75% with a kappa coefficient of 0.71, 

while Water bodies had perfect producer’s and user’s 

accuracies. Bare land and Vegetation had good 

producer’s accuracy (≥80%). Other mining showed 

relatively good producer’s accuracy while Granite 

quarries had moderate producer’s accuracy. Low 

producer’s accuracy was obtained for Exposed rock 

formation and Built-up land due to misclassification 

with more classes.   The result of low producer’s 

accuracy in Exposed rock formation was due to being 

confused with Bare land and Built-up land while the 

results of low producer’s accuracy in Built-up land 

was caused by confusion with Bare land. Granite 

quarries had very high user’s accuracy and were 

confused with Other mining areas. User’s accuracies 

obtained for Exposed rock formation, Vegetation and 

Other mining areas were relatively high (>80% in all 

cases). Built-up land had fairly good user’s accuracy, 

however, this class was confused with Granite 

quarries, Exposed rock formation and Other mining 

areas. Bare land on the other hand resulted in the 

lowest user’s accuracy due to confusions with Granite 

quarries, Exposed rock formation, Built-up land, 

Vegetation and Other mining areas. 

4.2 Post Classification Change 
Detection  

The results of classification of multi-temporal 

Landsat data are shown in Figure 2. In 1973, most 

areas were covered by Vegetation and Bare land, 

while relatively few areas were covered by Granite 

quarries in the south west part of the study area. Water 

bodies in the same year are observable by the dam 

located in the western part of the study area. Increases 

in Granite quarries and Bare land were observed in 

1986. There was a corresponding decrease in 

Vegetation cover; however, the area indicated by the 

quarry boundaries in 1973 and 1986 were 

predominantly covered by Vegetation. The dam close 

to Granite quarries also decreased in size as compared 

to the year 1973. Exposed rock formations and Other 

mining areas started to appear in the south western 

part of the study area. 

The year 1998 experienced a significant increase 

in Granite quarries, Other mining areas, Built-up land 

and Water bodies. On the other hand, there was a 

decrease in Bare land as compared to the year 1986;  

this land cover type is more dominant in the south 

western part in 1998 whereas it occurred mostly in the 

north and the eastern part of the study area in 1986. 

The year 2015 saw an increase in Granite quarries 

with quarry lakes also developing in few Granite 

quarries. A decrease in Vegetation class is observed 

compared to 1998 especially in the southern part of 

the study area where it was mostly covered by Bare 

land. An increase in Built-up land is observed in the 

south western part of the study area. Water bodies 

saw an increase with an occurrence of water stream 

on the south eastern part of the study area. 

4.2.1 Quantitative Measures of Land Cover 

Area based comparison based on the forty  digitized 

quarries was applied to Landsat data in order to 

measure land cover changes over the time period 

supported by acquired data (Table 3). The pattern in 

land cover types from 1973, 1986, 1998 to 2015 

shows increases in Water bodies and Granite quarries, 

and decreases in Bare land as well as Vegetation. No 

Water bodies or quarry lakes were observed in 1973 
and 1986 inside the quarries. Even though Water 

bodies were not clearly visible inside Granite quarries 

in the classified images due to map scale (Figure 2), 
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Table 2: Error matrix of classification derived from Landsat imagery taken in 2015. 

 Reference Data 

C
la

ss
if

ie
d

 D
at

a
 

 

  WB  GQ ER  BUL BL V OMA Tot. UA (%) 

WB 10 0 0 0 0 0 0 10 100 

GQ 0 20 0 0 0 0 1 21 95 

ER  0 3 19 0 0 0 0 22 86 

BUL 0 2 2 19 0 0 3 26 73 

BL 0 1 9 11 24 3 4 52 46 

V 0 0 0 0 6 27 0 33 82 

OMA 0 3 0 0 0 0 22 25 88 

Tot. 10 29 30 30 30 30 30 141  

PA (%) 100 69 63 63 80 90 73   

Overall accuracy = 75%, Kappa = 0.71 

Key: WB=Water Bodies, GQ= Granite Quarries, ER= Exposed Rock Formations, BUL=Built-Up Land, BL=Bara Land, 

V=Vegetation, OM= Other Mining Areas, Tot. =Total, PA=Producer’s Accuracy, UA= User’s Accuracy.

 

Figure 2: Land cover distributions created using supervised classification of Landsat images acquired in 1973, 1986, 1998 

and 2015. 

Table 3 shows that there was an increase in Water 

bodies within Granite quarries from 1973 to 2015. 

The increase in Granite quarries from 1973 and 2015 

(3 ha to 910.4 ha) is significant. Bare land increased 

from 1973 to 1986, but decreased in 1998 and 2015. 

Vegetation cover inside granite quarry boundaries 

gradually decreased from the year 1973 to 2015. 

There was no change in Water bodies from 1973 to 

1986, while the year 1998 and 2015 shows 

development and increase in Water bodies within 

Granite quarry boundaries. An increase in Granite 

quarries is observed from 1973 to 2015. The year 
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Table 3: Land cover change summary within granite quarries. 

Classes 
Area of classes  (ha) Difference (ha) 

1973 1986 1998 2015 1986-1973 1998-1986 2015-1998 

Water Bodies 0.0 0.0 0.2 2.07 0.0 0.2 1.9 

Granite 

Quarries 
3.0 70.2 433.5 910.4 67.2 363.3 476.9 

Bare 

Land 
121.7 130.0 19.2 2.7 8.2 -110.8 -16.5 

Vegetation 

 
1095.2 981.7 793.7 313.1 -113.5 -188.0 -480.6 

1973 showed little quarrying activities, which 

increased in 1986, 1998 and 2015. The increases in 

quarrying activities resulted in decreases in bare land 

and vegetation over the same period. 

4.3 Normalized Difference Vegetation 
Index  

Normalized Difference Vegetation Index (NDVI) 

was computed to distinguish between amounts of 

vegetation in the study area. NDVI is aimed at 

separating healthy green vegetation from all other 

features (such as soil moisture, man-made features 

and water) and therefore any feature with prominent 

vegetation would yield high NDVI value. Figure 3 

shows comparisons of mean NDVI values within 

digitized Granite quarry boundaries for the year 1973, 

1986, 1998 and 2015 using Landsat data. High mean 

NDVI values are observed in the year 1998 indicating 

the presence of green vegetation. This was followed 

by the year 1973 and 2015 while the year 1986 

displayed low mean NDVI values.   Quarry No. 1 was 

sampled for closer statistical observation of changes 

in NDVI values over acquired time series data. 

Distribution of NDVI values in the quarry was 

categorised using the Natural Breaks (Jenks) 

classification approach. The statistical comparison of 

NDVI values was based on 322 pixels and was 

explored using frequency distribution graph (Figure 

4). Data acquired in 1973 and 1986 was resampled to 

30 m spatial resolution for consistent comparison. 

The graph shows that 95% and 79% of the pixels in 

the years 1973 and 1998, respectively, have NDVI 

values above 0.29 while the majority of pixels in the 

year 1986 and 2015 are distributed within NDVI 

values below 0.29. 

 

 

 

 

5 DISCUSSION 

The results of classification obtained from Landsat 

data revealed a substantial strength of agreement of 

classification with kappa of 0.71 and an overall 

classification accuracy of 75%. Producer’s accuracy 

showed that Water bodies were classified correctly. 

The error matrix however, showed a certain degree of 

confusion between classifications of some classes. 

Granite quarries, which is the main class of interest in 

this study, yielded moderate producer’s accuracy, and 

was mainly confused with Exposed rock formation, 

Built-up land, Bare land and Other mining areas due 

to similar spectral properties. User’s accuracy for 

Granite quarries showed that only one reference point 

was misclassified as other mining areas.  

Distribution patterns of land cover within Granite 

quarries and surrounding areas using Landsat 

imagery revealed major changes in the land cover 

between 1973 and 2015. Land cover within digitized 

Granite quarries boundaries in the year 1973, before 

intense quarrying activity started, was predominantly 

covered by Vegetatation, Bare land, Exposed rock 

formation with minor occurrences in Granite quarries. 

Increase in granite quarrying activity in the years 

1986, 1998 and 2015 revelead significant change in 

land cover within Granite quarries. The year 2015 

revealed significant increase in water bodies within 

granite quarries which form as a result of expansion 

in quarries. There was also a significant loss of 

vegetation and bare land due to substantial increase in 

granite quarrying activity.    

Comparison of mean NDVI values used to assess 

the presence or absence of vegetation cover within 

granite quarries revealed variability across all granite 

quarries over Landsat time series. The overall mean 

NDVI values trends showed that most granite 

quarries had the highest Vegetation in 1998, followed 

by 1973, 2015 and the year with least Vegetation  
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Figure 3: Comparison of mean NDVI values within digitized quarries. 

 

Figure 4: NDVI frequency distribution for the year 1973, 1986, 1998 and 2015 at 30 m spatial resolution.  

cover was 1986. Analysis of NDVI pattern based on 

individual pixels within Quarry No. 1 over acquired 

time series data revealed that more pixels had high 

positive NDVI values in the year 1973 and 1998 

indicating dominance of green Vegetation cover 

while the year 1986 and 2015 had more pixels with 

low NDVI values.    

The results of this study showed the significance 

and the potential of Landsat data in mapping and 

monitoring land cover changes within granite 

quarries. The results of this study support other 

studies that have demonstrated the abilities of Landsat 

in monitoring quarry activities (Mouflis et al., 2008; 

Koruyan et al., 2012; Thakkar et al., 2017). 

6 CONCLUSIONS 

The aim of this study was to quantify land cover 

changes caused by Granite quarries located between 

Rustenburg and Brits, North West Province, South 

Africa. The use of Landsat data was chosen for this 

study due mainly to availability of archival data at no 

cost. The overall classification accuracy was 75% 

(kappa coefficient of 0.71). The study revealed a 

significant increase in Granite quarries from the year 

1973 to 2015. Increase and expansion in Granite 

quarries resulted in an increase in accumulation of 

Water bodies within Granite quarries. There was also 
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a substantial decrease in Vegetation and Bare land 

cover due to the quarrying activity. Although Landsat 

was able to measure land cover changes in the study 

area, there were misclassifications due to spectral 

similarities. Another limitation encountered during 

the study was inability of Landsat to detect small 

Water bodies within Granite quarries. 

Recommendations that can address these limitations 

in the future is the use of high spectral resolution data 

such as hyperspectral remote sensing which is able to 

distinguish between features with similar spectral 

properties. Another recommendation is the use of 

high spatial multispectral resolution data that is able 

to detect small features such as water bodies within 

granite quarries.  
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