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Abstract: The high-resolution radar sensors have the ability to detect thousands of reflection points per cycle, which 
promotes the perception capability on a pixel level similar to video systems. In this paper, an occupancy 
grid map is created to model the static environment. The reflection amplitudes of all detection points are 
compensated, normalized, and then converted to the detection probability based on a radar sensor model. 
According to the movement of the ego vehicle, the a posteriori occupancy probability is computed to build 
the occupancy grid map. Thereafter the occupancy grid map is converted to the binary grid map, where the 
grids in the obstacle areas are defined as occupied. In order to eliminate the outliers, the connected occupied 
grids are clustered using the Connected-Component Labelling algorithm. Through the Moore-Neighbour 
Tracing algorithm the boundaries of the clustered occupied grids are recognized. Based on the boundaries, 
the interval-based free space detection is performed using the Bresenham's line algorithm. As mentioned, 
the occupancy grid map and the free space detection results obtained from radar road measurements match 
with the real scenarios. 

1 INTRODUCTION 

Taking the advantages of all-weather robustness, 
various applications with the radar sensors are found 
in the automotive industry, especially in the area of 
Advanced Driver Assistance Systems (ADAS). For 
instance, in Adaptive Cruise Control (ACC) system 
the radar sensors can detect objects within a wide 
range. After acquiring the value of object distance, 
the vehicle can be accelerated or decelerated 
automatically by the ACC system. 

The development of ADAS towards Highly 
Automated Driving (HAD) improves continuously 
the demands on the high-resolution radar sensors. In 
order to handle complex applications and traffic 
situations, the radar sensors need a high angular and 
range resolution to capture enough environment 
information. Additionally, the high-resolution radar 
is required for the data fusion with the LiDAR or 
camera sensor on a pixel level. 

The fast chirp linear Frequency-Modulated 
Continuous-Wave (FMCW) radar systems (Chirp 
Sequence radar) with an antenna array is already 

proved to be one of the most suitable solutions 
(Meinl et al., 2017). Because of the thousands of 
reflection points detected within one single measure-
ment cycle, the environment perception ability of 
this radar system is at a high resolution level. 

In the field of environment modelling with high 
resolution data, one of the common methods is 
occupancy grid mapping, which is originally known 
from probabilistic robotics (Moravec and Elfes, 
1985) (Elfes, 1989). In this method, the environment 
is divided into a pattern of uniform grid cells, after 
which the detection points are filled into the 
corresponding grids. Instead of the points, the grids 
are tracked over time and hence the measurement 
noise and uncertainties are eliminated. At the same 
time, the probability of each grid cell being occupied 
is computed. This method is sufficient to model the 
static environment, because the reflection points 
from the static objects are detected at the same 
physical location in continuous measurement cycles 
and thus a stable occupancy grid map is achieved. 

Based on the occupancy grid map, the free space 
zone can be recognized. For the vehicle trajectory 
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planning, the free space shall be estimated as 
precisely as possible, otherwise a collision with 
obstacles nearby may occur, especially after an 
evasive manoveur (Mouhagir et al., 2017). 

The paper is organized as follows: Section 2 
presents the state of the art in terms of the 
occupancy grid mapping and free space detection. 
Section 3 explains the used radar sensor and data 
preparation tasks like the coordinate system are 
explained. In Section 4, an approach of the 
occupancy grid mapping with the high resolution 
radar data is described. Based on the occupancy grid 
map, the algorithms required to detect the free space 
zone are presented in Section 5. Finally, a short 
summary for this paper is given. 

2 STATE OF THE ART 

In this section the works related to the occupancy 
grid mapping and free space detection are described. 

2.1 Bayes’ Theorem 

Based on the Bayes’ theorem, the new data in the 
current measurement cycle are combined with the 
previous data during the mapping of occupancy grid, 
in order to calculate the a posteriori probability over 
maps given the data: ݌(݉|ܴଵ:௧, ଵܸ:௧), where ݉ is the 
grid map, ܴଵ:௧ is the set of sensor measurement data 
from the time 1 to ݐ, and ଵܸ:௧ the set of the vehicle 
position data from the time 1 to ݐ. ℓ௧ = ݃݋݈ ,ଵ:௧ܴ|݉)݌ ଵܸ:௧)1 − ,ଵ:௧ܴ|݉)݌ ଵܸ:௧) (1)

The log odds ratio of the a posteriori probability ℓ௧ in the equation (1) can be computed as following ℓ௧ = ℓ௧ିଵ + ݃݋݈ ,௧ܴ|݉)݌ ௧ܸ)1 − ,௧ܴ|݉)݌ ௧ܸ) − ℓ௢, (2)

where ݌(݉|ܴ௧, ௧ܸ) represents the detection 
probability processing the sensor data ܴ௧ and vehicle 
data ௧ܸ of the current measurement. The log odds 
ratio of the detection probability before processing 
any measurements ℓ௢ is typically assumed as 0, 
since nothing is known about the surrounding 
environment before the first measurement. 

2.2 Occupancy Grid Mapping 

The occupancy grid mapping is previously 
implemented with the LiDAR sensor (Weiss, 

Schiele, and Dietmayer, 2007) and camera sensor 
(Badino et al., 2008). With an advanced forward 
inverse sensor model, the reflection data from 
LiDAR sensor are converted to the occupancy 
probability, which is used as the detection 
probability in the Bayes’ theorem (Nuss, 2017). If 
the LiDAR sensor detects an object, the grid, where 
the target is located, is recognized as occupied (see 
Figure 1). Between the occupied grid and LiDAR 
sensor, the grids within a certain radial distance to 
the LiDAR sensor are labelled as free. The 
occupancy probability of the grids over the distance 
threshold is computed with a linear function of the 
distance between the grids and the target. The grids 
(grey in Figure 1) without any measurement 
information are marked as unknown. 

 

Figure 1: LiDAR sensor model. 

Since the radar sensors can sense objects behind 
obstacles, a different sensor model is needed for the 
computation of the occupancy probability. 
Degerman, Pernstål and Alenljung (2016) extracted 
Signal-to-noise ratio (SNR) and computed the 
detection probability together with the Swerling 1 
model. Using a static radar, Clarke et al. (2012) 
calculated the occupancy probability as a function of 
the reflection power, Fast Fourier Transform (FFT) 
bin number of the range, as well as the bearing. 
Werber et al. (2015) utilized the information about 
the Radar Cross Section (RCS) to develop the 
amplitude-based approach with occupancy grid 
mapping. Considering the different properties and 
modulations of the radar sensors, a general radar 
sensor model can be created by converting the 
reflection strength of the detection points into the 
occupancy probability. 

Since the previous automotive radar sensors 
provide reflection data on the object level, the 
occupancy grid map is often created from multiple 
measurements in a limited area with the 
Simultaneous Localization and Mapping (SLAM) 
algorithm. Combining all the measurements, an 
occupancy grid map of the whole measured area is 
built, which helps to locate the vehicle position. The 
grid map is also used to classify the stored objects 
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on the cell level (Lombacher et al., 2017). However, 
this approach is not applicable for the occupancy 
grid mapping in the scope of real-time 
measurements. 

2.3 Free Space Detection 

Based on the occupancy grid map, the free space 
detection function is already developed in some 
previous works with the LiDAR and camera sensor. 

With the LiDAR sensor model the free space is 
defined as a function of the distance between the 
sensor and the target (Homm et al., 2010). The 
further works focus on the road border recognition 
with the classification ability in terms of the camera 
sensor data (Badino, Franke and Mester, 2007) 
(Andrew and Isard, 1998). Konrad, Szczot and 
Dietmayer (2010) presented a road course estimation 
approach using a multilayer laser scanner. 
Lundquist, Schön and Orguner (2009) created a 
curve fitting method to detect the road boundary on 
the motorway. Schreier, Willert and Adamy (2016) 
developed a parametric free space map, which 
described a B-spline contour of arbitrarily shaped 
outer free space boundaries around the ego vehicle 
with additional attributes of the boundary type. In a 
complex vehicle environment, a large number of the 
curve parameters have to be estimated. 

3 MEASUREMENT SETUP AND 
DATA PREPARATION 

A developed high performance radar system is 
installed in the test vehicle and the measurement 
data are recorded. The ego vehicle motion model is 
simulated with the vehicle dynamic data from the 
Controller Area Network (CAN) bus. The coordinate 
systems of the vehicle and the grid map are adapted 
with each other. 

3.1 Radar Sensor 

A 77 GHz FMCW experimental high performance 
radar system is developed and mounted at the front 
of the vehicle (see Figure 2) (Li, 2017). A Chirp 
Sequence modulation with bandwidth B = 2.4 GHz, 
observation cycle time T = 50 ms and a 16 channel 
receive antenna array is applied. 

 

Figure 2: Experimental radar sensor and FPGA board. 

The measured raw data dimensions are 4096 
samples, 1024 ramps and 16 channels. A Field-
Programmable Gate Array (FPGA) development 
board is used to realize the signal processing 
algorithms. A FFT over the samples is performed to 
determine the distance information (range) of 
detection points. For radial velocity detection, a 
second FFT over the ramps is computed. In these 
two dimensions a Chebyshev window is employed. 
An Ordered Statistics Constant False Alarm Rate 
(OS-CFAR) algorithm generates a threshold for the 
target extraction of the calculated two dimensional 
range-Doppler spectrum. The targets above the 
threshold level are processed and their directions 
(angle of arrival) are calculated with a Maximum 
Likelihood algorithm. 

A velocity threshold is set to select the relevant 
target points from the static environment. The range 
and angle of the reflection points in the radar polar 
coordinate system are converted to ݔ௥,௜ and ݕ௥,௜ in 
the Cartesian coordinate system. The middle of the 
vehicle rear axle is defined as the origin point of the 
coordinate system. The reflection amplitude ܣ௥,௜ of 
each point is computed with the signal processing 
algorithm above. Thus, the information of reflection 
points ܴ௧ at the time t can be represented by ܴ௧ = ,௥,௜ݔൣ ,௥,௜ݕ ,௥,௜ܣ , ൧்ݐ ݅ ∈ 1 … ܰ, (3)

where ܰ is the number of the reflection points. 

3.2 Vehicle Motion Model 

Figure 3 shows the vehicle coordinate system 
defined by ISO 8855:2011. 
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Figure 3: Ego vehicle motion model. 

From the CAN-Bus, the vehicle dynamic data 
like velocity ݒ, acceleration ܽ and turn rate ሶ߮  are 
recorded. The ego vehicle motion is calculated based 
on the Constant Turn Rate and Acceleration (CTRA) 
model (Stellet et al., 2015) by 

൦ݔሶݕሶݒሶ߮ሶ ൪ = ൦ݒ ∙ ݒ(߮) ݏ݋ܿ ∙ ሶ߮ܽ(߮) ݊݅ݏ ൪. (4) 

By integrating equation (4), the ego vehicle 
position is calculated and presented by 

௧ܸ = ሾݔ௩, ,௩ݕ ߮௩,  ሿ். (5)ݐ

Based on the ego vehicle position, the grid map 
is tracked. 

3.3 Grid Map Coordinate System 

Generally the coordinate system of the occupancy 
grid map can be defined by two methods: 

1) Ground-fixed coordinate system. The ego 
vehicle moves in this coordinate system at different 
points. This method is suitable for the measurement 
at limited place, like parking lot, otherwise a large 
grid map is recommended to ensure the ego vehicle 
is always in the map. 

2) Vehicle-fixed coordinate system. The grid 
map is shifted and rotated to keep the origin point 
staying at the middle point of the vehicle rear axle. 
However, undesirable offsets appear during the shift 
and rotation. After the movement of the ego vehicle, 
one single grid in the past map may occupy several 
new grids in the shifted and rotated map, which 
makes the grid map unstable or inaccurate. 

To model and visualize the environment around 
the vehicle in any places, the grid map coordinate 
system needs to move with the ego vehicle like in 
method 2. Meanwhile, some modifications are 
applied to solve the offset problem. According to the 
vehicle position, the grid map is just shifted with 
integer rows and columns in x- and y- direction. The 
rest difference between the origin point of the grid 

map and the ego position ݔ௩ᇱ  and ݕ௩ᇱ is retained (see 
Figure 4). The orientation of the grid map is fixed by 
using the ego vehicle direction from the first 
measurement. During the vehicle motion the grid 
map is not rotated, instead the orientation of the ego 
vehicle ߮௩ is saved. These values are used to update 
the points in the coordinate system of the grid map. 
With this method, the grid map is shifted in such a 
way, that no offset is caused during tracking grid 
map with the vehicle motion. 

The length and width of the whole grid map is 
adapted with the detection range of the radar sensor. 
The size of a single grid is comparable with the 
resolution of the radar sensor. 

 

Figure 4: Grid map coordinate system. 

The coordinates of the radar detection points in 
the coordinate system of the ego vehicle are 
converted into the grid map coordinate system by ቈݔ௥,௜ᇱݕ௥,௜ᇱ ቉ = ൤ܿ߮ݏ݋௩ ௩߮݊݅ݏ௩߮݊݅ݏ− ௩߮ݏ݋ܿ ൨ ቂݔ௥,௜ݕ௥,௜ቃ + ൤ݔ௩ᇱݕ௩ᇱ ൨. (6)

4 OCCUPANCY GRID MAPPING 

Depending on the position, the radar reflection 
points are assigned into the corresponding grids. In 
each time step, the occupancy grid is updated 
considering the current measured value by the radar 
sensor and the previous value of the grid. This leads 
to reduced measurement uncertainties and errors, 
since the real obstacles are typically detected in 
continuous measure cycles and mapped in the same 
grids over time. 

The reflection strength of every new point is 
converted into a normalized value. Combining the 
values of all points in one single cell, the detection 
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probability in the cell is calculated. In each cycle 
this probability is computed and combined with each 
other to gain the a posteriori probability, which 
builds the final valid occupancy grid map. In the 
following part, the approach of the detection 
probability and a posteriori probability is introduced. 

4.1 Detection Probability 

In Figure 5, an image of one measurement cycle at a 
parking spot is shown, its corresponding bird's-eye 
view of the raw radar data is presented in Figure 6. 
In the next part, the reflection amplitudes of all 
detection points are converted to the detection 
probability in each grid. 

 

Figure 5: Image of real scenario at a parking spot. 

 

Figure 6: Bird's-eye view of radar reflection points. 

4.1.1 Free-Space Loss Compensation 

The free-space loss describes the decrease of the 
power density during the propagation of 
electromagnetic waves in free space according to the 

distance law, without taking additional attenuating 
factors (e.g. rain or fog) into account. The reflection 
amplitude is weakened with the increasing distance 
to the radar sensor. 

In order to make the reflection strength and the 
converted detection probability of the obstacles 
independent of the distance, the free-space loss is 
compensated. The relationship between the 
reflection amplitude and the radial distance of the 
points is given in the equation (7). The amplitudes of 
all points are converted to the equivalent value ܣ௥,௜ே 
at a reference distance ݀ே to the radar sensor. ܣ௥,௜ே = ௥,௜ܣ − 40 ݋݈ ଵ݃଴ ቆ݀௥,௜ᇱ݀ே ቇ 

(7)

with ݀௥,௜ᇱ = ටݔ௥,௜ᇱ ଶ + ௥,௜ᇱݕ ଶ 

4.1.2 Antenna Gain Compensation 

The reflection amplitudes of the points are 
additionally influenced by the angle between the 
target and the radar sensor, which is related to the 
antenna gain. The different antenna gain pattern is 
compensated, to achieve a reflection amplitude that 
is independent of the angle of arrival. In order to 
know the relationship between the amplitude and the 
angle of the reflection point, a corner reflector is 
placed at the same distance but with different angles 
to the radar sensor and the reflection amplitudes of 
the reflector at different angles are measured (see 
Figure 7). With this antenna pattern the amplitudes 
of all points are converted to an isotropic value that 
eliminates any angular dependency. 

 

Figure 7: Antenna gain empirical characteristic curve. 

4.1.3 Reflection Amplitude Normalization 

The reflection amplitude is a relative value and 
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varies with different signal processing algorithms 
and parameters. However, the relationship of the 
amplitude between different points always presents 
the relative reflection strength. Therefore, the 
compensated amplitude is normalized to a value 
between 0 and 1. For each measurement cycle all the 
points are sorted by their amplitudes (see Figure 8). 

 

Figure 8: Distribution and normalization of reflection 
amplitude. 

 

Figure 9: Normalised reflection amplitude. 

If the maximum amplitude value is set to 1 for 
the reflection strength and the minimum amplitude 
value to 0, an unsuitable scale is applied, since some 
points have an extreme value. Due to this, the 10% 
maximum value is normalized to 1 and the 10% 

minimum value to 0. The reflection amplitude 
between them is converted according to a linear 
function to the value. Thus, the reflection strength of 
all points is normalized (see Figure 9). 

4.1.4 Detection Probability in Single Grid 

After the compensation and normalization of the 
reflection amplitude the points are allocated into the 
grids. Each grid can be occupied by several points 
with different reflection strength. The detection 
probability in one single grid can be calculated with 
the reflection strength of all points or the point 
number in this grid. In the grid some points with 
high reflection strength are detected from one object, 
while some points with a low reflection strength are 
reflected from another object nearby because of the 
antenna side lobes. The influence of those points 
with low reflection strength should be ignored, 
otherwise a low detection probability is computed by 
calculating the average reflection strength in one 
grid. Besides, the point number in every grid 
depends strongly on the size of the grid. 

For the reasons above, only the points with 20% 
maximum reflection strength values in each grid are 
considered in the calculation. Their average 
reflection strength value is defined as the detection 
probability in the grid. In Figure 10 the detection 
probability of all grids in one measurement cycle is 
depicted. 

 

Figure 10: Detection probability (Ego vehicle is near 
origin point). 
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4.2 A Posteriori Probability 

The radar sensor model converts the reflection 
strength to the detection probability, which is 
different from the LiDAR sensor model, so the 
equation (2) is modified. 

At first, the detection probability is scaled to a 
value between 0.5 and 1 with the equation (8), 
otherwise the reflection strength under 0.5, which is 
also from the obstacles, leads to the reduction of the 
log odds ratio of the a posteriori probability. ݌ᇱ(݉|ܴ௧, ௧ܸ) = 0.5 + 0.5 ∗ ,௧ܴ|݉)݌ ௧ܸ) (8)

However, with the scaling of the detection 
probability, the a posteriori probability is increased 
every time when the data from the new measurement 
cycle are calculated. This problem is solved by the 
degradation factor k. Then the log odds ratio of the a 
posteriori probability is computed with the equation ℓ௧ = ݇ ∗ ℓ௧ିଵ + ݃݋݈ ,ᇱ(݉|ܴ௧݌ ௧ܸ)1 − ,ᇱ(݉|ܴ௧݌ ௧ܸ) . (9) 

With the movement of the ego vehicle, the grids 
with the value of occupancy probability are shifted. 
Thus, the grid holds the detection probability based 
on the radar data in the current cycle and the 
occupancy probability in the previous cycles. The 
previous radar data should have less influence on the 
final occupancy probability than the new data. With 
the degradation factor k, the log odds ratio of the 
occupancy probability ℓ௧ିଵ is reduced with respect 
to time. Therefore in each cycle the value of 
occupancy probability in the grids is reduced with 
the degradation factor at first and then increased 
with the current detection probability. 

The log odds ratio ℓ௧ in the grid is normalized to 
the value between 0 and 1, which indicates the a 
posteriori occupancy probability. The maximum and 
minimum limits are decided with a prognosis 
method: an object is located in one grid and detected 
with the same detection probability ݌௧௛ in every 
cycle. After n measurement cycles, the grid is 
assumed to be 100% occupied. The current log odds 
ratio value is set to be upper limit ℓ௧௛,௠௔௫, which is 
represented by value 1 of the a posteriori probability. ℓ௧௛,௠௔௫ can be calculated by 

ℓ௧௛,௠௔௫ = ෍ ݇௜ିଵ௡
௜ୀଵ ∗ log ௧௛1݌ − ௧௛݌ . (10)

In the following m cycles, no point with any 
reflection is detected in this grid. The grid is 
assumed to be free again. The current log odds ratio 

value is defined as the lower limit ℓ௧௛,௠௜௡, which is 
represented by value 0 for the a posteriori 
probability. ℓ௧௛,௠௜௡ can be calculated by ℓ௧௛,௠௜௡ = ℓ௧௛,௠௔௫ ∗ ݇௠. (11)

The log odds ratio between the upper and lower 
limits is converted to the value between 0 and 1. In 
Figure 11 the change curve of the occupancy 
probability with the measurement cycle in the 
prognosis (݌௧௛ = 0.9, ݊ = ݉ = 10) is shown. In the 
10th cycle the occupancy probability reaches the 
maximum value, then decreases and appears in the 
20th cycle at the minimum. 

 

Figure 11: Change curve of occupancy probability in 
prognosis.  

4.3 Results 

 

Figure 12: Occupancy grid map at a parking spot. 
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The a posteriori probability stands for the final 
occupancy probability in each cycle. In Figure 12 
the occupancy grid map from the measurement at a 
parking spot is shown, where several trucks and vans 
are parked (see Figure 5). In the occupancy grid map 
the contours of the trucks are recognized, although 
they are parked close to each other. The occupancy 
probability in the area of trucks is almost 1 and the 
grids between them have an occupancy probability 
of 0. This occupancy grid map represents correctly 
the static environment. 

4.4 Amplitude Grid Mapping 

The amplitude grid mapping is another common 
method to map the grid, which normalizes the 
maximum value of reflection amplitude over time in 
every grid into the occupancy probability. In Figure 
13, an example of the amplitude grid mapping is 
shown. In contrast to the occupancy grid mapping, 
the measurement noise is not filtered and presented 
in the grid map, since only the maximum value is 
considered and the duration cycle of the 
measurement value is ignored. Because of the 
measurement noise, in some existing free space a 
high occupancy probability is computed, which 
disturbs the free space detection. 

 

Figure 13: Example for amplitude grid mapping. 

5 FREE SPACE DETECTION 

The free space detection in the whole area around 
the vehicle is not achievable, because no data are 
captured out of the detection range and aperture of 
the radar sensor or behind some large obstacles. For 
the vehicle motion planning the field of interest 
(FOI) is the area along the possible trajectory. At 
first the occupancy status in all grids is determined 

in order to create a binary grid map. With the 
clustering method, the occupied areas, which are 
caused by the constant and strong reflection points 
from the measurement errors, are defined as free 
space again. Based on the border recognition 
algorithm, the boundary of the occupied areas is 
detected, which realizes the free space detection 
along the vehicle trajectory. 

5.1 Occupancy Status Determination 

Before detecting the free space, it should be 
determined, whether the grids are occupied or not. 
The easiest way is to use a constant threshold of the 
occupancy probability, the occupancy status of the 
grids is decided, so that the occupancy grid map can 
be converted to a binary grid map (see Figure 14). 

 

Figure 14: Binary grid map with threshold of occupancy 
probability (red: occupied grid, white: free grid). 

However, the occupancy status of some grids has 
a mismatch with the respective value due to the 
features of the radar sensor and the OS-CFAR 
algorithm. From one object a lot of reflection points 
are detected and assigned in the different grids. 
Some points among them have low refection 
amplitudes, so that the occupancy probability of the 
corresponding grids is close to zero. Those grids are 
detected as free space, which actually belong to the 
obstacles. Here two methods are developed, in order 
to recognize the grids belonging to the obstacles but 
with low occupancy probability as occupied. 

1) The grids with an occupancy probability 
lower than the threshold are considered. The amount 
of the grids in the neighbourhood, which have much 
higher occupancy probability than the selected grid, 
is calculated (see grids N in Figure 15, image on the 
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left). If this amount is larger than a threshold, the 
selected grid (gird C in Figure 15) is set to be 
occupied. Using this method, the grids with a lower 
occupancy probability in the inside and border area 
of obstacles are recognized as occupied. 

2) The grids with zero occupancy probability are 
handled. If the two “sandwiched” grids (see grids N 
in Figure 15, middle and right) have a high 
occupancy probability and are declared as occupied, 
the selected grid is set to be occupied. Thus, 
especially the grids with zero occupancy probability 
in the inside area of obstacles are detected as 
occupied. 

 

Figure 15: Neighbour grids (C: centre grid. N: neighbour 
grid). 

Using the methods above, the occupancy status 
of all grids can be determined. An example of the 
results is shown in Figure 16. 

 

Figure 16: Processed binary grid map. 

5.2 Clustering Binary Grids 

With the occupancy grid mapping, the random 
measurement noise is filtered. However, some 
reflection points are caused by the strong objects 
nearby or the measurement errors. In the binary grid 
map the points usually occupy some areas with 
small size outside the obstacles, which are named as 
outliers. Using the threshold of the connected 
occupied area size, the outliers are filtered. 

In order to calculate the size of the connected 
occupied areas, it is necessary to group the binary 
grids at first. Three popular clustering algorithms are 
discussed here: 

1) K-Means (Lloyd, 1982). The partitions of the 
grids are divided into a predefined number of 
clusters in which each grid belongs to the cluster 
with the nearest mean. Since the environment 
around the vehicle changes all the time, it is not 
efficient to predefine the number of clusters. 

2) Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) (Ester et al., 
1996). The grids are grouped together and classified 
into core, border and noise grids depending on the 
number of occupied neighbour grids. The noise grids 
here are recognized as outliers. In order to filter the 
noise grids precisely, a relative low distance 
threshold between the grids and a relative high 
threshold of the grid number is selected. However, 
the calculation time is very long, because it is a 
quadratic function of the grid number in the worst 
case. 

3) Connected component labelling (CCL) 
(Rosenfeld and Pfaltz, 1999) (He, Chao and Suzuki, 
2008). The connected occupied grids in binary grid 
map is detected and clustered. It is not necessary to 
predefine any parameters. Additionally it takes 
significantly less computational burden than 
DBSCAN. For this reason, CCL is chosen as the 
clustering algorithm here. 

 

Figure 17: Clustering with CCL algorithm. 

The number of the grids in each cluster is 
calculated. With a number threshold the outliers are 
found and the grids from the outlines are marked as 
free again. This processing step is meaningful, 
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because some outliners are located directly in front 
of the vehicle, where belongs to the FOI. In Figure 
17 an example of the clustering result with CCL 
algorithm is demonstrated. The grids in the black 
circle are clustered and then defined as free again. 

5.3 Border Recognition 

The boundaries of the clustered and occupied binary 
grids are mostly relevant for the free space detection. 
The Moore-Neighbour Tracing (MNT) algorithm is 
introduced here to recognize the border of the 
occupied areas (Gonzalez et al., 2004). In Figure 18 
the MNT algorithm is described. Starting from a 
random occupied grid B1, the next occupied 
neighbour grid in the clockwise direction B2 is 
searched. The iteration loop terminates when the 
initial grid is visited for a second time. 

 

Figure 18: MNT Algorithm (B: border grid). 

All reached grids are labelled as border grids, 
which helps to detect the free space along the 
trajectory. In Figure 19 an example of the border 
recognition result is shown. 

 

Figure 19: Border recognition (black: border grid, grey: 
occupied grid). 

5.4 Interval-based Free Space Model 

The free space along the vehicle trajectory is defined 
by the narrowest distance between the vehicle future 
possible position and the border of the occupied 
areas. 
At first the trajectory of the ego vehicle is calculated 
with the current dynamic data based on the CTRA 
model, where the vehicle positions and orientations 
along the trajectory are computed. It is also possible 
to calculate the vehicle trajectory with any 
manoeuvres. The vehicle trajectory is defined as 
baseline and extended with a certain distance 
considering the orientation at each position to an 
area, which is similar to a sector and defines the FOI 
along the trajectory (see Figure 20). 

 

Figure 20: FOI and intervals along the trajectory. 

Thereafter the FOI is divided into intervals with 
a certain length along the trajectory. The interval is 
always perpendicular to the vehicle orientation at 
each point. The length of one single interval is defi-
ned as a function of the vehicle velocity, because a 
wider free space is needed with increasing velocity. 

In order to realize the interval-based free space 
model, the grids, in which the vehicle positions in 
the FOI are located, are selected to be the baseline 
grids. The grids on the left and right side of the 
baseline grids are visited with the Bresenham's line 
algorithm, which is located in the perpendicular 
direction to the vehicle orientation at each position 
(see Figure 21). 

 

Figure 21: Free space detection in one interval (Blue: 
baseline grid, green: free space grid, black: border grid, 
grey: occupied grid). 
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The occupied grid with the smallest distance to 
each baseline grid is searched. Then this distance is 
defined as the width of the free space interval. The 
grids in the interval, which are closer to the baseline 
grids, are labelled as free space. Similarly, the width 
of all the intervals can be calculated, so that the free 
space along the vehicle trajectory is detected. 

5.5 Results 

In Figure 22 an example of the free space detection 
at the parking spot is shown. On the left side in front 
of the vehicle, more free space exists than on the 
right side, which means, the evasive trajectory to left 
is more feasible than right. Additionally the parking 
slots between the trucks are recognized as free 
space, which helps to generate the parking 
manoeuvre. 

 

Figure 22: Example for free space detection. 

In Figure 23 and Figure 24 another example on 
the public road is shown. There are several warning 
posts at the left side of the road, which are separately 
detected as obstacles in the map. The distance 
between the warning posts is recognized as free 
space. 

 

Figure 23: Image for measurement on public road. 

 

Figure 24: Free space detection on public road. 

6 CONCLUSIONS 

This paper presents an approach of the occupancy 
grid mapping and free space detection based on the 
high resolution radar sensors. 

The positions and reflection amplitudes of the 
target points are detected with radar sensor and used 
as input data for the occupancy grid mapping. The 
reflection amplitudes are compensated according to 
the free-space loss and antenna pattern gain, and 
finally normalized. Based on the positions, the 
detected points are assigned to the corresponding 
grids. The detection probability of the individual 
cells is calculated as the function of the reflection 
strength of the detection points. With the movement 
of the ego vehicle, the value of the grids is degraded 
and then combined with the new data to compute the 
a posteriori occupancy probability. Thus, an 
occupancy grid map is updated over the course of 
time. 

Thereafter the occupancy grid map is converted 
to the binary grid map. The grids in the obstacle 
areas are searched and labelled as occupied 
depending on the neighbour grids. Using the CCL 
algorithm, the connected occupied grids are 
clustered, in order to eliminate the outliers. With the 
MNT algorithm the border of the clustered occupied 
grids is recognized. Finally an interval-based free 
space is detected utilizing the Bresenham's line 
algorithm. According to the measurement results the 
detected free space and obstacles with the approach 
above match with the real scene. 
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