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Abstract: This paper describes an approach to detecting anomalous behavior of devices by analyzing their event data. 

Devices from a fleet are supposed to be connected to the Internet by sending log data to the server. The task 

is to analyze this data by automatically detecting unusual behavioral patterns. Another goal is to provide 

analysis templates that are easy to customize and that can be applied to many different use cases as well as 

data sets. For anomaly detection, this log data passes through three stages of processing: feature generation, 

feature aggregation, and analysis. It has been implemented as a cloud service which exposes its functionality 

via REST API. The core functions are implemented in a workflow engine which makes it easy to describe 

these three stages of data processing. The developed cloud service also provides a user interface for visualizing 

anomalies. The system was tested on several real data sets, such as data generated by autonomous lawn 

mowers where it produced meaningful results by using the standard template and only little parameters.  

1 INTRODUCTION  

Today, connected devices in the Internet of Things 

(IoT) generate more data than social networks. A 

device can send data several times per second and 

with millions of connected devices, a typical data 

processing platform might need to deal with billions 

of such incoming events a day. Even though 

processing this amount of data is obviously a highly 

non-trivial technological challenge, it is clear that the 

device data itself is not actionable per se. In order to 

derive actionable insights, the collected data has to be 

analyzed.  

One important task that can be effectively solved 

by means of data analysis is anomaly detection which 

“refers to the problem of finding patterns in data that 

do not conform to expected behavior” (Chandola et 

al., 2009). Its goal is to find devices with behavior that 

significantly differs from what is expected or has 

been observed before.  

There are many different types of anomalies and 

many different problem domains with their specific 

data and problem formulations. In this paper, we limit 

the scope of our research by the following 

assumptions:  

 [Asynchronous events] The data is sent 

asynchronously and irregularly. Each event has 

a time stamp but is not a regular time series. 

This assumption means that it is essentially 

impossible to directly analyze the device data 

and therefore some pre-processing is required.  

 [Device aware analysis] Events are sent by a 

fleet consisting of thousands and millions of 

different devices. In particular, “normal” 

behavior is now a characteristic of the whole 

fleet, however derived features have to be 

computed and anomalies have to be detected 

for individual devices.  

 [Multivariate data] The events have many 

properties and are not a univariate time series. 

This means that it is not possible to use classic 

statistical algorithms like ARIMA (Box & 

Jenkins, 1976) which are known to be quite 

effective for univariate numeric time series but 

cannot be applied to our more complex use 

cases.  

 [Semi-structured data] Events can also contain 

semi-structured data like JSON with nested 

values. The events have both categorical and 

numeric characteristics. In particular, it is quite 

possible that devices do not send any numeric 

characteristics at all. This immediately 

excludes many traditional data analysis 

algorithms.  
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From the technological point of view, we have the 

following design goals leading to the corresponding 

challenges:  

 [Analysis in the cloud] The developed 

functionality has to be easily accessible in the 

cloud. This assumption immediately excludes 

many possible solutions based on stand-alone 

analysis tools like Knime (Berthold et al., 

2007) and enterprise level technologies.  

 [Easy to use] Our goal is to develop a 

prototypical analysis workflow which can be 

easily parameterized by specifying a limited set 

of domain-specific parameters. It is opposed to 

developing a full-featured system with dozens 

or hundreds of parameters requiring high 

expertise.  

 [Extensibility and parameterization] 

Frequently, the ease of use is achieved by 

limiting the system functionality but this is 

precisely what we want to avoid. Our goal is to 

make it possible to provide various custom 

extensions including user-defined functions 

which are normally required for advanced and 

domain-specific analysis scenarios.  

In order to satisfy these design goals, we decided 

to develop a general-purpose analysis template which 

aims at anomaly detection. This template is 

essentially an analysis workflow consisting of several 

predefined data processing nodes. These nodes, 

however, are supposed to be configured depending on 

the concrete use case and data to be analyzed. In other 

words, instead of exposing the complete functionality 

of a general-purpose workflow engine (which is 

difficult to use and parameterize) and building a 

completely predefined analysis scenario, we chose an 

intermediate solution which is, on one hand, simple 

enough, and on the other hand, provides high 

flexibility. This data analysis template consists of the 

following steps (Fig. 1):  

 [Feature generation] Raw data might not be 

appropriate for analysis. The goal of this step is 

to define new domain-specific features which 

are better indicators of possible anomalies. 

Each individual feature is implemented as a 

user-defined function in Python.  

 [Data aggregation] Raw data may have the 

form of irregular events generated by devices. 

The goal of this step is to convert sequences of 

asynchronous events into regular time series. 

First, all events for each individual device are 

grouped by specifying an interval length, for 

example, 1 hour or 1 minute. Then the event 

properties are aggregated by applying either 

standard (like mean or variance) or 

user-defined aggregate functions in Python.  

 [Data analysis] The main task of this 

component is to detect anomalies in the 

pre-processed data (generated by the previous 

nodes) by applying data mining algorithms. 

The analysis computes an anomaly score taking 

values between 0 (no anomaly) and 1 

(anomaly). The main challenge here is to 

choose an appropriate data mining algorithm 

and tune its parameters.  

In order to implement these analysis steps, we 

developed a general-purpose workflow engine in 

Python by using such libraries as pandas and 

scikit-learn. However, its full functionality is 

not directly exposed to the user. Instead, its 

workflows are preconfigured for certain 

domain-specific tasks like anomaly detection or 

predictive maintenance so that the user has to only 

parameterize this template using an easy-to-use UI.  

 
Figure 1: Analysis steps in anomaly detection.  

The developed approach to anomaly detection 

was tested on the following use case. Data is 

produced by Bosch automatic lawn mowers (ALM) 

sold under the brand name Indego. Indegos are 

cordless devices which are operated by human 

owners but work in an autonomous mode. Their task 

is to mow the marked area by loading their batteries, 

if necessary. Since they are connected to the internet, 

they are sending various diagnostic messages to the 

server.  

Messages received from all devices are collected 

as log files where one line is one message which 

contains such standard fields as time stamp and 

message id. Here is an example of fields from 3 

messages:  

status, {"state":519, "error":57}, null  
get_map, {"state":6103, "error":504}, null 
status, null, 37.0  

These messages have one field in JSON format which 

stores the current state of the device and error code. 

There are also numeric fields like 37.0 which 

represents the actual area that has been mowed. There 

are much more parameters in these logs and most of 

them are categorical values. The messages are sent 

asynchronously at irregular intervals and not all fields 

are present in all messages (there are many null 
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values). The number of devices sending data is about 

9,000. The analyzed data set contained messages sent 

by these devices for one month. The size of this data 

set was 3,919,908 lines and about 2.5 GB as a CSV 

file. On average, each device was sending one log 

message for about 3 minutes. The task is to monitor 

their behavior by regularly analyzing these logs and 

automatically detecting anomalies. The system 

should identify a list of devices with the top anomaly 

score. This list is then supposed to be manually 

processed, for example, in the service center.  

In this paper, we describe an approach to detecting 

anomalies in event data in the IoT which has been 

implemented as an Anomaly Detection Service1 

(ADS) running in the Bosch IoT Cloud2 (BIC). The 

paper makes two main contributions: 1) We introduce 

general-purpose analysis templates which can be 

easily parameterized and used for device-aware 

anomaly detection by analyzing asynchronous 

multivariate semi-structured data, and 2) we 

implement this approach as a cloud service which can 

be easily provisioned and used from within other 

applications or services.  

The paper is divided into the following sections. 

Sections 2, 3, and 4 describe three main data 

processing steps our analysis template consists of: 

feature generation, data aggregation, and analysis. 

Section 5 describes the implementation of this 

approach as a cloud service and Section 6 makes 

concluding remarks and provides a future outlook.  

2 FEATURE GENERATION  

2.1 Feature Engineering  

Data preparation is a very important step in any data 

analysis which significantly influences the quality of 

the obtained results. In the overall analysis process, 

various data pre-processing tasks can account for 

most of the difficulties, and therefore choosing a 

technology for efficient development and execution 

of such scripts is of very high importance. This 

process is frequently referred to as data wrangling 

which is defined as “iterative data exploration and 

transformation that enables analysis” (Kandel, 2011; 

Savinov, 2014).  

There are several major approaches to data pre-

processing and data wrangling which are shortly 

listed below:  

 Query-based approaches. All necessary data 

transformations are performed by the 

 
1 https://www.bosch-iot-suite.com/analytics/  

underlying data management system using its 

query language which is normally SQL.  

 MapReduce-based approach. This approach is 

based on two operations of Map and Reduce 

which are implemented on top of a distributed 

file system like Hadoop (Dean & Ghemawat, 

2004) and Spark (Zaharia et al., 2012).  

 Extract, Transform, Load (ETL). This 

technology has been developed mainly for 

pre-processing operational data and loading it 

into a data warehouse.  

These conventional approaches have two 

important properties:  

 [Dedicated system or framework] The 

necessary transformations are performed 

separately from the data analysis step.  

 [Generating new sets or collections] The data 

transformation procedure processes input sets 

and produces an output set. It is a row-oriented 

approach where rows can be represented as 

tuples in a relational database, key-value pairs 

in MapReduce or event objects in complex 

event processing systems.  

In contrast to these conventional approaches, our 

feature generation module is focused on defining and 

computing new domain-specific features, that is, one 

feature is a unit of definition in the data 

transformation model. The goal of domain-specific 

features is to increase the level of abstractions and to 

encode significant portions of domain knowledge and 

problem semantics. The ability to define such features 

determines how successful the data analysis process 

will be (Guyon et al., 2006). This means that before a 

data analysis algorithm can be applied to data, this 

data has to be accordingly transformed and, what is 

important, the result of this transformation determines 

if the algorithm will find something interesting or not. 

Since domain-specific features must contain a 

significant portion of domain knowledge, they should 

be produced in cooperation with a domain expert. 

There can be, of course, many such features defined. 

The main goal at this stage is to increase the semantic 

level of available features so that it is easier for the 

analysis algorithm to find anomalies. Domain experts 

and data scientists produce features which explicitly 

represent some partial and relatively simple 

knowledge while the data mining algorithm increases 

this level even higher by finding dependencies among 

these (and original) features and representing them as 

the final result. Essentially, feature engineering where 

high level domain-specific features are defined by 

domain experts can be viewed as an approach to deep 

2 http://www.bosch-iot-cloud.com/  
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learning which works even if not enough data is 

available.  

The analysis workflow engine that we have 

developed is based on the following main 

assumptions:  

 Feature generation should be an integral part of 

the whole data analysis process and, therefore 

it has to be described and executed using the 

same execution environment. In other words, 

we do not want to separate data pre-processing 

from other analysis steps because these steps 

can be tightly connected and because such a 

separation can limit the overall performance.  

 Any new feature is a column and, hence the 

main unit of definition and transformation is 

that of a column. The task is then to describe 

how new columns (features) are defined in 

terms of other existing columns. For that 

purpose, we have used a functional approach 

where a unit of definition is a function. This 

allows us to avoid explicit loops through the 

data sets and define functions using other 

functions. It is opposed to the conventional 

approaches where new outputs are defined in 

terms of input rows. The column-oriented data 

representation is very popular in database 

management systems (Abadi, 2007; Copeland 

& Khoshafian, 1985) but it is less used in data 

processing systems. Our implementation is 

conceptually similar to the approach described 

in Savinov, 2016.  

 Although the functional approach is very 

convenient for feature generation, there are 

many tasks where it is necessary to process sets 

and therefore set-operations should also be 

supported. In our approach, one node of the 

analysis workflow generates one set.  

2.2 User-Defined Functions as Features  

We have decided to use the Python pandas library 

(McKinney, 2010; McKinney, 2011) as a basis for all 

our data analysis functions including feature 

generation. The main reason for choosing this 

technology is that pandas provides the possibility to 

easily integrate arbitrary user-defined functions into 

the analysis workflow and the availability of a wide 

range of standard data processing mechanisms and 

analysis algorithms.  

The main data structure in pandas is that of 

DataFrame which is essentially a data table with 

many data processing operations. The idea of our 

approach to feature generation is that for a given table 

with some columns, a new column is defined by 

providing one Python function (called lambda in 

functional programming). This function takes some 

values as arguments and returns one output value. 

Note that this function is unaware of the existence of 

any tables or data rows—it transforms one or more 

input values into one output value. Writing such 

functions is known to be easy for ordinary users 

because it is similar to normal arithmetic expressions.  

In order to define a new column storing values of 

a new feature, it is necessary to provide a Python 

function as well as a name for this new column. The 

system then will apply this function to all rows of the 

input table and store the output values of this function 

in the new column. Note that column definitions can 

use existing columns as well as previously defined 

columns. The computation of all new features in this 

case can be represented as a graph of column 

definitions where each next column is defined in 

terms of some previous column.  

For example, assume that a source event stores 

inside and outside temperature. However, for 

detecting anomalies their absolute values are not 

important. It is rather important to know the 

difference between them. In this case, it is necessary 

to define a new derived feature which computes this 

difference as the following Python function:  

def temp_diff(row): 
    return row['inside'] - row['outside'] 

Here the row argument references the current row of 

the table. Access to the fields is performed using an 

array index with the column name.  

In case a new feature depends on only one input 

column, the syntax can be simplified and the input 

argument represents directly the value of this column. 

For example, the next feature will compare the 

temperature difference with a fixed threshold:  

def threshold_achieved(diff): 
    if diff > 30:  
        return 'high' 
    else: 
        return 'low' 

Internally, the workflow engine written in Python 

will collect all these definitions as user-defined 

functions and then apply them to the input data frame. 

This operation is executed as follows:  

df['temp_diff'] = df.apply(temp_diff)  

After all feature definitions have been computed, the 

table with the new columns is returned and can be 

used for the next steps of the data processing 

workflow.  

Derived features can, of course, be much more 

complex and encode any domain-specific knowledge 
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about what is important for detecting anomalies. The 

only limitation is that new features can be defined 

only in terms of one data row—they cannot access 

and use other rows for computing the output. This 

limitation is overcome by the data aggregation node 

described in the next section.  

3 DATA AGGREGATION  

3.1 Aggregation for Anomaly Detection  

A typical sequence of device events is shown in Fig. 2 

where events from different devices are represented 

by different colors. Here we see that some intervals 

have quite a lot of events while other intervals are 

rather sparse.  

 
Figure 2: Grouping events into fixed length time intervals.  

Detecting anomalies where the state and behavior 

of each device is represented as one event (point 

anomaly) can be therefore rather difficult. The data 

aggregation step in our anomaly detection approach 

is aimed at solving the problems that arise from the 

asynchronous nature of device data:  

 [Producing time series] Many data analysis 

algorithms are designed to process only regular 

time series. Therefore, irregular event data has 

to be aggregated and transformed into a time 

series.  

 [Down-sampling time series] Even if the input 

data is a regular time series, it might be 

necessary to downs-ample it. For example, we 

might want to produce an hourly time series 

while the event data is produced on minute 

basis.  

 [Complex behavioral patterns] Analyzing 

instant events is a very simple way to detect 

anomalies because we essentially ignore the 

history and context. In order to detect more 

complex anomalies, it is necessary to analyze 

the behavior of a device during a specific time 

interval. Such anomalies are referred to as 

contextual anomalies (Ahmed, Mahmood & 

Hu, 2016). For example, such a pattern 

(aggregated feature) could detect a steady grow 

of temperature within 1 hour.  

Our approach to the analysis of device events is 

based on grouping all events into a specific time 

interval like 1 day, 1 hour, or 1 minute. After that, all 

events of one device for one interval are aggregated 

using aggregate functions. Each such aggregate 

function produces a new aggregated feature which 

characterizes the behavior of this device during the 

whole interval. It is important that ‘aggregation’ is not 

necessarily numeric aggregation like finding an 

average value—it can be a complex procedure which 

performs arbitrary analysis of the events received 

during the selected interval. The result of such 

analysis of the group of events is always represented 

by one value.  

Table 1 shows example data with 9 events 

(column time_stamp) sent by 2 devices (column 

device_id). These events are grouped into 3 

intervals (column interval_id). The result of the 

aggregation is stored in the last two columns. The avg 

column computes the average temperature and the 

count column is the number of events for the 

interval. The last two columns represent regular time 

series and can then be analyzed by applying data 

mining algorithms.  

Table 1: Generating aggregated features. 

device_id  interval_id time_stamp temp  avg  count 

device 1  

interval 1  

e1  15.0  

20.0  3  e2  20.0  

e3  30.0  

interval 2  e5  22.0  22.0  1  

interval 3  e9  23.0  23.0  1  

device 2  

interval 1  e4  15.0  15.0  1  

interval 2  e6  20.0  20.0  1  

interval 3  
e7  15.0  

20.0  2  
e8  25.0  

 

Grouping and aggregation are two of the most 

frequently used operations in data processing. It is 

enough to mention GROUP-BY operator in SQL and 

reduce operator in MapReduce (Dean & Ghemawat, 

2004). Therefore, the necessity in its support for 

generating aggregated features is more or less 

obvious. What is not obvious—and one of our design 

goals—is how to achieve maximum simplification of 

its configuration and usage without limiting its 

capabilities. One of the challenges is providing the 

possibility to write arbitrarily complex 

(domain-specific) aggregate functions as opposed to 

having only standard aggregate functions like 

maximum or average.  

 

 

 

interval 2 

time 

device 1  device 2  

interval 1 interval 3 

e1 e2 e3  e4      e5            e6       e7         e8 e9 
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3.2 User-Defined Aggregate Functions  

The mechanism for defining aggregated features is 

similar to how derived features (Section 2) are 

generated. The idea is that for each new feature, the 

user provides one Python function. This function 

takes all events for one device that belongs to the 

same time interval and returns one value that 

represents the behavioral pattern encoded in this 

function. If the user specifies one input column which 

has to be aggregated, then this function will get a 

group of values of this column rather than complete 

events.  

For example, the average value of temperature 

difference for the specified interval could be 

computed using the following aggregate function:  

def temp_diff_mean(temp_diffs): 
    return np.sum(temp_diffs)  

Here temp_diffs is an array of all values of the 

input column for one interval, and np.sum is a 

standard Python function which finds the values' 

average.  

Simple aggregations when standard functions are 

used do not require writing new Python functions. 

This can be done by specifying a standard aggregate 

function in the definition like sum or mean. In more 

complex cases, it might be necessary to iterate 

through the input array in order to identify the 

required domain-specific behavioral pattern. For 

example, assume that we need to determine the 

difference between the first and the last value in the 

1-minute interval relative to the mean value within 

this interval. This can be done by explicitly reading 

the values from the group as in the following user-

defined aggregate function:  

def last_first_diff(temps): 
    size = len(temps)  
    mean = np.mean(temps)  
    return (temps[size-1] - temps[0])/mean  

In fact, a user-defined aggregate function can 

encode arbitrary logic of data processing and not 

necessarily what is typically meant by numeric 

aggregation. It could be even a small analysis 

algorithm which will be then applied to each 

subgroup of the data frame like 1-minuete interval of 

measurements. In particular, such an aggregate 

function could apply the Fourier transform to the 

group of events in order to analyze the behavior in the 

frequency space which could be quite useful some 

problems (Saia & Carta, 2017).  

For example, when analyzing event data sent 

from boilers installed in private houses we 

implemented an aggregate function aimed at 

detecting one domain-specific pattern with a small 

fragment of expert knowledge. If the burner turns off, 

then the water temperature is expected to drop 

relatively quickly. If it does not fall fast enough, then 

this can be an indication of some problem (in the 

water pump). This knowledge can be encoded as a 

user-defined aggregate function which implements 

the following rule: “If the burner is off and the 

temperature after that drops 30° or less for 1 minute 

then return 1, otherwise return 0”.  

The user provides a number of such aggregate 

functions in order to define how new aggregated 

features have to be computed. Note that these 

functions are relatively simple because they do not 

work at the level of all input rows. They operate at the 

level of one group of events produced for one interval 

only. The system then applies these functions to the 

input data frame:  

df['last_first_diff'] = 
groups['inside'].agg(last_first_diff)  

A new column last_first_diff will be added 

here to the df data frame by finding the difference 

between the first and last measurement of the inside 

temperature. Note that one and the same function can 

be used to define many features by applying it to 

different input columns. For example, we could apply 

the previous function to the outside temperature.  

The number of rows in the output data frame is 

equal to the number of intervals, and the number of 

columns is equal to the number of aggregate functions 

provided by the user.  

3.3 Pivoting and Aggregation  

Many devices send only little numeric data or no 

numeric data at all. How can such categorical data be 

transformed into numeric features? The idea of our 

analysis is that before applying aggregation, 

categorical variables have to be pivoted. This means 

each value is transformed to one new column so that 

the number of new columns is equal to the number of 

unique values the categorical variable takes on. For 

example, if the state of the device takes the values 

'257', '258', '262', '263', '513', '1025', 

'1281' (which are strings), then 7 new columns will 

be created having names like s257. Table 2 shows an 

example with the data from one device grouped into 

3 intervals and one categorical column state. This 

column takes three values and hence three new 

aggregated columns will be created each storing the 

number of events with the corresponding state.  
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Table 2: Frequency Counting for Device States.  

interval_id time_stamp state  s257  s258  s262  

interval 1  

e1  '257'  

2  1  0  e2  '257'  

e3  '258'  

interval 2  e5  '262'  0  0  1  

interval 3  e9  '262'  0  0  1  
 

In more complex cases, it is possible to specify 

another column the values of which will be 

aggregated for each category using a custom function 

instead of simply counting the occurrence number. 

For example (Table 3), we might want to find the 

average temperature (column temp) for each 

individual category rather than for the whole interval 

(shown in Table 1).  

Table 3: Aggregation for categories.  

interval_id time_stamp state  temp  t257  t258  t262  

interval 1  

e1  '257'  15.0  

17.5  30.0   e2  '257'  20.0  

e3  '258'  30.0  
 

For proper analysis, features should be 

normalized. It is especially important for imbalanced 

features like event frequencies. This is due to the fact 

that different categorical values have different 

frequencies overall. For example, certain state 

changes will be common and certain other state 

changes will be rare. The absolute counts then cannot 

be compared because the frequency of 10 for a 

common event is very different than the frequency of 

10 for an uncommon event. To normalize the 

frequency data, we divide the frequency values for 

each row by the total frequency of the column. Such 

normalization is common also in modeling using the 

bag-of-words approach where it is called TF-IDF 

(Manning et al., 2008).  

4 DATA ANALYSIS  

4.1 Multidimensional Scaling  

Rows of the table with aggregated and normalized 

features can be formally treated as points in the 

multidimensional space where dimensions are 

columns. The task is then to find unusual points 

which differ significantly from most of the other 

points. We evaluated many machine learning 

algorithms for identifying anomalies in such data sets 

and found that Multidimensional Scaling (MDS) 

(Borg & Groenen, 2005) is one of the most effective, 

simple to tune, easy to understand, and visualize.  

Multidimensional scaling (MDS) is one of several 

multivariate techniques which aims to place objects 

in N-dimensional space by preserving the between 

object distances as well as possible. In other words, 

MDS finds a low-dimensional (𝑁 ≥ 2) representation 

of the data in which the distances in the original high-

dimensional space are well respected. In our 

algorithm, we have used a 2-dimensional 

representation.  

Multidimensional scaling identifies the new 

representation by minimizing the quantity called 

STRESS or SSTRESS (Kruskal, 1964):  

𝜎(𝑋) = ∑ 𝑤𝑖𝑗(𝑑𝑖𝑗(𝑋) − δ𝑖𝑗)
2

𝑖<𝑗≤𝑁

 

𝜎2(𝑋) = ∑ 𝑤𝑖𝑗((𝑑𝑖𝑗(𝑋))2 − (δ𝑖𝑗)2)
2

𝑖<𝑗≤𝑁

 

δ𝑖𝑗 is the dissimilarity between i-th and j-th data 

points and 𝑑𝑖𝑗  is the Euclidean distance between the 

i-th and j-th data points in the new low-dimensional 

representation. The parameters which minimize this 

are estimated using the SMACOF (de Leeuw, 1988) 

algorithm. The algorithm requires 𝑂(𝑁2) 

calculations and 𝑂(𝑁2) memory. We have used the 

MDS function in the scikit-learn library for 

machine learning algorithms in Python. 

Dissimilarity measure is an essential parameter of 

MDS. Common dissimilarity measures are 

Euclidean, Hamming, cosine, etc. We have used the 

cosine distance as the measure of dissimilarity for our 

data (this measure is also used in classifying 

documents using the bag-of-words approach). The 

cosine distance is defined as 1-cosine similarity 

(Singhal, 2001) where cosine similarity is the cosine 

of the angle between two vectors represented by data 

points a and b with components 𝑎𝑖 and 𝑏𝑖:  

𝑠𝑖𝑚(𝑎, 𝑏) = cos(θ) =
∑ 𝑎𝑖𝑏𝑖

√∑ 𝑎𝑖
2 √∑ 𝑏𝑖

2
  

Cosine distance is bounded in [0, 1] and is efficient to 

evaluate as only non-zero components need to be 

evaluated.  

When analyzing data from robotic lawn mowers, 

we used their log events to get the current state and 

error status codes. Since these are categorical 

features, they were transformed to normalized 

frequencies as described in Section 3.3. The result 

table had many columns with frequencies of specific 

status codes for the chosen interval length. The goal 

was to identify anomalous behavior by analyzing 

these frequencies using MDS algorithm. Our 

hypothesis is that anomalous devices will log events 
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with uncommon frequencies, i.e. high-frequency for 

low-frequency events or very low-frequency for 

high-frequency events. It also occurred that 

anomalous lawn mowers had an uncommon 

combination of events, i.e. events occurring together 

which usually are not.  

The task of MDS is to reduce all the frequency 

columns to only a few dimensions. In our case, we 

chose to reduce to 2 dimensions which is easier to 

visualize and interpret. MDS generates two output 

dimensions, x and y, and each device is then 

represented as a point in a two-dimensional space. 

The anomaly score is then computed as the distance 

from the origin:  

√𝑥2 + 𝑦2 

The more a point is further away from the origin, the 

more anomalous behavior it shows.  

Analysis results of the MDS algorithm are 

visualized as a scatterplot where anomalous devices 

are highlighted and are shown as outliers (Fig. 3). The 

user can hover over the points and see the detailed 

information like device id and time this anomaly was 

detected.  

 

Figure 3: Scatterplot with anomalies.  

4.2 Elliptic Envelope and One-Class 
SVM  

Although MDS showed quite good results, it cannot 

be always used for two reasons:  

 MDS is a computationally difficult algorithm 

because it has to build an 𝑁2 matrix of 

distances. Therefore, it can be applied to only 

relatively small data sets.  

 MDS does not train a model but rather finds 

anomalies by processing the whole data set. 

 
3 https://bosch-iot-suite.com/  

Hence, it is necessary to process the complete 

history for every update, for example, when 

new events have been received.  

In general, it desirable to have many possible 

algorithms in order to be able to compare their results. 

Therefore, we also added other algorithms to our 

system. The first approach is based on fitting an 

ellipse to the data by assuming that the inlier data are 

Gaussian distributed. This ellipse essentially defines 

the “shape” of the data.  

We also evaluated One-Class SVM algorithm 

(Schölkopf et al., 1999; Smola & Schölkopf, 2004). 

Strictly speaking, it is a novelty detection algorithm 

because it assumes that the training data set is not 

polluted by outliers or anomalies. Yet, it is possible 

to specify a contamination parameter which 

represents the fraction of outliers in the training set. 

In contrast to the conventional SVM algorithm, it 

learns a single class of normally behaving devices. Its 

advantage is that it works without any assumptions 

about the data distribution (as opposed to elliptic 

envelope which learns an ellipse) and can learn 

complex “shapes” of data in a high-dimensional 

space. This analysis is similar to the approach 

described in Khreich et al., 2017.  

The model is then applied to the test data set by 

returning the decision function for each event. Its 

values are then scaled to the interval [0,1], stored as a 

new column in the data frame and used as anomaly 

score (for example, for visualization). High values of 

this score close to 1 represent anomalies while points 

close to the center of the distribution are treated and 

having low anomaly score are treated as normal 

behavior. 

The results of analysis are visualized as a line plot 

where the horizontal axis corresponds to time and the 

vertical axis plots the anomaly score between 0 and 1 

(Fig. 4).  

5 IMPLEMENTATION  

This approach was implemented as a cloud service in 

the Bosch IoT Cloud (BIC) being also a part of the 

Bosch IoT Suite3 which is a cloud-enabled software 

package for developing applications in the IoT. By 

implementing the anomaly detection service (ADS) 

as a cloud service, we get several advantages like high 

scalability and better interoperability which decrease 

complexity, improve time-to-market for new IoT 

solutions and, for that reason, also reduce the total 

cost of ownership. 
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Figure 4: Time plot with anomaly score for one device. 

ADS consists of the following main components 

(Fig. 5):  

 Cloud service (Java) exposes all functionalities 

of ADS via REST API which can be used by 

other services or applications. It stores all 

assets in an instance of MongoDB database and 

uses Splunk (Zadrozny & Kodali, 2013) for 

logging.  

 Executor (Java) is responsible for executing 

analysis jobs initiated via REST API. It uses the 

RabbitMQ message bus to receive job requests 

and creates a new process for each job which 

executes a Python workflow.  

 Analysis workflow engine (Python) is started 

by the Executor. It reads data from the specified 

data source and writes the results of the 

analysis into the output database.  

 
Figure 5: Architecture of the anomaly detection service.  

ADS also provides a front-end which is 

implemented using AngularJS and runs in the 

browser by relying on the service REST API. The 

front-end has the following main functions:  

 Authoring analytic workflows by creating, 

editing or deleting them using a wizard instead 

of writing such workflows in JSON format.  

 Execute analysis jobs and tracking their 

progress and status.  

 Visualizing analysis results (like screenshots in 

Fig. 3 and Fig. 4) or downloading them.  

An analysis workflow for anomaly detection 

consists of 5 steps which correspond to 5 nodes in the 

Python analysis engine: read data (from a file or 

database), generate new features without changing 

the number of rows (as described in Section 2), define 

new aggregated features by grouping rows into 

intervals and then applying several aggregate 

functions (as described in Section 3), choose a data 

analysis algorithm (as described in Section 4), and 

finally write the result with anomaly score to an 

output file or database.  

Fig. 6 is an example of how data aggregation step 

in the analysis workflow can be defined using the 

wizard. First, it is necessary to choose an aggregation 

interval. In this example, it is 1 hour which means that 

the behavior of devices will be analyzed on hourly 

basis. In other words, any behavioral pattern or 

characteristic is defined by all events from one device 

for one hour. Then it is necessary to define one or 

more features where each feature will analyze all 

events for one hour and one device by returning one 

value treated as a behavioral characteristic for this 

hour. In this example, 2 features are defined. The first 

feature returns mean value of the area already mowed 

for all events received for one hour. The second 

feature will generate as many columns as there are 

state codes and for each of them it will compute their 

count for this hour (Section 3.3). In order to use a 

Anomaly Detection Service (ADS) Analysis 
models 

Application 
or Service  

Event 
Data  

Configure models  
trigger analysis  

Read data  
write results  

REST  
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Figure 6: Wizard page for defining aggregated features. 

user-defined aggregate function, its name has to be 

written in the feature definition and the function 

source code has to be uploaded on the page with basic 

information.  

When an analysis workflow is started, then it is 

scheduled for execution by waiting in the queue of 

other jobs. A free Job Executor will retrieve the next 

job and spawn a new OS process. This process will 

get the workflow description in JSON format as a 

parameter and execute all its nodes starting from data 

input and ending with data output.  

6 CONCLUSIONS  

In this paper, we described a system for detecting 

anomalies in device data with no or little numeric 

characteristics. A preconfigured analysis workflow 

consists of the nodes for feature generation, feature 

aggregation, and data analysis. This approach was 

implemented as a cloud service where it can be easily 

provisioned and configured for processing specific 

data sets. This approach provides the following main 

benefits:  

 Creating an analysis workflow for specific use 

cases takes much less time in comparison to 

using a general-purpose data mining tool 

because we provide pre-configured analysis 

templates for specific problems. In particular, 

our analysis template for anomaly detection is 

designed for analyzing asynchronous events 

coming from a fleet of devices having multiple 

sensors sending semi-structured data.  

 It is easy to encode domain-knowledge into the 

analysis workflow so that the necessary data 

transformations and feature engineering tasks 

are made an integral part of the whole analysis.  

In the future, we are going to extend this project 

in the following directions:  

 [Enhancing analysis methods] We will develop 

new approaches to anomaly detection. In our 

current setup, anomalies may not be detected if 

an interesting sequence of events happens 

because their overall counts may not be 

interesting. Therefore, we will work on using 

sequence mining (Chandola et al., 2012) 

algorithms to detect anomalies by finding 

interesting or unusual sequences of events. 

Various such techniques exist including 

window-based techniques where sequences are 

matched in a given window and Markovian 

techniques where a Markov model of state 

transition is developed and the probability of a 

sequence is calculated. Different such 

techniques will be experimented with.  

 [Apply the same approach to other tasks] We 

are going to generalize the analysis patterns 

used in this project by developing similar 

services for other problems like predictive 

maintenance or data validation. The main idea 

of such services will be the same: it is based on 

a predefined analysis workflow which is easy 

to be configured and used in the cloud.  
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 [Performance and scalability] From the 

implementation point of view, our goal is to 

make execution in the cloud more performant 

and to better use the scalability features of the 

cloud. These features are especially important 

in the case of large-scale analysis (during 

training phase) as well as for serving many 

users or other applications. In particular, we 

will study how existing relevant technologies 

like Mesos (Hindman et al., 2011) or 

Kubernetes can be used for that purpose.  
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