
SLA Non-compliance Detection and Prevention in Batch Jobs 

Alok Patel, Abhinay Puvvala and Veerendra K. Rai 
Tata Research Development and Design Centre, Tata Consultancy Services, 

54B, Hadapsar Industrial Estate, Pune- 411013, India 

Keywords: Batch Job Systems, Levers, SLA Compliance, Optimization, Constraints. 

Abstract: This paper reports the study done on SLA non-compliance detection and prevention in batch job systems. It 

sets out the task of determining optimal and the smallest set of levers to minimize SLA non-compliance at 

minimum impact business requirements. The methodology to address the problem consists of a four-step 

process that includes inputs, pre-processing, modelling & solving and post processing. This paper uses Integer 

Linear Programming (ILP) to achieve global optima given a set of varied constraints such as sacrosanct con-

straints, auxiliary constraints, reach time constraints and SLA non-compliant identifier constraints. Method-

ology has been tested on two sets of data- synthetic data of small size to corroborate the correctness of ap-

proach and a real batch job system data of a financial institution to test the rigor of the approach.

1 INTRODUCTION 

Batch jobs have become ubiquitous in enterprise IT 

of today’s organizations. Batch jobs are so called due 

to a particular mode of processing- execution of jobs 

in a sequence i.e. batch. The IT infrastructure under-

lying business processes of modern day organizations 

are tuned to perform high volume, repetitive 

tasks/jobs that require little or no human intervention. 

Most of these tasks/jobs need not be handled in real 

time. Data integration, compliance checks, analytics, 

reporting, billing and image processing jobs are some 

examples of Batch applications.     

Typically, a batch system is characterized by jobs 

and interdependence among jobs. Business processes 

(streams) are broken down into series of steps re-

ferred to as jobs. Each job can only start after its pre-

decessors have completed their execution. Business 

requirements define these precedence relations 

among jobs. In addition, business requirements entail 

various other constraints such as ‘start time’, critical-

ity, batch completion time etc. These constraints are 

described in greater detail in subsequent sections.  

A vital aspect of batch systems is the Service 

Level Agreements (SLAs).  SLAs are defined by 

measuring the ‘start time’ and ‘end time’ of business 

critical jobs and processes. In a typical investment 

bank setting, for instance, bulk of batch applications 

are scheduled to run after trading hours and are ex-

pected to finish before the start of next day’s trading. 

To fulfil this business requirement, SLAs are defined 

for each batch process separately. However, spikes in 

workload, inadequately provisioned computational 

resources along with many other reasons often lead to 

SLA violations. The onus is on the system adminis-

trators to handle such scenarios and ensure that SLA 

violations are minimized. To do so, it is essential to 

not only predict potential SLA violations, but also to 

identify the right set of levers that can be used to min-

imize SLA non-compliance.  

SLAs are critical to businesses. Firms view SLAs 

as instruments to establish measurable targets of per-

formance with the objective of achieving required 

levels of service. SLAs for enterprise IT translate the 

expectations from the business perspective to quanti-

fiable performance targets for various IT systems. 

Thus enabling them to monitor and steer the engage-

ments from a distance. An important aspect of SLAs 

is the associated financial penalties with adverse out-

comes. A customer having signed such an agreement 

with a service provider may claim compensation in 

case of non-compliance. Non-compliance, in the con-

text of batch systems may include reduced through-

put, longer wait times, poor Quality of Service (QoS), 

deadline misses, etc. 

In a complex system there could be multiple ob-

jectives such as efficiency, cost, compliance etc. In a 

systemic setting these objectives are often intertwined 

and there is a trade-off in meeting them. Set of levers 

available to meet these objectives also overlap and  

Patel, A., Puvvala, A. and Rai, V.
SLA Non-compliance Detection and Prevention in Batch Jobs.
DOI: 10.5220/0006673903970406
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 397-406
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

397



 

Figure 1: Literature Classification: Dimensions of Scheduling Models. 

there is many to many relationships between objec-

tives and levers.  

Levers are assessed on their potential impact on 

the objectives and business logic to arrive at an opti-

mal selection. Postponing the run of a particular job 

to another day, deleting dependencies between jobs, 

reducing the ‘run time’ of a job by provisioning addi-

tional capacity or limiting workload and preponing a 

job’s run within the batch are examples of levers. By 

business logic mean the interrelationships among jobs 

which are defined by business imperatives at business 

level and not at the IT level and cannot be arbitrarily 

changed to meet the objectives.   

1.1 Purpose of This Paper 

The purpose of this paper is to propose an optimiza-

tion based approach to determine the smallest set of 

levers to minimize SLA violations.  Considerations 

such as reducing the overall batch execution time and 

other issues are not part of the scope of this paper 

even though these issues are interrelated. 

1.2 Organization of This Paper 

This paper briefly discusses batch job system and its 

ubiquitous nature in modern business organizations in 

its introduction in section 1. Section 1 also discusses 

the background literature and context of this study. 

Section 2 discusses the methodology and section 3 

consists of ILP (Integer Linear Programming) formu-

lation of the problem and the mathematical model. 

Section 2 & 3 constitute the main body of the paper. 

Section 4 reports and discusses the results produced 

by the model on 2 sets of data-synthetic and real. Sec-

tion 5 concludes the paper with a pointer to the future 

work as an extension of this study. 

1.3 Literature  

A part of this study corresponds to the field of parallel 

job scheduling. The parallel job scheduling literature 

broadly addresses both the temporal and spatial (pro-

cessor space) dimensions of job scheduling. We, 

however, restrict this study to the temporal aspect of 

job scheduling. Large number of batch jobs, complex 

dependency structure and large solution space due to 

multiple lever combinations make this problem chal-

lenging despite confining the scope of this study to 

temporal dimension alone.  

The primary purpose of this study is to realign a 

given batch job system to maximize SLA compliance.   

Job scheduling is one of the ways to realize the afore-

mentioned objectives.  The study of computer archi-

tectures with parallel processors has prompted the de-

sign and analysis of algorithms for scheduling paral-

lel jobs. The studies in this area differentiate them-

selves based on the level of indigeneity in their mod-

els. Feitelson et al, (1997) have characterized studies 

based on various aspects of batch job systems that are 

incorporated in scheduling models. These aspects in-

clude partition specifications, job flexibility, pre-

emption support, amount of job and workload data 

available, memory allocation and the optimization 

objectives.  

Models proposed in these studies try to optimize 

one or more of the following objectives – throughput, 

deadline misses (SLA non-compliance), completion 

time (batch processing time), flowtime and tardiness. 

These objectives are broadly interconnected to each 

other. Some of these objectives closely follow each 

other. Optimizing one of them can potentially opti-

mize others in similar conditions. Kellerer et al 

(1996) and Leonardi and Raz (2007) have shown in 

their work that a batch job system configuration with 

optimal completion time would also have optimal 

flow time under the same model constraints. Feitelson 

et al (1997) argue that a good management policy for 

a batch job system requires optimization of different 

objectives over different time frames. For example, 

during working hours, when users wait for comple-

tion of jobs, response time might be the most critical 

objective. However, during non-working hours, sys-

tem throughput might be the most vital objective. 

Also, there are a host of studies that consider multi 

criteria optimization. Zhu and Heady (2000) have ad-

dressed the scheduling problem by considering both 

throughput and completion time as objectives. The 

model proposed in this paper considers the objective 

of minimizing the aggregate deadline misses. 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

398



 

The next aspect of batch job systems that has been 

extensively studied in the literature is partition speci-

fications. Batch jobs are executed on processors 

which are architected in multiple ways. These archi-

tectures have a major bearing on the scheduling. Feit-

elson et al (1997) roughly classifies partition specifi-

cations into four types – fixed, variable, adaptive and 

dynamic. While fixed partitions (Feldmann et al, 

1994) can only be altered by a system reboot, variable 

partition sizes can be determined at the time of job 

submission. Adaptive partitions (Turek et al, 1992) 

consider the job’s request for partition along with the 

overall system load and allot the best possible parti-

tion based on a preset distribution policy. Dynamic 

partition (Deng et al, 2000) sizes can change even 

during the execution of jobs. Some batch job systems 

have memory along with processing power as a re-

source constraint. Parsons and Sevcik (1996) and Se-

tia (1995) have taken memory into account in sched-

uling algorithms. As discussed earlier, our model 

does not consider the spatial dimension (processor 

space). The ever dropping costs combined with the 

ease of leasing processing power and memory over 

the cloud have made this constraint redundant over 

the years (Bahl et al, 2007, Singh et al, 2013, Agarwal 

et al, 2011 and Suter 2014). 

Like processors, jobs too are categorized into four 

kinds (Feitelson et al, 1997) depending on how they 

are programmed. A rigid job has a processor(s) as-

signed and it runs on the same processor in every 

batch. Also the processor requirement is not expected 

to change during its execution. Moldable job’s pro-

cessor allotment is dynamic and is decided by the sys-

tem scheduler right before its execution. However, 

the processor requirement remains constant through-

out the execution, similar to a rigid job. An evolving 

job, as the name suggests, goes through multiple 

phases where the processor requirement varies based 

on the incoming workload. A malleable job is low on 

criticality (Ex: maintenance jobs). It can be starved of 

processors, if more critical jobs are in need of proces-

sors. Turek et al (1994) have studied the aggregate 

impact of having more rigid jobs on the scheduling 

efficiency. Mason et al (2002) have studied the posi-

tive impact of presence of moldable jobs and the de-

lay in the onset of a bottleneck like scenario. For this 

study, we consider the first two kinds of jobs – Rigid 

and Moldable jobs. Rigid jobs are referred to as criti-

cal jobs in this paper. Another aspect of batch job 

scheduling is level of pre-emption supported by the 

scheduler. No pre-emption indicates that once a job 

starts its execution, it finishes without interruptions 

while holding its assigned processors. With local pre-

emption, threads of a job may stop and resume their 

execution albeit on the same processor unlike migrat-

able pre-emption (Deng et al, 2000), where threads 

may be suspended on one processor and resumed on 

another. Gang scheduling (Schwiegelshohn, 2004) 

refers to suspension and resumption of all the threads 

of a job simultaneously.   

Most of the scheduling studies have not consid-

ered pre-emption in their models. Motwani et al 

(1994) and Schwiegelshohn (2004) have studied the 

overheads associated with pre-emption due to which 

pre-emption is not often seen in actual batch job sys-

tems. In our study, we too have assumed that jobs 

would finish their execution without any pre-emption.  

Feitelson et al (1997)’s last characteristic to clas-

sify studies on batch job scheduling is the amount of 

job related data used in models. While some of the 

above mentioned aspects such as level of rigidity and 

pre-emption support are job characteristics that are vi-

tal, any additional details about job can improve the 

overall scheduling efficiency. Literature has seen the 

use of job characteristics such as workload, parallel-

ism level and ‘run time’ in various studies (Agnetis et 

al, 2004, Janiak et al, 2005). Our model incorporates 

job characteristics such as ‘run time’, SLA definitions 

and ‘start time’ constraints. 

2 THE MODEL 

The schema in figure 2 shows the four components of 

the model - inputs, pre-processing, post processing, 

modelling & solving and post-processing.  

2.1 Inputs  

Inputs to the model include job dependencies, run his-

tory, SLA definitions, and batch schedule. Job de-

pendencies describe a graph that captures the depend-

ency relationship among jobs. These relationships are 

defined by underlying business logic and cannot be 

changed arbitrarily. Run history data comprises of job 

‘start time’, ‘end time’, ‘from time’ and ‘run time’. 

‘Start time’ is the time when job execution starts 

while ‘end time’ is the time when job execution ends. 

‘From time’ is a constraint that restricts the ‘start 

time’ of a job and ‘run time’ is the amount of time 

taken to complete the job execution. These data are 

very important for efficient and feasible scheduling of 

jobs. Batch schedule tells us what jobs of a batch are 

scheduled to be executed on a particular day. Busi-

ness critical jobs in a given batch have SLA definition 

and these jobs should be completed within the speci-

fied definition. Failure to do so results in non-compli-

ance.   

SLA Non-compliance Detection and Prevention in Batch Jobs

399



 

2.2 Pre-processing  

In the pre-processing module, we pool input data 

from multiple sources such as job and dependency 

data tables, transaction history, batch schedule and 

SLA definitions. We clean these data sets to ensure 

data consistency, completeness and uniformity. This 

module comprises of the following sub-modules. 

2.2.1 Job Profiles  

Job profiles are the collection of individual job char-

acteristics that are useful in scheduling. Each job pro-

file includes ‘job name’, ‘run time’, ‘from time’, crit-

icality and SLAs (if defined).  

2.2.2 Predecessor List 

The predecessor list represents the dependencies 

among the jobs. A job can only start executing if all 

of its predecessor jobs are executed. It captures the 

relationship between jobs. 

2.2.3 Dependency Graph 

By using job profiles and dependency list, we form a 

directed graph called dependency graph, where each 

node represents a job and an edge represents the prec-

edence relationship. This helps in visualising the 

batch job system as a graph and thereby letting us use 

graph theoretic approaches to achieve the objectives.  

2.2.4 ‘Reach Time’ 

We define a metric called ‘reach time’ for each job. It 
is defined as the earliest time epoch a job can start 
execution. This metric helps us identifying the poten-
tial SLA non-compliant jobs by comparing ‘reach 

time’ and SLAs. For a job (j), the ‘reach time’ (j) can 
be calculated from the following equation. 

𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 =

𝑀𝑎𝑥{𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑘  +

 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑘, 𝑓𝑟𝑜𝑚𝑡𝑖𝑚𝑒𝑗}, ∀ 𝐽𝑜𝑏𝑠(𝑘) ∈

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝑗) 

(1) 

2.2.5 Potential SLA Non-compliance  

We identify the jobs that are likely to violate SLAs 

defined on them using ‘reach time’ and SLAs. Our 

objective is to keep the non-compliance as minimum 

as possible. Once we identify these potential SLA 

non-compliant jobs, we find the optimal set of levers 

to minimize SLA non-compliance.   

2.3 Modelling and Solving  

In this module, we discuss about business objectives, 

business constraints and solution space. Thereafter 

we discuss the mathematical model formulation and 

solving.  

2.3.1 Business Objectives  

The business objective that we are trying to achieve 

here is minimization of SLA non compliant jobs with 

minimum impact on business logic. The SLAs are 

defined on ‘‘from time’’ and ‘‘end time’’ of jobs. For 

a batch job system, it is very important to meet these 

SLAs as a batch may be dependent on the outcomes 

of another batch. The subsequent batch cannot be 

executed if its predecessor batch is not yet completed. 

Delay in a batch leads to delays in its subsequent 

batches. 

 

Figure 2: The Methodology Schema. 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

400



2.3.2 Business Constraints  

Business constraints are generally derived from the 

jobs relationships and requirements. A typical busi-

ness constrains could be something like, “a job can 

start only after its defined ‘from time’”; “a job can 

start only after all its predecessors are completed” etc. 

If a job or dependency is defined as critical then it 

cannot be perturbed.  

2.3.3 Solution Space and Optimal Solution 

The following levers can be used to meet the stated 

business objective.  

 The amount of time by which a job can be 

preponed.  

 The fraction by which a job’s ‘run time’ can be 

reduced.  

 Whether a job needs to be deleted from the cur-

rent batch. 

 Whether a dependency can be removed. 

The solution space is comprised of all possible com-

binations of these levers. For example, if the ‘from 

time’ of a job is 1000 seconds the first lever can take 

any values between 0 and 1000. Similarly, for a given 

job, the second lever can assume any value between 

0 and 100. For the fourth lever, the combinations can 

go as high as 2n with ‘n’ being the number of depend-

encies in the system. Putting all these together, the 

size of solution space of 1000 jobs of a batch job sys-

tem can run into billions. The challenge is to find an 

optimal solution within reasonable time limits.  

3 ILP FORMULATION 

The general structure of the proposed optimization 

model is to minimize SLA non-compliance with least 

impact on business logic, subject to ‘from time’ and 

dependecy constraints. The proposed optimization 

model is an Integer Linear Program (ILP). An ILP 

guarantees the global optimal solution if it is feasible 

(Wolsey et al, 2014; Brucker, 2007). Integer Linear 

Program (ILP) is a tool for solving optimization 

problems. The first step towards modeling an 

optimization problem is identifying inputs and 

decision variables. The nature of the decision 

variables determines the problem type (continuous, 

integer or mixed integer). The problem is then 

formulated by identifying objectives and its 

constraints. When both objectives and constraints are 

linear, and decision variables are integer the problem 

is called ILP. Operations research practitioners have 

been formulating and solving ILPs since the 1940s 

(Klotz and Newman, 2013a) However, in recent 

years, the availability of large computing power and 

development of powerful optimization solvers has 

empowered practitioners to be able to solve complex 

real-world problems(Klotz and Newman, 2013b). 

This work uses ILP to find the smallest set of levers 

that minimizes SLA violations. The input parameters 

of the proposed model are as follows. 

𝐽 = 𝑠𝑒𝑡 𝑜𝑓 𝑗𝑜𝑏𝑠 

cJ = set of critical jobs 

𝑛𝐽𝑜𝑏𝑠 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑗𝑜𝑏𝑠 

𝑃𝐿(𝑗) = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑗𝑜𝑏 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑗𝑜𝑏 𝑗 

cE = set of critical edges 

𝑟𝑡𝑗 = 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝑒𝑡𝑗 = 𝑒𝑛𝑑𝑡𝑖𝑚𝑒 𝑆𝐿𝐴 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝑓𝑡𝑗 = 𝑓𝑟𝑜𝑚𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝑠𝑡𝑗 = 𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 𝑆𝐿𝐴 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

The decision variables of the proposed model are 

shown in table 1. The objective of the proposed 

mathematical model is to minimize SLA non-

compliance with minimal impact on business logic. 

So, the objective function has two parts. First part 

(𝑆𝐿𝐴𝑛𝑜𝑛𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠) takes care of the SLA non-

compliance and the second part 

(𝐼𝑚𝑝𝑎𝑐𝑡𝑂𝑛𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝐿𝑜𝑔𝑖𝑐) ensures minimum 

possible changes to the existing system configuration. 

The objective function is given below. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ([𝑆𝐿𝐴𝑛𝑜𝑛𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠] +
[𝐼𝑚𝑝𝑎𝑐𝑡𝑂𝑛𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝐿𝑜𝑔𝑖𝑐]) 

(2a) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [ 𝑀 ∗

∑(𝑎𝑥𝑧𝑗 + 𝑠𝑗) ] + [∑ ∑ (−𝑦𝑗𝑘)

𝑘 ∈𝑃𝐿(𝑗)𝑗𝑗

+

∑ −(𝑥𝑗 + 𝑐𝑛𝑡_𝑝𝑟𝑗 + 𝑟𝑠𝑡𝑗)

𝑗

] 

(2b) 

We have two types of SLA non-compliance, ‘end 

time’ SLA non-compliance (axzj) and ‘start time’ 

SLA non-compliance (sj). A very large number ‘M’ 

is multiplied to SLAnonCompliances, that ensures 

that the model will minimize the non-compliance 

whenever feasible. We have four levers (delete a job 

(xj), delete a dependency (yjk), reduce ‘run 

time’/workload (prj) and reduce ‘from time’ (rstj)) to 

achieve the objective. We want to use theses levers as 

minimimum as possible and minimize the SLA non-

compliance. The second term 

(𝐼𝑚𝑝𝑎𝑐𝑡𝑂𝑛𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝐿𝑜𝑔𝑖𝑐) ensures this objective. 

3.1 Constraints  

The model needs to consider following set of con-

straints to obtain optimal set of levers that minimizes 

SLA non-compliance.  

SLA Non-compliance Detection and Prevention in Batch Jobs

401



Table 1: Decision Variables. 

𝒑𝒓𝒋 = 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒓𝒖𝒏𝒕𝒊𝒎𝒆 𝒐𝒇 𝒋𝒐𝒃 𝒋, 𝒑𝒓𝒋  ∈ [𝟎, 𝟏] 𝑰𝒇 𝒑𝒓𝒋 = 𝟎, 𝒕𝒉𝒆𝒏 𝒋𝒐𝒃 𝒋 𝒊𝒔 𝒅𝒆𝒍𝒆𝒕𝒆𝒅. (3) 

𝑦𝑗𝑘 =  {
1, 𝑖𝑓𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑗𝑜𝑏 𝑗 𝑎𝑛𝑑 𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑙𝑎𝑥𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                              

 (4) 

𝑟𝑠𝑡𝑗 = 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒, 𝑦𝑜𝑢 𝑐𝑎𝑛 𝑝𝑟𝑒𝑝𝑜𝑛𝑒 𝑡ℎ𝑒 𝑓𝑟𝑜𝑚𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 (5) 

𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 = 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑗𝑜𝑏 𝑗 𝑐𝑎𝑛 𝑏𝑒 𝑠𝑡𝑎𝑟𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 (6) 

𝑧𝑗 =  {
1, 𝑖𝑓𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 + (𝑟𝑡𝑗 ∗  𝑝𝑟𝑗)  >  𝑒𝑡𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            
 [𝑒𝑛𝑑𝑡𝑖𝑚𝑒 𝑆𝐿𝐴 𝑛𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑐𝑒] (7) 

𝑠𝑗 =  {
1, 𝑖𝑓𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 >  𝑠𝑡𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
 [𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 𝑆𝐿𝐴 𝑛𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑐𝑒] (8) 

𝑐𝑛𝑡_𝑝𝑟𝑗 =  {
1, 𝑖𝑓 0 < 𝑝𝑟𝑗 < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
  (9) 

𝑎𝑦𝑝𝑗𝑘 =  𝑦𝑗𝑘 ∗  𝑝𝑟𝑘 =  {
𝑝𝑟𝑘 , 𝑖𝑓 𝑦𝑗𝑘 = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
  (10) 

𝑥𝑗 =  {
1, 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑛𝑜𝑡 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 𝑜𝑟 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑎𝑡𝑐ℎ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑝𝑟𝑗 = 0)                                                       
  (11) 

𝑟𝑡𝑦𝑗𝑘 =  𝑦𝑗𝑘 ∗  𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑘 =  {
𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑘 , 𝑖𝑓 𝑦𝑗𝑘 = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
  (12) 

𝑎𝑥𝑧𝑗 =  𝑥𝑗 ∗  𝑧𝑗 =  {
1, 𝑖𝑓 𝑥𝑗 = 𝑧𝑗 = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
 [1, 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑆𝐿𝐴 𝑛𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑑𝑒𝑙𝑒𝑡𝑒𝑑] (13) 

3.1.1 Sacrosanct Constraints  

There are a few business critical jobs or dependen-

cies, which cannot be altered. Constraints below en-

sure that we do not delete a business critical job from 

the current batch or reduce its workload or ‘run time’. 

Constraint (15) puts bound on ‘runtime’ reduction of 

a job. Constraint (16) ensures that no business critical 

dependencies are deleted. 

𝑝𝑟𝑗 = 1, 𝑟𝑠𝑡𝑗 = 0 𝑎𝑛𝑑 𝑥𝑗 = 1, ∀ 𝑗 ∈

𝑐𝐽 (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑗𝑜𝑏𝑠 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑏𝑒 𝑑𝑒𝑙𝑒𝑡𝑒𝑑) 
(14) 

𝑝𝑟𝑗 ≤ 𝑥𝑗 , ∀ 𝑗 (puts bound on ‘run time’ 

reduction of a job) 
(15) 

𝑦𝑗𝑘 = 1, ∀ 𝑒(𝑗, 𝑘) ∈

𝑐𝐸 (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑏𝑒 

𝑟𝑒𝑚𝑜𝑣𝑒𝑑) 

(16) 

3.1.2 Reach Time Constraints  

We define ‘reach time’ (𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗) of a job j as the 

earliest time epoch, when the job j can start executing. 

Constraint (17) ensures that the job j can start execut-

ing after it’s ‘‘from time’’ only. Constraint (18) 

makes sure that the job j can start executing only after 

all its predecessor jobs are executed. 

𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 + 𝑀 ∗ (1 − 𝑥𝑗) ≥ 𝑓𝑡𝑗 − 𝑟𝑠𝑡𝑗 , ∀ 𝑗 (17) 

𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 + 𝑀 ∗ (1 − 𝑥𝑗) ≥

𝑟𝑡𝑦𝑗𝑘 + (𝑟𝑡𝑘  ∗  𝑎𝑦𝑝𝑗𝑘), ∀ 𝑗 𝑎𝑛𝑑 𝑘 ∈ 𝑃𝐿(𝑗) (18) 

 

3.1.3 SLA Non-compliant Identifier 
Constraints  

Constraints (19) and (20) ensure that when a job j 

violates ‘end time’ SLA (𝑒𝑡𝑗), it is registered through 

the decision variable 𝑧𝑗. Simillarly, constraints (21) 

and (22) ensure ‘start time’ SLA (𝑠𝑡𝑗) violation is 

recorded in variable 𝑠𝑗. 

𝑒𝑡𝑗 ∗ 𝑧𝑗 <

𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 + (𝑟𝑡𝑗 ∗ 𝑝𝑟𝑗) + 𝑀 ∗ (1 − 𝑥𝑗), ∀𝑗 
(19) 

𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 + (𝑟𝑡𝑗 ∗  𝑝𝑟𝑗) − 𝑀 ∗ (1 − 𝑥𝑗) ≤

 𝑒𝑡𝑗 ∗ (𝑧𝑗 + 1) + 𝑀 ∗ 𝑧𝑗 , ∀𝑗 
(20) 

𝑠𝑡𝑗 ∗ 𝑠𝑗 < 𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗 + 𝑀 ∗ (1 − 𝑥𝑗), ∀𝑗 (21) 

𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑗  − 𝑀 ∗ (1 − 𝑥𝑗) ≤

 𝑠𝑡𝑗 ∗ (𝑠𝑗 + 1) + 𝑀 ∗ 𝑠𝑗 , ∀𝑗 
(22) 

3.1.4 Auxiliary Constraints  

These constraints help in estabilishing the 

relationships between different variables. Constraint 

(23) records if ‘run time’ reduction is required for job 

j. Constraints (24) – (26) are the equivalent of the 

non-linear constraint, 𝑎𝑦𝑝𝑗𝑘 =  𝑦𝑗𝑘 ∗  𝑝𝑟𝑘 . The varia-

ble, 𝑎𝑦𝑝𝑗𝑘, captures the ‘run time’ reduction for job j 

if dependency between job j and k are not deleted. 

This value is required for ‘reach time’ calculation.  

𝑐𝑛𝑡_𝑝𝑟𝑗 ≥ 1 − 𝑝𝑟𝑗, ∀ 𝑗 (23) 

𝑎𝑦𝑝𝑗𝑘 ≤  𝑝𝑟𝑘 +  𝑀 ∗ (1 − 𝑦𝑗𝑘), ∀𝑗, 𝑘 ∈ 𝑃𝐿(𝑗) (24) 

(1 − 𝑦𝑗𝑘) ∗ 𝑀 + 𝑎𝑦𝑝𝑗𝑘 ≥  𝑝𝑟𝑘 , ∀𝑗, 𝑘 ∈ 𝑃𝐿(𝑗) (25) 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

402



 

−𝑦𝑗𝑘 ∗ 𝑀 +  𝑎𝑦𝑝𝑗𝑘 ≤ 0, ∀𝑗, 𝑘 ∈ 𝑃𝐿(𝑗) (26) 

Constraints (27)-(29) are the equivalent of the 

non-linear constraint, 𝑟𝑡𝑦𝑗𝑘 =  𝑦𝑗𝑘 ∗  𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑘 . 

The variable, 𝑟𝑡𝑦𝑗𝑘, updates the ‘reach time’ for job j 

depending upon the dependency between job k & j.  

𝑟𝑡𝑦𝑗𝑘 ≤  𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑘 +  𝑀 ∗ (1 − 𝑦𝑗𝑘), ∀𝑗, 𝑘 ∈

𝑃𝐿(𝑗) 
(27) 

(1 − 𝑦𝑗𝑘) ∗ 𝑀 +  𝑟𝑡𝑦𝑗𝑘 ≥

 𝑟𝑒𝑎𝑐ℎ𝑡𝑖𝑚𝑒𝑘 , ∀𝑗, 𝑘 ∈ 𝑃𝐿(𝑗) 
(28) 

−𝑦𝑗𝑘 ∗ 𝑀 +  𝑟𝑡𝑦𝑗𝑘 ≤ 0, ∀𝑗, 𝑘 ∈ 𝑃𝐿(𝑗) (29) 

Constraints (30)-(32) are the equivalent of the 

non-linear constraint, 𝑎𝑥𝑧𝑗 =  𝑥𝑗 ∗  𝑧𝑗. The variable 

𝑎𝑥𝑧𝑗  captures whether job j is SLA complaint or not. 

𝑎𝑥𝑧𝑗 ≥  𝑥𝑗 + 𝑧𝑗 − 1, ∀𝑗 (30) 

𝑎𝑥𝑧𝑗 ≤  𝑥𝑗 , ∀𝑗 (31) 

𝑎𝑥𝑧𝑗 ≤  𝑧𝑗, ∀𝑗 (32) 

We discuss the model solving approach in the 

following sub-subsection. 

3.2 Optimal Solution 

The formulated mathematical model is an Integer 

Liner Program (ILP).  We have coded the proposed 

model using Python-PuLP to create an optimizer 

consumable input format (.lp file). This LP file is 

passed to the optimization solver for optimal solution. 

We have used CBC solver (open source) for our 

study. More efficient, proprietary solvers (Cplex, 

Gurobi etc.) can also be used to obtain the optimal 

solutions. 

3.3 Post Processing  

The post-processing module is further divided into 

two sub-modules. Actionable levers and reconfigured 

batch job systems. 

3.3.1 Actionable Levers 

We translate the obtained optimal solutions, which is 

expressed in mathematical terms into implementable 

actions such as identifying the jobs that can be 

postponed to another batch, executing batch jobs 

partially by reducing the workload or running the job 

on multiple cores simultaneously, identifying the 

dependencies that can be relaxed or identifying those 

jobs whose ‘from time’ constraint can be relaxed.  

 

 

3.3.2 Reconfigured Batch Job Systems 

Once we identify all the actionable levers we re-

configure the batch job system’s run to achieve the 

stated objective by updating the job and dependency 

tables. 

4 RESULTS AND DISCUSSION  

4.1 Illustration with Synthetic Data  

To illustrate the method presented in the previous sec-

tion, we use two different sets of data. The first illus-

tration is on synthetic data for demonstrating solu-

tion’s correctness. The second illustration is on a real 

batch job system of a large financial institution. The 

batch job system shown in figure 3 comprises of 14 

jobs. These jobs vary in terms of attributes such as 

‘run time’, ‘from time’, SLA definitions and critical-

ity. ‘Run time’ of all the jobs and the interdependen-

cies among them are shown in figure 3. For example, 

job N1 cannot be scheduled for a run unless jobs J3 

and J4 are executed. Job criticality is indicated by en-

circling nodes in red. Jobs J1, J2 and J5 are critical 

(Figure 3) and cannot be used as levers to perturb the 

system. Jobs J11 and J12 in red. These jobs have pre-

defined ‘end time’ SLAs and are not expected to be 

used as levers. The dependencies between jobs in this 

case are also considered critical. Next to each node in 

the dependency graph is the ‘end time’. 

In the as-is configuration of this system, jobs J11 

and J12 are violating their SLA definitions by 7 and 

14 time units respectively. Job J5 has ‘from time’ de-

fined at 180th time unit, which means even if job J5’s 

predecessors finish execution before 180th time unit, 

it cannot start execution. As seen in this case, job N1 

completes execution at 80th time unit but, due to the 

‘from time’ constraint, job J5 had to wait for 100 

more time units. Although, such constraints are de-

rived from business logic and often unalterable, it is 

vital to identify and minimize such slacks to reduce 

spikes in CPU utilization.  

With the objective being minimization of SLA non-

compliance, there are multiple feasible solutions. 

However, the ‘Impact on Business Logic’ component 

of the objective function given in section 3 ensures 

that lever usage is confined. The solution obtained 

from the model is to reduce the ‘run time’ of job J5 

by 70% (from 20 mins to 6 mins). In cases where 

there is a cap on the amount of ‘run time’ reduction, 

the feasible solution set shrinks. When we set a cap 

on ‘run time’ reduction at 50%, the optimal solution 

would then be to reduce the ‘run time’ of jobs J5 and   

SLA Non-compliance Detection and Prevention in Batch Jobs

403



Figure 3: Dependency graph and job ‘run time’ with synthetic data. 

J6 by 50% and 10% respectively. Both these solutions 

are as expected. 

4.2 Illustration with Real Data 

We tested the model on a real batch job system with 

518 jobs and 738 interdependencies. Due to a pre-

scheduled maintenance activity over the weekend 

batch runs, there might be an adverse impact on SLA 

compliance. Around 14 jobs are expected to have a 

50% increase in their ‘run time’. The model has iden-

tified 18 SLA violations as a result. Some other im-

portant characteristics of this system include- 62 jobs 

with ‘from time’ constraints, 21 critical jobs, 137 crit-

ical dependencies and 35 jobs with ‘end time’ SLA 

definitions.  

Figure 4 shows the partial dependency graph of 

the batch system used in this illustration. The node 

size depicts the ‘run time’ of a job. The nodes marked 

in blue are the jobs affected by the scheduled mainte-

nance activity and are expected to see an increase in 

their ‘run time’. The nodes marked in yellow are the 

ones expected to violate SLAs.  The optimal solution 

suggested by our model includes deletion of 3 jobs, 

reduction of ‘run time’ of 2 jobs while preponing the 

‘from time’ of 2 jobs. However, despite these inter-

ventions, the total SLA violations could only be 

brought down from 18 to 4. This configuration of 

batch system makes 100% SLA compliance an unat-

tainable target.   

5 CONCLUSION  

In this study, we proposed an optimizer for batch job 

systems that maximizes SLA compliance with mini-

mum possible impact on the business logic. Although, 

there exists an extensive body of literature on solu-

tions to achieve this objective, the levers used to do 

so are mostly focussed on job scheduling. Our study 

considers a more practical approach wherein a wider 

range of levers such as Job and Dependency deletion 

and ‘run time’ reduction are also considered while de-

signing the optimizer. By taking these additional lev-

ers into consideration, the solution space increases 

many fold. Despite this, our approach finds the opti-

mal set of levers within reasonable time limits as we 

have modeled the complex optimization problem as 

an integer linear program (ILP). Linear formulation 

guarantees the global optimal solution and has better 

computational efficiency than the non-linear models.   
In its current state, the model can handle batch job 

systems of size around 1000 jobs and 1800 depend  
   

  

 

Job ‘run time’ 

J1 10 

J2 5 

J3 7 

J4 15 

N1 50 

N2 100 

J5 20 

J6 37 

J7 2 

J8 5 

J9 12 

J10 13 

J11 17 

J12 25 

Dependency Graph Job run times 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

404



  

Figure 4: A real batch job system. 

encies. Beyond this, the ‘run time’ shoots up substan-

tially. An interesting direction for future research 

would be to build heuristics that intelligently prune 

the solution space without compromising the optimal-

ity of the solution. 

A major consideration of batch system optimizers 

is their ‘run time’. As described in the previous sec-

tion, we have programmed this solution on Python-

PuLP with CBC solver. When implemented on a 

2.6GHz, i5 processor with 4GB RAM, the solution 

takes less than 2 minutes to handle 1000 jobs and 

1800 dependencies batch system to find the optimal 

solution. 

REFERENCES  

Agnetis, A., Alfieri, A., Nicosia, G., 2004. A heuristic ap-

proach to batching and scheduling a single machine to 

minimize setup costs. Computers & Industrial Engi-

neering 46, 793-802. 

Agrawal, R. and Sadaphal, V., 2011. “Batch systems: Opti-

mal scheduling and processor optimization”, In Pro-

ceedings of 18th International Conference on High Per-

formance Computing (HiPC), Bangalore, India. 

Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, 

D., and Zhang, M. 2007. "Towards highly reliable en-

terprise network services via inference of multi-level 

dependencies", ACM SIGCOMM Computer Communi-

cation Review (37:4), p. 13(doi: 10.1145/1282427. 

1282383). 

Brucker, P. 2007. Scheduling algorithms, Berlin [u.a.]: 

Springer. 

Chakrabarty, K. 2000. "Test scheduling for core-based sys-

tems using mixed-integer linear programming", IEEE 

Transactions on Computer-Aided Design of Integrated 

Circuits and Systems(19:10), pp. 1163-1174(doi: 

10.1109/43.875306). 

Deng, X., Gu, N., Brecht, T., and Lu, K. 2000. "Preemptive 

Scheduling of Parallel Jobs on Multiprocessors", SIAM 

Journal on Computing (30:1), pp. 145-160(doi: 

10.1137/s0097539797315598). 

Ed Klotz, Alexandra M. Newman. 2013a, Practical guide-

lines for solving difficult mixed integer linear pro-

grams, In Surveys in Operations Research and Manage-

ment Science, Volume 18, Issues 1–2, Pages 18-32, 

ISSN 1876-7354 

Ed Klotz, Alexandra M. Newman. 2013b, Practical guide-

lines for solving difficult linear programs, In Surveys in 

Operations Research and Management Science, Vol-

ume 18, Issues 1–2, , Pages 1-17, ISSN 1876-7354 

Feitelson, D., Rudolph, L., Schwiegelshohn, U., Sevcik, K., 

and Wong, P. 1997. "Theory and practice in parallel job 

scheduling", Job Scheduling Strategies for Parallel 

Processing, pp. 1-34(doi: 10.1007/3-540-63574-2_14). 

Feldmann, A., Sgall, J., and Teng, S. 1994. "Dynamic 

scheduling on parallel machines", Theoretical Com-

puter Science (130:1), pp. 49-72(doi: 10.1016/0304-

3975(94)90152-x). 

Janiak, A., Kovalyov, M.Y., Portmann, M.C., 2005. Single 

machine group scheduling with resource dependent 

setup and processing times. European Journal of Oper-

ational Research 162, 112-121. 

SLA Non-compliance Detection and Prevention in Batch Jobs

405



 

Kellerer, H., Tautenhahn, T., and Woeginger, G. 1999. 

"Approximability and Nonapproximability Results for 

Minimizing Total Flow Time on a Single Machine", 

SIAM Journal on Computing (28:4), pp. 1155-

1166(doi: 10.1137/s0097539796305778). 

Leonardi, S., and Raz, D. 2007. "Approximating total flow 

time on parallel machines", Journal of Computer and 

System Sciences (73:6), pp. 875-891(doi: 

10.1016/j.jcss.2006.10.018). 

Mason, S.J., Fowler, J.W., Carlyle, W.M., 2002. A modi-

fied shifting bottleneck heuristic for minimizing total 

weighted tardiness in complex job shops. Journal of 

Scheduling 5, 247-262. 

Parsons, E., and Sevcik, K. 1996. "Benefits of speedup 

knowledge in memory-constrained multiprocessor 

scheduling", Performance Evaluation (27-28), pp. 253-

272(doi: 10.1016/s0166-5316(96)90030-9). 

Schwiegelshohn, U. 2004. "Preemptive Weighted Comple-

tion Time Scheduling of Parallel Jobs", SIAM Journal 

on Computing (33:6), pp. 1280-1308(doi: 

10.1137/s009753979731501x). 

Setia, S.K., 1995, April. “The interaction between memory 

allocation and adaptive partitioning in message-passing 

multicomputers”, In Workshop on Job Scheduling 

Strategies for Parallel Processing (pp. 146-164). 

Springer, Berlin, Heidelberg. 

Singh, R., Shenoy, P., Natu, M., Sadaphal, V., and Vin, H. 

2013. "Analytical modeling for what-if analysis in com-

plex cloud computing applications", ACM SIGMET-

RICS Performance Evaluation Review (40:4), p. 

53(doi: 10.1145/2479942.2479949). 

Suter, F., 2014. Bridging a Gap Between Research and Pro-

duction: Contributions to Scheduling and Simulation 

(Doctoral dissertation, Ecole normale supérieure de 

Lyon). 

Turek, J., Wolf, J., Pattipati, K., and Yu, P. 1992. "Sched-

uling parallelizable tasks", ACM SIGMETRICS Perfor-

mance Evaluation Review (20:1), pp. 225-236(doi: 

10.1145/149439.133111). 

Wolsey, L., and Nemhauser, G. 2014. Integer and Combi-

natorial Optimization, Hoboken: Wiley. 

Zhu, Z., Heady, R.B., 2000. Minimizing the sum of earli-

ness/tardiness in multi-machine scheduling: a mixed in-

teger programming approach. Computers & Industrial 

Engineering 38, 297-305 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

406


