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Abstract: In computer programming courses programming assignments are almost mandatory, especially in a virtual
classroom environment. However, the source code plagiarism is a major issue in evaluation of students, since
it prevents a fair assessment of their programming skills. This paper proposes an obfuscation resilient approach
based on the static and dynamic source code analysis in order to detect and discourage plagiarized solutions.
Rather than focusing on the programming language syntax which is susceptible to lexical and structural re-
factoring, an instruction and an execution flow semantic analysis is performed to compare the behavior of
source code. Experiments were based on case studies from real graduation projects and automatic obfuscation
methods, showing a high accuracy and robustness in plagiarism assessments.

1 INTRODUCTION

In computer science graduation, practical exercises
for programming language courses are essential to
improve the learning process (Kikuchi et al., 2014),
specially through e-teaching platforms, such as Moo-
dle (Moodle, 2017). Although, the effectiveness of
virtual learning environments consist on ensuring that
students would not to be able to plagiarize, that is, to
be evaluated by someone else’s programming compe-
tence. Source code plagiarism consists in the partial
or complete reuse of a third-party solution instead of
writing its own source code. Despite possible copy-
right infringements, plagiarism in programming exer-
cises prevents a fair evaluation of students and creates
the burden of proof to ensure similarity assessment
(Cosma and Joy, 2012; Joy and Luck, 1999).

Due to the long time spent in manual verification
of source code, it is mandatory the use of automatic
source code plagiarism detection tools to verify sim-
ilarities between files. The major challenge for these
tools is the detection of false positive cases in sim-
ilar solutions of simple problems from introductory
courses (Modiba et al., 2016). To properly nullify pla-
giarized solutions, the similarity report selects imple-
mentations using a defined threshold which must be
reviewed by instructor.

In this paper, we propose a plagiarism detec-
tion tool based on both static and dynamic analysis.

The use of multiple approaches, greatly reduces the
chances of false positive cases, while the false neg-
ative condition still can be properly detected, due to
multiple metrics analyzed. The main contributions of
proposed approach are:

• Currently multiple languages are supported, such
as Assembly, C/C++, Go, Java, Pascal and
Python. There is no limitation including another
languages, however, the target specific develop-
ment tools output must be parsed and analyzed;

• Static analysis relies on extraction of emitted ma-
chine instruction by compiler infrastructure. This
method greatly reduces the impact of code obfus-
cation and re-factoring, since compiler optimizes
the source code ignoring syntactic modifications;

• By collection of system, libraries and software
calls plus profiling traces, the dynamic analysis
can check execution flow to focus in the behavior
of software. This approach identifies the most rel-
evant parts of application, detecting unused code
(dead code) or advanced re-factoring techniques.

The paper is organized as follows: in section 2,
the related work approaches are briefly described; in
section 3, the proposed plagiarism detection flow is
shown; in sections 4 and 5, the static and dynamic
techniques employed to compare source codes are ex-
plained, respectively; in section 6, the methodology
and experimental case studies are defined; and in sec-
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tion 7, the proposed approach achievements and fu-
ture work are summarized.

2 RELATED WORK

Some software plagiarism tools are freely available
for evaluation, such as: JPlag (KIT, 2017; Prechelt
et al., 2002) which converts the source code in
string of tokens to compare them using RKR-GST
algorithm; MOSS (Measure Of Software Similarity)
(Aiken, 2017; Schleimer et al., 2003) is based on a
string matching algorithm which divides the software
in k-grams, a contiguous sub-string with length of k;
Sherlock (Joy and Luck, 2017; Joy and Luck, 1999)
that reduces the software to tokens, listing similar
pairs and their degree of similarities in a visual rep-
resentation of graph; and SIM (Grune, 2017; Gitchell
and Tran, 1999) measures the structural similarities
using a string alignment approach. These tools are
used in this paper to evaluate the proposed approach
by comparing the similarity results in different case
studies.

The token-based approaches (KIT, 2017; Aiken,
2017; Joy and Luck, 2017; Grune, 2017; Muddu
et al., 2013) convert provided source codes in se-
quence of tokens to be compared using RKR-GST or
fingerprinting algorithms. These methods are gener-
ally more susceptible to code obfuscation methods,
such as identification renaming or code merging, for
example, once they use source code text as input. Ab-
stract Syntax Tree (AST) methods (Zhao et al., 2015;
Kikuchi et al., 2014) convert AST in a hash code
and sequence alignment, respectively. AST structur-
ing improves tokenization effectiveness, providing a a
more robust source code analysis, despite error rates
in arithmetic operations and processing efficiency.

Semantic analysis verifies the equivalence be-
tween basic blocks in binary level using fuzzy match-
ing (Luo et al., 2017; Luo et al., 2014) and a matrix
of term-by-file containing information about terms
frequency counts to find the underlying relationships
(Cosma and Joy, 2012). Instead of checking for to-
kens or structure, the semantic approach is focused
on the retrieval of different codes fragments which de-
scribe the same function. The limitations of methods
are inherent to static analysis which can be impaired
by indirect branches and choosing of optimal param-
eter settings.

The employment of unsupervised learning ap-
proach from features extracted from intermediate rep-
resentation of a compiler infrastructure, such as GCC
(Yasaswi et al., 2017), represents the extracted fea-
tures in a n-dimensional space to compare them pair-

wise, using the Euclidean distance measurement. De-
spite the obfuscation resilience provided by inter-
mediate representation processing and the machine
learning techniques, the feature selection relies on the
code optimization selected by the user and includes
no dynamic information which can improve perfor-
mance.

Unlike previous work, the dynamic analysis strat-
egy checks run-time behavior of software in order
to verify usage patterns and flow tracing. By the
analysis of dynamic stack usage patterns (Park et al.,
2015), this work claims that stack usage patterns are
invulnerable to syntactic modifications. To retrieve
stack information, the software is dynamically instru-
mented to capture function related instructions. An-
other method consists in check run-time semantic in-
formation (Choi et al., 2013) to investigate similari-
ties in binary codes. By the use of a memory tracer,
the region filtering eliminates irrelevant or unneces-
sary variables to allow sequence alignment compari-
son of memory regions. Although the effectiveness of
run-time behavior analysis, these approaches do not
take advantage of static code information which could
improve the similarity measurement confidence, spe-
cially in I/O intensive tasks, such as reading input
(problem) and write the output (answer) to files.

3 THE PROPOSED FLOW

An efficient assessment flow for practical program-
ming exercises relies on the automation of all pro-
cesses. In this automated environment, the forbidden
source code exchange or team collaboration is dis-
couraged due to high probability of penalties, even
in large class sizes. Besides the automated evaluation
processes, the key concept of proposed plagiarism de-
tection flow is the semantic analysis of software. This
analysis is performed by the use of both static infor-
mation at instruction level and dynamic behavior at
function invocation patterns and traces.

The ability to detect plagiarism is useless if the on-
line submission system is unable to authenticate the
students. Once properly identified by their institu-
tional accounts, the students are more aware of the
risks of engaging in source code plagiarism and they
will balance the work to avoid detection versus the
effort to solve the problem by themselves. In order
to prove plagiarism, the source code similarity is the
major metric to determine how to classify a pair of
solutions. A similarity threshold must be defined to
assess the plagiarism, but the instructor is able to vi-
sualize and to review the assessments. Even in the
situations where the detected similarity is below than
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defined threshold, the instructor can define a suspi-
cious similarity range to verify by sampling if some
unnoticed approach is being used to avoid detection.
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Figure 1: Plagiarism detection flowchart.

In Figure 1, a overview of proposed plagiarism de-
tection flow can be summarized in the following pro-
cesses:
• Online Submission: the user is authenticated to

upload Source Codes which is compiled to check
for syntactic errors or forbidden built-in libraries
importation, such as algorithms and data struc-
tures;

• Compiler Infrastructure: to generate a set of Soft-
ware Instructions from Source Codes, the avail-
able compiler optimization options are used in de-
fault, code size and execution time levels;

• Profiler and Tracer: by the capture of profiling in-
formation, libraries and system calls, the software
execution flow can be analyzed for invocation pat-
terns and tracing comparison;

• Code Parser: this step consists in the parsing of
assembly files generated to retrieve the semantic
behavior from source code functions;

• Pattern Checker: the software profiling identifies
core functions of application, that is, the functions
with largest running time and number of calls;

• Trace Match: all the software requests to the dy-
namic libraries or to the operating system are
compared to determine system requests similari-
ties;

• Semantic Analyzer: by the analysis of parsed
codes, the invocation patterns and execution
traces, the semantic similarity of a set of Source
Codes is calculated;

• Plagiarism Assessment: in this phase, using the
defined Threshold and Source Codes as input, the
plagiarism is discarded (No) or confirmed (Yes)
for all pairs of solutions in a HTML report.

4 INSTRUCTION LEVEL
SEMANTIC ANALYSIS

A plagiarized source code could be defined as the im-
proper reuse of software without changing the behav-
ior of a third-party solution. This source code ob-
fuscation to avoid the plagiarism detection is mostly
based on syntactic and structural modifications which
can be overcome by a resilient semantic analysis.

4.1 Behavior Assessment

Instead of checking for syntactic similarities, the pro-
posed semantic analysis is focused on the extraction
of software behavior from instructions emitted by
compiler.

int search1(int x, int* V, unsigned int n) {
unsigned int i = 0;
int index = -1;
while(i < n && index == -1) {

if(V[i] == x) index = i;
i++;

}
return index;

}

int search2(int* X, int v, int N) {
int pos = -1;
for(int a = 0; a < N && pos < 0; a = a + 1)

pos = (X[a] != v) ? (-1) : (a);
return pos;

}

Figure 2: Sequential search source code examples.

As can be seen in Figure 2, the two sequential
search examples provided have a quite distinct syntax,
but exactly the same behavior. This is a straightfor-
ward example of how difficult is to assess the source
code plagiarism without checking underlying behav-
ior.

A side-by-side comparison of the functions
search1 and search2 is shown in Figure 3, where
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search1:
...
-
...
-
-
...
! jae
cmpl
! je
...

search2:
...
+ cltq
...
+ jmp
+ mov
...
! jge
cmpl
! js
...

Figure 3: Side-by-side instructions comparison.

− and + denote a missing or added instruction, re-
spectively, and ! highlights the difference between in-
structions. Applying Longest Common Subsequence
(LCS) algorithm (Bergroth et al., 2000), a similarity
of 92% between the functions is detected.

4.2 Similarity Score

All the functions of source codes are processed
as position-independent code which allows the re-
siliency against interchange of source code placement
and merging of sequentially called functions.

X1

X2

...

Xn−1

Xn

Y1

Y2

...

Ym−1

Ym

YX

Figure 4: Position-independent similarity check.

Considering the source files X and Y , as shown
in Figure 4, the similarity score of each function Xi
versus Yj, where i∈ [1,n] and j∈ [1,m], consists in the
best match obtained from LCS algorithm. In Equation
1, the maximum similarity of comparison of function
Xi with the functions of Y , that is, the best match of Xi
and Yj.

ρ(Xi,Y ) = max
j=m

∑
j=1

LCS(Xi,Yj) (1)

Once the function similarity is known, the next
step is to calculate the weight ω of this function in

whole source code. As detailed in Equation 2, the
function weight ω is obtained through the division of
size of function Xi by all X functions.

ω(Xi) =
|Xi|

∑
k=n
k=1 |Xk|

(2)

Finally, the similarity score between X and Y
source codes is defined by the sum of weighted sim-
ilarities of Xi functions against the Y source code, as
defined in Equation 3.

σ(X ,Y ) =
i=n

∑
i=1

ωi×ρ(Xi,Y ) (3)

5 EXECUTION FLOW TRACE

No matter how advanced static source code analysis
is, the plagiarist can include large amounts of unused
or rarely called functions (dead code), just to deceive
similarity comparison. Instead of checking software
statically, the source code profiling aims to retrieve
dynamic behavior by the analysis of execution flow,
that is, by the fetching all function, libraries and sys-
tem calls, plus profiling traces.

X1

X2 X3

X4 X5

X6

X7

D1

D2

D3

Figure 5: A call-graph generated from the execution.

The execution flow analysis consists in tracing of
function Xi call history from software run, as illus-
trated in Figure 5. The dead code functions D j can
be easily detected due to null or very low influence in
overall function call tracing. Hence, the run-time se-
mantic information acquired from dynamic behavior
is much harder to be obfuscated by re-factoring tech-
niques.

5.1 Library and System Calls Capture

In a Linux environment, there are tracing tools to dy-
namically intercept the library calls and systems calls
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requested by a process, using ltrace (Cespedes, 2017)
and strace (strace project, 2017), respectively. This
information is quite useful because it provides a black
box view of how software interacts with the libraries
and system.

...

Xi

Xi+1

Xi+2

Xi+3

...

...

Yj

Yj+1

Yj+2

Yj+3

...
Figure 6: The library or system calls trace comparison.

Once the source code traces were retrieved from
applications X and Y , the LCS algorithm is applied to
compare the run-time calls, as shown in Figure 6. Ac-
quired information shows the sequence of calls per-
formed by each solution, providing a fingerprint of
resource usage (e.g., memory allocation) and services
requested (e.g., I/O operations).

5.2 Software Profiling

Besides the trace capabilities, the most valuable met-
ric provided by software profiling tools, such as GNU
gprof (GNU, 2017) or Valgrind (Valgrind, 2017), is
the software invocation patterns. Instead of consid-
ering the size of source code, the application profil-
ing allows the identification of core functions by de-
termining the amount of calls performed and overall
time elapsed.

Xi Xi+1 Xi+2 Xi+3 Xi+4 Yj Yj+1 Yj+2 Yj+3 Yj+4

Figure 7: Example of X and Y invocation patterns.

By the comparison of most important functions,
sorted by descending order of time spent in execution,
the proposed approach focus in core codes (Park et al.,
2015) which run-time behavior are hard to be replaced
or removed. In Figure 7 it is shown an example of a
set of functions Xi and Yj invocation patterns from X
and Y applications, respectively, which can be used to
determine the execution profile.

6 EXPERIMENTAL RESULTS

To properly evaluate the proposed techniques, in
next three subsections the methodology of performed
experiments is detailed, the similarity comparison
scores from available tools is shown and a discussion
of experiments is held.

6.1 Methodology

The burden of proof (Cosma and Joy, 2012; Joy and
Luck, 1999) is certainly the major challenge in pla-
giarism assessment. Some source code modifications
can make it hard or impossible the demonstration of
similarities due to the complexity of changes made.
In order to avoid questions about applied effort in
source code re-factoring techniques, the obfuscation
tool Stunnix C/C++ (Stunnix, 2017) was used in at-
tempt to deceive plagiarism tools by: stripping spaces
and newlines; MD5 hashing of the identifiers; and
converting strings to hex escape codes.

Four different possibilities can occur while code
similarity is being performed. The intended scenario
occurs when innocent solutions are freed (true nega-
tive = T N) and plagiarism is correctly detected (true
positive = T P). On the other hand, there are unwanted
scenarios in which plagiarized code is not uncovered
(false negative = FN) and not guilty implementations
are wrongly accused of plagiarism (false positive =
FP). The accuracy of plagiarism detection, denoted
by α ∈ [0,1] in Equation 4, can be defined as the
sum of properly asserted solutions divided by the to-
tal number of solutions. A similarity threshold of 90%
was chosen to classify a solution as plagiarism.

α =
T N +T P

T N +FN +T P+FP
(4)

To accomplish a realistic tool comparison, three
sets of computer science graduation projects written
in C/C++ were selected from a solution database.
These exercises addresses the implementation of a
ship load sorting using Mergesort algorithm, labeled
as set A; a Knuth-Morris-Pratt (KMP) gene finder for
disease checking in DNA sequence, labeled as set B;
and a instruction set simulator for a hypothetical RISC
machine, labeled as set C. Considering only fully cor-
rect solutions to compare equivalent source codes, the
sets had their assessments by X9 shown in Table 1.

Table 1: The assessments for sets A, B and C.

Set T N T P FN FP
A 23 1 0 1
B 24 1 0 1
C 4 0 0 1
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Figure 8: The similarity analysis of sets A, B and C.

All the assessments in Table 1 were performed by
human source code inspection for each pair of solu-
tions. The false positive cases are closely related to
reuse of source code fragments from lectures or ref-
erences. Also, the low complexity of problems with
lines of code ranging from 146 to 462 in set A and
from 115 to 240 in set B could lead to this misclassi-
fication. In set C, a pair of implementations had 90%
similarity level, although no strong evidence of pla-
giarism were found in investigation.

6.2 Tool Comparison

As described in methodology, the evaluation of pla-
giarism approaches is based on its accuracy, denoted
by α, that is, the measurement of how distant is clas-
sification from correct assessment stated for sets A, B
and C.

In Table 2, the tools accuracy for proposed case
studies A, B and C are shown. None of the compared
tools were capable to detect T P in sets A and B, while
SIM tool was the only one to wrongly classify three
solutions of set A as plagiarism.

For set A, in the T P cases which similarities were

Table 2: The accuracy of tools in sets A, B and C.

Tool A B C
JPlag 0.9600 0.9615 1.0000
MOSS 0.9600 0.9615 1.0000

Sherlock 0.9600 0.9615 1.0000
SIM 0.8400 1.0000 1.0000
X9 0.9600 0.9615 0.8000

above of 10% (Figure 8a), JPlag and SIM achieved,
respectively, 57.7% and 82% similarities, while X9
reported a 98% similarity. Considering set B, Sher-
lock was the only to report a low similarity of 1% for
a T P solution, assessed by X9 with a 98% similarity,
although JPlag, MOSS and SIM showed 80.9%, 81%
and 90% similarities (Figure 8b), respectively. No T P
solution was detected in set C by any tool (Figure 8c),
just a FP case from X9 approach with a 90% similar-
ity.

To verify the resilience of plagiarism tools to
source code obfuscation, the sets A′, B′ and C′ were
generated by Stunnix C/C++ (Stunnix, 2017) from
plain sets A, B and C, respectively. In this case study,
the plagiarism tool evaluation focuses on the ability to
detect an automated source code obfuscation, that is,
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Figure 9: The similarity between plain and obfuscated sets.

the evaluation of A ≡ A′ (Figure 9a), B ≡ B′ (Figure
9b) and C ≡C′ (Figure 9c) statements.

Table 3: The accuracy checking for sets A′, B′ and C′.

Tool A′ B′ C′

JPlag 1.0000 1.0000 0.8000
MOSS 0.0000 0.0000 0.0000

Sherlock 0.0000 0.0000 0.0000
SIM 0.0000 0.0000 0.0000
X9 1.0000 1.0000 1.0000

The accuracy of tools used to detect plagiarism
from obfuscated source codes is shown in Table 3.
In all sets, X9 detected plagiarized code with at least
99% of similarity, thus, achieving a perfect accuracy.
Considering both sets A′ and B′, JPlag was the only
tool to identify the obfuscated solution with a 94%
similarity at least. In set C′, JPlag was the only tool
to detect plagiarism in 4 T P solutions with a 100%
similarity, while 1 FN case achieved a 78.2% level.

6.3 Discussion

None of the plagiarism analysis performed by related
tools contradicted the assessments shown in Table 1,

except for a clear classification issue from SIM, while
analyzing the set A. These results can confirm the
human assertions made about sets A, B and C, but
the case study performed using automated obfusca-
tion sets A′, B′ and C′ avoided questions about the
proof or the refutation of the plagiarism evaluations.

Undesired FN cases are critical for plagiarism as-
sessment, since they define the reliability of auto-
mated checking. JPlag had the best performance,
missing only 1 FN in obfuscated sets A′, B′ and C′,
while Sherlock achieved worst results, detecting none
of plagiarized solutions. Despite good results, JPlag
was unable to identify 2 T P cases in sets A and B
which have been detected by X9 approach with a 98%
similarity.

The token-based algorithm of JPlag was success-
ful due to the fact of ignoring most of syntactic infor-
mation of source code to generate tokens from dec-
larations and operations performed. The 2 T P unde-
tected cases confirm that JPlag is vulnerable to tar-
geted source code level attacks, such as statement re-
placement or reordering, which can be highly suc-
cessful with low effort. In order to deceive X9, it
would be necessary a source code re-factoring to dra-
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matically change the generated operations and the ex-
ecution profile, thus, as hard as implementing a solu-
tion from scratch.

7 CONCLUSION

This paper has proposed a robust approach for source
code plagiarism detection, combining static informa-
tion from software instructions and dynamic behavior
from acquired profile and traces. The semantic analy-
sis techniques were effective in detecting plagiarized
solutions in a real case study scenario. Despite minor
false positive cases, the X9 was able to detect all pla-
giarized solutions, even when they were heavily ob-
fuscated with a perfect accuracy level.

The source code similarity comparison is a chal-
lenging task and the proposed approach has plenty
space for improvements, such as: the definition of a
larger number of labeled solutions in experiments, in-
cluding interpreted and script based languages, which
can improve X9 evaluation; in semantic analysis, the
results can be improved by ignoring known algo-
rithms from lectures or mandatory library/system call
requests, which would avoid FP cases; and the release
of X9 tool for public usage as web service, allowing
further feedback to enhance the development.
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