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Abstract: Anticipating driving behaviours is a promising technology for novel advanced driver assistance systems. In 
recent years, predicting a driver’s future action became an important element to preventive safety 
technologies and has been advancing greatly contributing to a reduction in road accidents. In this paper, we 
propose a deep learning network that anticipates driving actions based on information of subject vehicle as 
well as surrounding vehicles and environment. By re-using a network trained on a great number of various 
drivers’ data with different driving behaviours and linking it to a particular driver with particular taste we 
propose a method that enables the anticipation of driving behaviours that can be tailored to each driver 
individually, leading to improved user experiences. We experimentally test our method for acceleration, 
deceleration and brake profile anticipation task using actual driving data. Our results demonstrate the 
effectiveness of our approach, achieving a great improvement when anticipating for individuals. 

1 INTRODUCTION 

For the past hundred years, innovation within the 
automotive sector has brought major technological 
advances, leading to safer, cleaner, and more 
affordable vehicles. In recent years, the industry 
appears to be on the verge of a revolutionary change 
engendered by the advent of autonomous or “self-
driving” cars. 

While recent generations of cars have already 
driver-assist systems that offer, for example, greater 
vehicle autonomy at lower speeds as well as reduce 
the incidence of low impact crashes, it is expected 
that by 2020, most cars will be able to self-perform 
multiple tasks such as acceleration, steering and 
braking simultaneously. Realizing such technology 
is a challenging task and many problems have been 
reported (Cabinet Office Japan, 2016; Inagaki, 
2015). One of the most important tasks faced is the 
ability to anticipate future events. Humans use the 
art of anticipation in every interaction, every 
movement and every thought without realizing it. If 
human drivers did not have the ability to anticipate 
events, we would frustrate or embarrass those we 
interact with and be in many more car accidents.  
One other important task is the ability to 

accommodate the way the car drives itself to every 
driver’s taste, especially for levels 2 to 3 
autonomous driving where the driver is still involved 
in the vehicle’s control. Even if perfect self-driving 
were to be accomplished, that would only be a “one-
size fits all” kind of self-driving, which can result in 
the driver getting bored and intervening with the 
driving operation. Therefore, the self-driving 
function would end up being be a useless option.  

In this paper, we present a deep learning model 
that, by learning the driver's behaviour patterns, can 
anticipate the next driving action based on the 
driver’s likings. 

The remainder of the paper is structured as 
follows. First, in section 2 we give a brief review of 
previous works on driving behavior anticipation. We 
then focus in Section 3 on the usage of deep learning 
algorithms for predicting driving action behaviours, 
and test it using a simple lane change anticipation 
problem. Section 4 describes and formalises our 
method for accommodating driving action 
anticipation to individual driver’s likings, which we 
then experimentally test on actual driving data in 
Section 5. Finally, Sect.6 draws up conclusions and 
suggests possible directions for further research on 
this topic.  
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2 RELATED WORK 

Nowadays, most of the cars available in market 
come equipped with a variety of cameras and 
sensors to monitor the surrounding environment and 
driver status. Through multi-sensory fusion, they 
provide many assistive features like Lane Keeping 
Assistance (LKA), Automatic Emergency Braking 
(AEB), and Adaptive Cruise Control (ACC) etc.  

These systems warn drivers when they perform a 
potentially dangerous manoeuvre (Shia et al., 2014; 
Vasudevan et al., 2012).  

Driver status monitoring for distraction and 
drowsiness as well as anticipation of driving 
behaviour, have also been thoroughly researched 
(Fletcher et al., 2005; Rezaei and Klette, 2014; 
Herrmann, 2012), and many works have been exten-
sively studied. For example, Volkswagen’s Bayesian 
network anticipates from the vehicle speed and the 
driver’s face direction, whether or not to turn right at 
a general road intersection while on manual mode 
driving, and the accuracy is reported to be at 98%. 

In addition, BMW's Bayesian network (Liebner, 
2013) can anticipate right turn, left turn or straight 
forward at a general road intersection using driving 
operations, lane information, GPS etc. Here an 
accuracy of 98%, 88%, 86% for straight forward, 
right turn and left turn respectively, has been 
reported. 

However, all the above researches are fitted for 
“Average-Driver behaviour” and do not respond to 
each driver’s likings. 

In this paper, we present a deep learning model 
that, by learning the driver's behaviour patterns, can 
anticipate the next driving action based on the driver’s 
likings. Our work complements existing ADAS and 
driver monitoring techniques by anticipating 
manoeuvres several seconds before they occur. 

3 DRIVING ACTION 
PREDICTION 

3.1 Situation Definition Parameters 

In this paper, we define a driving action as one of 
the following driving operations: lane keeping, 
acceleration, deceleration and lane change.  

In addition, in order to anticipate driving 
behaviour, we need to define proper parameters to 
describe driving situations. We examine the 
parameters that might affect driving behaviours in 
each driving scene in reference to the seven scenes 

mainly encountered on a highway as defined by 
NHTSA (lane keeping / lane change / interchange / 
branching / junction / lane decrease / emergency 
vehicle) (NHTSA, 2014).  

As a result, we narrow the parameters down to 
the ones that have the most impact on a driving 
action and these are:  

Subject vehicle information: Car speed, brake, 
steering wheel information, etc.  

Surroundings information: Inter-vehicle distance, 
angle, relative speed, surrounding vehicles type, 
status etc.  

Road information: Lane width, number of road 
lanes. (Figure 1). 

 

Figure 1: Driving Situation parameters. Subject vehicle 
speed S, brake status B and wheel information W, the 
inter-vehicle distance dn, the relative speed Vn, type and 
status of the surrounding vehicles, lane width W and 
number of lanes.  

3.2 Stacked Auto-encoder Network 

In this paper, we use a deep neural network model 
for the driving behaviour anticipation task.  

Neural networks are a set of algorithms, 
modelled loosely after the human brain, that are 
designed to recognize patterns. They interpret 
sensory data through a kind of machine perception, 
labelling or clustering raw input.  

Deep Learning is a type of Neural Network 
Algorithm that takes metadata as an input and 
processes it through a number of layers of a non-
linear transformation of the input data to calculate 
the output. This algorithm has a unique feature 
which is automatic feature extraction. This means 
that deep learning algorithms automatically grasp 
the relevant features required for the solution of the 
problem. This reduces the burden on the 
programmer to select the features explicitly. This 
can be used to solve supervised, unsupervised or 
semi-supervised type of problems. Therefore, by 
assuming that driving cases that occurred in the past 
can and will occur in the future for resembling 
conditions, deep learning can extract anticipation 
rules by analysing sets of past driving cases for said 
conditions and then predict driving behaviour for 
same conditions a few seconds before they occur.  

Neural networks exist in all shapes and sizes, and 
are often characterized by input and output data type.  
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Figure 2: Network for predicting future actions. First, train the first autoencoder individually using backpropagation. Then 
use the first autoencoder’s hidden layer as input of a second autoencoder and train. We repeat this procedure for all the 
network’s layers. Finally, we add a softmax classifier that can classify future driving behaviour to the last layer and train 
using backpropagation. 

An autoencoder neural network is an 
unsupervised learning neural network algorithm that 
applies backpropagation, setting the output values to 
be equal to the inputs. They work by projecting the 
input into a latent-space representation, and then 
reconstructing the output from this representation.  

By placing constraints on the network, such as 
limiting the number of hidden units or adding noise 
to input and train to reconstruct the input from a 
corrupted version of itself (Denoising Autoencoder), 
interesting structure about the data can be discovered.  

It is difficult for humans to understand all the 
principles and aspects of driving behaviours, and 
autoencoder neural network, can be considered as an 
effective means for our task. By training and 
“stacking” such autoencoders in a greedy layer-wise 
fashion for pre-training, we can initialize a regular 
neural network and train it in a supervised manner. 

Here in this paper, we train such Stacked Auto-
encoder network using the information of subject 
vehicle and surrounding vehicles mentioned in 3.1.  

3.3 Training 

As for the learning procedure, let ൛ iܹj௡, ܾij௡ൟ  denote 
the parameters 	ሺ܅, ሻ௡܊   of the nth layer of our 
network where i and j are the number of inputs and 
outputs respectively at the nth layer. First we 
perform an unsupervised training on a denoising 
auto encoder and obtain the first learning 
parameters	൛ܹ୧୨1 , ܾ୧୨1 ൟ, where the hidden layer h1 is 
connected to the input x by a weight matrix ܅૚ 
forming the encoding step. The hidden layer then 
outputs to a reconstruction vector ෤ܠ	 , using a tied 
weight matrix ሺ܅૚ሻ் to form the decoder, ܢ ൌ fሺ܅૚ܠ ൅ ෤ܠ૚ሻ (1)܊ ൌ fሺሺ܅૚ሻܶܢ ൅ 	૚ሻ′܊ (2)

The activation function is f and b is the bias term. 
We use the mini-batch stochastic gradient 

descent (SGD) for the training procedure. Learning 
occurs via backpropagation using the following error 
function, 

E ൌ෍ሺݔ௜log	ሺݔప෥ሻ ൅ ሺ1 െ ሺ1	௜ሻlogݔ െ ప෥ሻሻ௞ݔ
௝ୀଵ  (3)

Next, we input the above parameters to the 
second layer of the auto encoder and perform an 
unsupervised training.  The second learning 
parameters 	൛ܹ୧୨2 , ܾ୧୨2 ൟ are then obtained. In the same 
way, we repeat this learning process for the every 
layer by using the parameters from the intermediate 
layer of the previous auto encoder as an input. 

After completion of the above learning phase (i.e. 
pre-training phase) , all the trained layers are stacked 
on each other, and the learning parameters of each 
layer obtained are set as initial values of a new 
neural network. Then, by adding a softmax classifier 
that can classify future driving behaviour, it is 
possible to obtain a multi-layered neural network.  

Finally, by performing a fine tuning phase, we 
update the parameters of the entire network with 
supervised learning. We illustrate this network in 
Figure 2. 

3.4 Evaluating Our Model 

Before moving on to our proposed method, which is 
to accommodate driving action prediction to the 
driver’s likings, we try to evaluate our model’s 
prediction performances for average driver 
anticipation. Here, we use the lane-change 
anticipation task as an experimental ground to 
evaluate the performance of our model. 
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Figure 3: Training data parameters extraction process. We use conventional image processing techniques to track each 
vehicle appearing in the video data captured from a fix bird eye’s view camera. Then we calculate the vehicle information 
necessary for our model as mentioned in 3.1. 

Data Collection: In order to perform this 
evaluation, instead of installing a variety of multiple 
sensors on cars and hiring actual drivers to collect 
the data, which can be a very time-consuming and 
costly process, we opted to use video data of a 
different roads traffic that we captured by a fix 
bird’s eye view high resolution camera.  

And by analysing and processing these images, 
we extract the desired training and testing 
information data mentioned in 3.1. The extraction 
method is performed using various conventional 
image processing methods, but we won’t go into 
deeper explanations considering that it is not the 
main purpose of this paper. A simple diagram of the 
data extraction process is shown in Figure 3.  

We use 500 lane change cases for training and 
150 cases for test. Our model has 200 units in the 
input layer, 2 hidden layers of 100 units each, and 2 
units in output layer. 

Experiment Results: We evaluate this model 
based on its correctness in predicting future lane 
changes. The anticipation is performed offline for 
each frame at 30fps where the algorithm processes 
the recent 2 seconds (60frames) context  and assigns 
a probability to each of the two actions (lane change/ 
lane keep) happening 2 seconds (60frames) later.  

We show the prediction results in Figure 4. Of 
the 150 cases where lane change occurred, 131 were 
successfully anticipated and the anticipation rate was 
87.3%. On the other hand, 134 lane keep cases were 
anticipated out of 150, and the anticipation rate was 
89.3%. 

Using stacked autoencoders seems to perform well 
for the lane change anticipation, when compared to 
other methods (Li et al., 2015; Hou et al., 2013), even 
in this case where training data amount is too few. 

 

Figure 4: Classification performance for lane change 
anticipation. Lane change is anticipated 2 seconds before 
it occurs. Anticipation rate is 88%. 

4 ACCOMMODATING 
ANTICIPATION FOR 
INDIVIDUALS 

As mentioned before, one of the most important 
tasks that self-driving faces is the ability to 
accommodate the way the car drives itself to every 
driver’s taste. Here, we explain how to predict each 
driver’s next action based on his own likings. 

4.1 Transfer Learning 

Traditional data mining and machine learning 
algorithms make predictions on the future data using 
statistical models that are trained on previously 
collected labelled or unlabelled training data (Yin et 
al., 2006; Baralis et al., 2008). Nevertheless, most of 
these assume that the distributions of this labelled 
and unlabelled data are the same. 
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Figure 5: Method Diagram: First we train a stacked autoencoder NN on a big database of multiple different drivers {Xs}. 
This network predicts future driving actions and performs well for an “average” driver. Next we input individual data {Xt} 
into the network and compute output histograms (which is a representation of individual’s driving characteristics). Finally, 
we re-train the network with said individual data to tune the parameters and adapt the model to said individual. 

Transfer learning, in contrast, allows the domains, 
tasks, and distributions used in training and testing 
to be different. 

Many examples of transfer learning have already 
been reported. For example Oquab et al. (Oquab et 
al. 2014) trained convolutional neural network 
(CNN) with the ImageNet (Deng et al., 2009) as the 
source knowledge. After training the CNN, they re-
use the parameters from the input layer on the mid-
level hidden layer. Then, they add a new layer and 
tune the parameters using the target knowledge. 
Also, in the medical domain, medical image datasets 
such as X-ray CT image datasets are hard to collect 
and do not have enough data for training the deep 
neural networks mainly because of privacy problems. 
Therefore, different datasets are used as source 
knowledge in order to solve a certain different target 
task (Sawada et al. 2015). The study of Transfer 
learning is motivated by the fact that people can 
intelligently apply knowledge learned previously to 
solve new problems faster or with better solutions. 

4.2 Proposed Method 

In this section, we propose a method that re-uses the 
network trained on a great number of various drivers 
data with different driving behaviors  (henceforth: 
source knowledge) to improve driving behavior 
anticipation performance for every particular driver 
even in the case if we have only few information on 
said particular driver (target knowledge).  

First, we train a stacked autoencoder neural 
network (DNN)source for anticipating driving 
behaviors using the source knowledge (i.e. a great 
number of various drivers data with different driving 
behaviors), as mentioned in the previous chapter. 
We note the parameters trained on the source 
knowledge as ሺ܅,  .ሻsource܊

Secondly, we evaluate the relation between the 
source knowledge {Xs} and the target knowledge 
{Xt} corresponding to each individual driver data. 
To evaluate the relation between source and target, 
we input the target knowledge {Xt} into the deep 
neural network (DNN)source trained on the source 
knowledge. Then, we compute the histograms based 
on the response of the output layer. After computing 
the histograms, we select the variables of the output 
layer corresponding to the target domain. And 
finally, we tune the parameters ሺ܅,  ሻsource in such a܊
way that the selected variables respond as the 
outputs of the target knowledge. 

It should be noted that the tuning of WS 

corresponds to the re-training of the deep neural 
network (DNN)SRC using the parameters WS as initial 
parameters and {Xt} as training data. We show our 
method diagram in Figure 5. 

5 EXPERIMENTAL RESULTS 

In this section, for the purpose of theoretical 
confirmation of our method, we perform two 
different experiments using real vehicle driving data. 

In the first experiment, we try to anticipate each 
driver’s acceleration/deceleration behavior a few 
seconds before they occur. While on the second 
experiment in hope of getting more individual 
variability, we set our target to anticipating the 
braking profile of a driver. Below are the full details. 

5.1 Car Speed Anticipation 

Acceleration/deceleration (A/D) behaviour of 
vehicles is important for various applications like the 
determination of yellow light length at inter-section, 
ramp design etc. But it is also a very important 
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aspect that can define a pleasant drive and that varies 
from driver to driver. Here, we try to anticipate each 
driver’s A/D behaviour based on his likings. 

 

Figure 6: Histogram of relation between multiple various 
driver data (source knowledge) and individual Driver A 
data (target knowledge). 

 

Figure 7: Experimental results shows improvement in 
anticipation accuracy for driver A by 3% for deceleration, 
11% for acceleration and 7% for neutral status. 

5.1.1 Experiment Overview 

We use 150 hours of driving data from 30 different 
drivers as our source knowledge XS. We use a 
separate 5 hours of driving data of a different 31st 
driver (“driver A”) as the target knowledge  XtA. 

We define an acceleration/deceleration (A/D) 
behavior as an increase/decrease in speed by 3km/h 
within a 5seconds time period respectively, while a 
change of speed of less than 3km/h is counted as a 
neutral status. 

In this experiment, our prediction model has 440 
units in the input layer, 1000 units in the first and 
second hidden layer, and 3 units in output layer. We 
evaluate this model based on its correctness in 
predicting future (A/D) actions. A separate driving 
data of driver A which is not included in XtA is used 
for test. We anticipate actions every 0.5 seconds 
where the algorithm analyzes the recent driving 
context and outputs a probability to each of the three 
driving behaviors: acceleration, deceleration and 
neutral status that will occur 2 seconds in the future. 

Figure 6 shows the computed histograms of the 
relation between source knowledge (i.e. A/D 

behavior based on multiple drivers’ data trained 
network) and target knowledge (A/D behavior of 
driver A).  The red, black and blue bars represent the 
frequency of acceleration, neutral status and 
deceleration respectively, for said particular driver A. 
As it is shown here, if we take for example the 
acceleration behavior, 36% of driverA’s acceleration 
maneuvers were anticipated as deceleration or 
neutral status. In other words, a model trained by the 
source knowledge contains information from 
multiple various drivers and can be used to 
anticipate actions for an “average” driver, which 
does not perform so well for said particular driver A. 

Next, we select the appropriate variables of the 
output layers that relate to the source knowledge XS 
trained model (henceforth called average driver 
model), then we tune the network parameters by re-
training the model using driver A data while keeping 
the average model initial parameters. 

Figure 7 shows the histograms of the new 
relation between “driverA-accommodated” source 
knowledge and target knowledge. Experimental 
results show that our proposed method improves 
anticipation accuracy for said driver A by an average 
of 7%.  

 

Figure 8: Proposed method performance compared to 
conventional methods. Our method shows better results 
for predictions at near and distant times in the future. 

5.1.2 Performance Comparison 

We compare our method to the following 3 cases:  
(a) Using small amount of individual data for 
training (10 times fewer than source knowledge). 
(b) Using source knowledge for training (i.e. average 
driver model)  
(c) Adding individual data to source knowledge and 
performing training (non-transfer). 

In the experiment above, we tried to anticipate 
driver A/D actions by predicting the car’s speed 
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behavior 2 seconds before occurring. Here, for the 
sake of completeness, we also evaluated our method 
for longer and shorter future time periods.  Figure 8 
shows the evaluation results. 

Our method shows better results for predictions 
at near and distant times in the future. It is also 
worth pointing out that the closer the future we are 
trying to anticipate, the less likely it is for different 
drivers to take different actions, while on the other 
hand the further we go in the future driving 
behaviors become more likely to vary depending on 
the person driving. This explains the reason why our 
method performs better for distant future predictions. 

5.2 Brake Profile Anticipation 

The application of the brakes is one of, if not the 
most affecting, driving action that separates a 
pleasurable drive from an average or unpleasant one. 

While some drivers prefer to brake long and 
slow, depending on the driving situation a fair share 
of drivers also enjoy a faster and more aggressive 
braking.  

Predicting the way a car brakes is an important 
task in order to accommodate self-driving cars to the 
driver’s taste. 

In this experiment, we propose a model that 
calculates a braking profile depending on the 
surrounding situation and that can be tailored to each 
driver’s liking. 

5.2.1 Experiment Overview 

We use the same driving data mentioned in 5.1.1, a 
total of 150 hours of driving performed evenly by 30 
different drivers, in addition to another 5 hours from 
a different driver A. But in order for our model to 
get a better capture of braking features, we limit our 
data to brake-scenes only, and then extract the 
braking profiles to be used as training data.  

We conduct our experiment on predicting the 
car’s deceleration profile at the event of when brake 
pedal is hit. It is also important to mention that we 
consider the distance to complete stop (i.e. distance 
to stop line or front car) as a known parameter. Thus, 
by calculating the time to complete stop, we 
anticipate the car’s speed at n different intervals in 
the future. In this experiment we set n to 10. We 
illustrate the definition of a brake profile in Figure 9.  

In this experiment, our model has 450 units in 
the input layer, 1000 units in the first and second 
hidden layer, 500 units in the third layer and 10 units 
in output layer. We use {Xs} = 10000 and n = 10, 
and {Xt} = 1000.  

 

Figure 9: Brake Profile: At the event of a brake, our model 
anticipates car speed at n (=10 in this experiment) 
different points in time until complete stop of the vehicle. 

 

Figure 10: Samples of braking profile prediction: We 
compare our proposed model (green line) to average driver 
model (Red). The black line shows the actual brake profile. 
Our proposed method shows better results for short and 
long time brakes. 

We train the deep neural network using the 
following objective function, 

E ൌ ටభ೙∑ ሺ௬೔ି௬ഢ෦ሻమ೙ೕసభ௬ො ൅ ට∑ ሺ௚௥ௗሺ௬೔ሻି௚௥ௗሺ௬ഢ෦ሻሻమ೙ೕసభ ௡   (4)

where y is the true value and y෤ the predicted value. ݃݀ݎሺݕ௜ሻ is the differential between observation i and 
i-1.  

Table 1: Brake profile prediction model comparison. 

Model RMSEvalue+RMSEshape 
{Xs} Trained 0.259 

{Xs+Xt} Trained 0.240 
Proposed 0.226 

5.2.2 Experiment Results 

Here, we consider two different aspects for evaluat-
ing our braking profile anticipation performance. We 
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calculate the Root Mean Square Error (“RMSE”) of 
the predicted values to measure our prediction in 
term of real values, and also we calculate the RMSE 
of the differential between observations to evaluate 
how well the prediction fits the “shape” of the brake 
profile. 

We use a separate driving data of driver A as test 
data. The prediction accuracies of the average model 
driver trained with {Xs}, the average model driver 
trained with {Xs+Xt} and the driver A tuned model 
using our method mentioned in 4.2 are shown in 
Table 1. Figure 10 shows two examples of brake 
profile predicted with our method. Our method 
improves prediction accuracy by 12.5%. 

6 CONCLUSIONS 

In this paper, we considered the problem of 
anticipating driving actions a few seconds before 
they are performed. Our work also enables greater 
comfort and satisfaction by crafting user experiences 
sensitive to individual driver preferences. 

We proposed a deep learning network that 
anticipates driving behavior estimation based on 
information of subject vehicle as well as surrounding 
vehicles and environment. We use the lane change 
anticipation task as an experiment ground to confirm 
the theory of our anticipation model, and we 
accomplished an accuracy of 88%. 

We proposed a method which enables the 
anticipation of driving behaviors that can be tailored 
to each driver, leading to improved user experiences. 
Our method re-uses a network trained on a great 
number of various drivers’ data with different 
driving behaviors and links it to a particular driver 
with particular taste to train a new model fitted to 
said driver.  

We confirm our theory by predicting individual 
driver acceleration/deceleration behaviors as well as 
braking profiles a few seconds before occuring. Our 
method shows better results compared to 
conventional methods where individual data quantity 
is too few (around 1/10 of the source knowledge). 

Furthermore, by applying this technology, we 
believe that estimating other than driving actions is 
also possible. For example, by analyzing driving 
behavior history or monitaring the driver’s state and 
condition, it is possible to predict dangerous driving 
operations. We also think that building an ideal 
personalized driver model by using the driving 
behavior history of the model driver, can realize safe 
and comfortable driving support. 
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