
Fully Virtual Rapid ADAS Prototyping via

a Joined Multi-domain Co-simulation Ecosystem

Róbert Lajos Bücs, Pramod Lakshman, Jan Henrik Weinstock,

Florian Walbroel, Rainer Leupers and Gerd Ascheid

Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany

Keywords: ADAS Prototyping, Driving Simulators, Virtual Platforms, Multi-domain Simulation, Near Real-time

Execution.

Abstract: Advanced Driver Assistance Systems (ADAS) have evolved into comprehensive hardware/software applicati-

ons with exploding complexity. Various simulation-driven techniques emerged to facilitate their development,

e.g., model-based design and driving simulators. However, these approaches are mostly restricted to functional

prototyping only. Virtual platform technology is a promising solution to overcome this limitation by accura-

tely simulating the entire ADAS hardware/software stack, including functional and non-functional properties.

However, all these tools and techniques are limited to their individual simulation environments. To reap their

combined benefits, this paper proposes a joined frameworking to facilitate ADAS prototyping via full vir-

tualization and whole-system simulation. For this purpose, an advanced automotive-flavor virtual platform

was also designed, ensuring detailed, near real-time simulation. The benefits of the approach and the joined

frameworks are shown by prototyping two ADAS applications in various system configurations.

1 INTRODUCTION

Vehicles have evolved from mainly mechanical to

complex hardware (HW) and software (SW) driven

systems in the last decades. Vehicular SW covers vast

areas, ranging from infotainment, over safety-critical

control tasks, heading all together towards highly au-

tomated driving. Furthermore, recent HW trends re-

flect strong integration, i.e., fewer Electronic Cont-

rol Units (ECUs) with multi and many-core CPUs.

The resulting architecture of Advanced Driver Assis-

tance Systems (ADAS) consist of up to 100 networ-

ked ECUs with 250 embedded and graphic processors

(Georgakos et al., 2013), executing an estimated 100

million lines of code (Charette, 2009).

Moreover, frequent factory recalls have been ob-

served in the past years in case of various manufac-

turers, most of which were caused by failures in the

electronic system (NHTSA, 2017). This called atten-

tion to secure HW/SW design, test and validation for

which the automotive industry agreed on functional

safety standards, e.g., the (ISO 26262, 2011). The

standard defines strict rules to ensure functional safety

throughout the complete lifecycle of the HW/SW sy-

stem and recommends full-system simulation to pro-

vide early guarantees for this purpose. However, with

the sheer complexity of the electronic and electri-

cal system and the demanding requirements posed by

functional safety standards, ADAS development and

validation has become immensely difficult.

Model-Based Design (MBD): Utilizing MBD

tools is advised to tackle these challenges, offering

early algorithmic prototyping, in-tool testing and of-

ten ISO-certified code generation. MBD tools accele-

rate the design-validation-refinement cycle of ADAS

via a simulation-driven approach. Yet, MBD tools are

limited to (i) rigid artificial inputs and outputs (I/O)

and (ii) model only algorithmic aspects of ADAS.

Driving Simulators: Such frameworks address

the first limitation of MBD tools by providing realis-

tic I/O via their virtual driving environment. This ena-

bles ADAS evaluation/refinement via virtual test dri-

ves, while experimenting with various traffic and en-

vironmental conditions and vehicle types (e.g., cars,

trucks). Moreover, driving simulators ensure deter-

ministic test repeatability, which is crucial if spurious

errors occur. They can also include a driver in the

ADAS evaluation, thus capturing real human reacti-

ons. Yet, driving simulators are restricted to model

only functional aspects of ADAS. Moreover, they are

limited to their simulation environment, making a joi-

ned usage with further tools mostly unfeasible.

Bücs, R., Lakshman, P., Weinstock, J., Walbroel, F., Leupers, R. and Ascheid, G.
Fully Virtual Rapid ADAS Prototyping via a Joined Multi-domain Co-simulation Ecosystem.
DOI: 10.5220/0006665900590069
In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2018), pages 59-69
ISBN: 978-989-758-293-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

59

Virtual Platforms (VPs): This technology ad-

dresses the second limitation of MBD tools by ex-

tending the simulation to the ADAS HW/SW system.

VPs consist of simulation models of HW blocks and

their interconnection, created via electronic system-

level standards, e.g., SystemC/TLM (Accelera, 2012).

These enable modeling and simulation of full sy-

stems including, e.g., CPUs, buses, memories and

various peripheral devices. Moreover, VPs enable

HW/SW co-design by simulating the whole ADAS

SW layer as executed by the platform. Conversely to

MBD tools, VPs enable exploring non-functional sy-

stem properties, e.g., HW/SW partitioning, task map-

ping, schedulability and dynamic worst-case execu-

tion time analysis. VPs also facilitate system pro-

totyping by providing full HW/SW visibility, debug-

gability and non-intrusive monitoring, while ensuring

execution determinism. However, VPs are generally

limited by either their simulation speeds or modeling

accuracy. Moreover, similarly to driving simulators,

VPs are limited beyond their simulation environment.

Multi-Domain Co-Simulation: This technique

extends the boundaries of specialized simulation tools

and models by providing means for cross-domain in-

terconnection and joined control. The multi-domain

approach can be used to fulfill the ISO 26262 requi-

rement of full-system validation by co-simulating va-

rious vehicular subsystems. This would allow to con-

nect the HW/SW simulation with the virtual environ-

ment of a driving simulator. Tool-agnostic standards

are defined for such purposes, overcoming the inflex-

ibility of point-to-point connections. However, tar-

get tools/models have to be made compliant to multi-

domain co-simulation standards for joined utilization.

Objectives: To reap their combined benefits, this

paper proposes joining the preceding tools and techni-

ques to facilitate and accelerate ADAS prototyping

via full virtualization and whole-system simulation.

Putting this in practice, a joined frameworking is pre-

sented, composed by carefully chosen tools and stan-

dards, addressing the previous limitations, as follows:

1. Overcoming the artificial I/O limitation of MBD

tools by using the environment of driving simulators.

2. Extending the functional simulation capability

of MBD tools and driving simulators by ensuring

beyond functional modeling and exploration via VPs.

3. Providing compliance for all target tools to a se-

lected multi-domain co-simulation standard.

4. Addressing the speed/accuracy trade-off of VPs

via an advanced automotive-flavor platform that en-

sures detailed and fast simulation at the same time.

5. Pursuing near real-time whole-system co-

simulation execution, to be able to involve the

developer in the virtual ADAS test driving process.

The proposed frameworking allows ADAS testing

in a closed-loop, i.e., (i) capturing the environment

of a driving simulator via virtual sensors (ii) input-

ting the gathered data and executing the target ADAS

on a VP and (iii) applying regulatory actions on the

virtual vehicle within the driving simulator. Lastly, to

highlight its advantages, two ADAS applications were

prototyped using the proposed full-system simulator.

2 BACKGROUND

The previously presented ideas pose strict require-

ments on simulation ecosystems. Thus, various tools

and standards were carefully compared to select the

most suitable combination fulfilling the prerequisites.

In this work, Simulink (MathWorks, 2017) was

chosen as MBD tool in the ADAS design automation

flow, as it provides advanced modeling semantics, a

vast block set and in-tool simulation features. Moreo-

ver, its certified code generator ensures safe and con-

tinuous ADAS integration onto target HW devices.

The requirements for a driving simulator in the

proposed approach are availability, adaptability and a

realistic virtual driving environment. After carefully

examining numerous driving simulators, an open-

source racing game, Speed Dreams 2 (SD2, 2017),

was selected as it supports various traffic and envi-

ronmental conditions (e.g., precipitation, visibility),

different car types and configurable vehicle dynamics

(e.g., component dimensions). In this work, the tool

was extended with urban traffic simulation support

and ADAS virtual test driving in such environments.

Lastly, compliance to a selected multi-domain co-

simulation standard was also added, ensuring con-

nectivity beyond its simulation environment.

The virtual platform technology is concerned with

the strictest requirements in the proposed methodo-

logy and has been the main focus of this work. The

envisioned framework needs to accurately model and

simulate the complete ADAS HW/SW stack. On the

HW side, this requires assembling a scalable distri-

buted system, consisting of a configurable number of

modular subsystems connected over a vehicular com-

munication bus. Moreover, the envisioned platform

needs to execute the complete ADAS SW stack, inclu-

ding the target algorithms, and ideally a full-fledged

automotive Operating System (OS).

Due to its magnitude and complexity, the VP is

expected to be the performance bottleneck of the

whole frameworking. Thus, to avoid slowing down

the full-system simulation, the platform needs to

achieve execution speeds close to real-time. Conside-

ring these serious requirements, numerous SystemC-

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

60

based simulation technologies were carefully exami-

ned. From these, the GreenSoCs (GreenSoCs, 2017)

framework emerged as the best choice. At its heart,

GreenSoCs uses the QEMU (Bellard, 2005) fast emu-

lation technology to overcome the strongest perfor-

mance bottleneck of a VP, the CPU model. In this

regard, QEMU can be also configured to contain mul-

tiple instances of the CPU module in a single package,

still maintaining high execution efficiency. Its per-

formance lies in the just-in-time compilation engine,

translating and caching target CPU instructions to

code blocks of the simulation host at run-time. Ho-

wever, due to the nature of system emulation, QEMU

completely lacks timing annotation, which degrades

the overall simulation accuracy. To address this issue,

the GreenSoCs technology provides a dedicated Sy-

stemC wrapper around QEMU, thus integrating the

CPU models into the timed SystemC environment.

Herewith, GreenSoCs-based platforms can leverage

both, fast simulation and temporal accuracy at CPU

instruction level. The necessary timing management

is achieved by synchronizing the global simulation

time whenever QEMU is ahead of the current Sys-

temC time by more than an amount called quantum.

Based on GreenSoCs, this work presents an ad-

vanced automotive-flavor VP that supports distributed

multi-core setups while maintaining high execution

efficiency, as detailed later. Lastly, to ensure connecti-

vity beyond its environment, the VP has been made

compliant to a multi-domain co-simulation standard.

In this regard, various standards were compa-

red to join the previously presented distinct simula-

tion ecosystems by co-simulating arbitrary vehicular

subsystems beyond tool and domain boundaries. A

centralized orchestration was envisioned for joined

co-simulation control. After thorough examination,

the Functional Mock-up Interface (FMI, 2017) was

selected, a light-weight, open-source, tool-agnostic

specification, considered the de facto multi-domain

co-simulation standard for automotive applications.

FMI defines a master/slave approach, where a central

master is responsible for synchronization and data ex-

change between multiple slaves. Although the stan-

dard states the responsibilities of the master, it does

not propose a reference implementation. In this work

an in-house FMI master has been utilized for orches-

tration, as it achieves highly efficient co-simulation

execution by implementing a parallel control engine.

On the other hand, FMI slaves, or Functional

Mock-up Units (FMUs), encapsulate target tools/-

models following the light-weight FMI C-API. This

prescribes FMUs to implement functions for model

creation/deletion (e.g., fmi2Instantiate()), run-

control (e.g., fmi2DoStep()) and data exchange

(e.g., fmi2Get/Set()), among others. The resulting

FMUs are bundles containing (i) the model imple-

mentation (e.g., source code, pre-compiled binary)

(ii) a description file defining its external interface (iii)

other resources (e.g., third-party tools, documents).

Lastly, this work presents a generic method to ens-

ure compliance of domain-specific simulation tools to

FMI. The resulting co-simulation system allows cou-

pling arbitrary FMUs to it, thus overcoming the in-

flexibility of direct, point-to-point connections.

3 JOINED MULTI-DOMAIN

SIMULATION SYSTEM FOR

RAPID ADAS PROTOTYPING

The selected simulation ecosystems are promising

high-performance base technologies for the envisio-

ned whole-system simulator. This section presents

details to their adaptation to establish a fully virtual

ADAS rapid prototyping environment. The resulting

framework system is described step by step next.

3.1 Generic FMI-based Tool-coupling

First, an FMI-based, generic coupling technique was

designed for the target simulators and models. The

FMI standard defines two possible connection opti-

ons for FMUs: standalone or tool-coupling. The for-

mer FMUs are self-contained, including the model,

the simulator and all run-time dependencies. Conver-

sely, tool-coupling FMUs are simple communication

adapters, interacting with a simulator that contains the

target model. Although standalone FMUs are more

straight-forward to implement, research indicates se-

vere problems with multiple instantiation and library

co-dependencies (Bücs et al., 2015). Thus, in this

work the tool-coupling technique was favored, as it

separates the adapter and the target simulator into iso-

lated processes, which is a more reasonable approach

for the envisioned frameworking.

Depicted in Fig.1, first a Generic FMI Tool-

Coupling Adapter was designed for this purpose. For

simplicity, the adapter was constructed as a standa-

lone FMU. Thus, the FMI master can load the mo-

dule directly (without further dependencies) into its

own host OS process. At instantiation, the adap-

ter prepares an inter-process communication chan-

nel for interacting with a target simulation tool. So

that the adapter remains independent from simula-

tors and can be reused for arbitrary subsystems, a

user-layer command protocol was defined (inspired

by (GDB, 2017)), named FMI Inter-process commu-

Fully Virtual Rapid ADAS Prototyping via a Joined Multi-domain Co-simulation Ecosystem

61

Figure 1: Generic FMI-based tool-coupling layer.

Figure 2: Examples of FMI function to FIP frame mapping.

nication Protocol (FIP). This implements a remote

procedure call mechanism, where FMI API functi-

ons are translated to commands / acknowledgments

of FIP, as exemplified in Fig.2. Herein, first the frame

format can be observed, including the packet deli-

miters $ and #. Below, several examples of FMI

function to FIP frame mappings are demonstrated for

various requests and responses. For instance, the

fmi2DoStep() API function with tstep = 1 s trans-

lates to the FIP message $cstep1# and later to the

acknowledgment $astep#, sent to the FMI master.

On the other side of the interaction, individual,

Tool-Specific FMU Stubs need to be designed, that

receive the FIP packages and execute the initial FMI

request on the target model, as shown in Fig.1. To cla-

rify the complete communication mechanism, Fig.3

depicts a sequence diagram. Following up on the

previous example, the FMI master invokes again the

fmi2DoStep() API function with tstep = 1 s. This

call is translated to the FIP command cstep by the

Generic FMI Tool-Coupling Adapter and sent to the

Tool-Specific FMU Stub. The packet is then interpre-

ted, and a tool-specific function call is invoked by the

stub, in this meta-code example model step(). Af-

ter completing the model step, the stub sends the ma-

tching acknowledgment astep to the adapter, which

passes the call status to the master.

The FIP-based adapter-stub mechanism addresses

the #3 objective of this work (Sec.1), providing a ge-

neric approach for target tools to comply to FMI. The

Figure 3: Sequence diagram of FIP-based communication.

corresponding tool extensions are presented next.

3.2 Adaptation of Speed Dreams 2

As mentioned previously, the original SD2 racing

game was extended within the scope of this work to

support urban traffic simulation and ADAS virtual test

drives. First, city and country-side maps were cre-

ated, and support for two-lane roads, intersections,

two-way traffic and buildings was added, as depicted

in Fig.4. Furthermore, the robots were adapted to fol-

low traffic regulations, e.g., speed limits and yield the

right of way, which is crucial in intersections.

Next, SD2 was converted into a tool-coupling

FMU based on the mechanisms detailed in Sec.3.1.

Shown in Fig.4, first a tool-specific Speed Dreams

2 FMU Stub was created to process FIP commands,

sent by the FMI master over the adapter. The stub

executes control operations via the Simulation Run-

Control module, including stepping vehicle dynamics

calculations. The stub can also access and expose pa-

rameters of the driving simulator, required for data ex-

change with other FMUs. Herein a Parameter Access

module was built, granting safe data access for pro-

perties of Vehicle Dynamics and the Virtual Driving

Environment, as indicated in the figure.

These adaptations address the #1 and #3 objecti-

ves of this work (Sec.1). First, the virtual environ-

ment of the driving simulator overcomes the limita-

tion of artificial I/O. Moreover, the FMU compliance

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

62

Figure 4: Block diagram of the modified SD2 simulator.

allows for external connections and control, requi-

red for multi-domain co-simulation. These traits can

be exploited to achieve ADAS modeling beyond the

functional level by utilizing a VP, detailed next.

3.3 Automotive Virtual Platform Design

Following the strict requirements discussed in Sec.2,

an automotive-flavor VP was designed to extend the

scope of ADAS testing. Shown in Fig.5, the VP con-

sists of virtual ECUs (vECUs), modeling a modified

ARM Versatile baseboard (ARM, 2017). At the he-

art of such vECUs a high-performance GreenSoCs-

based ARM Cortex-A15 CPU model (ARM, 2012)

is embedded. Depicted in Fig.5, this module con-

sist of (i) the QEMU-based ARM processor simulator,

(ii) a SystemC Bridge, capturing access commands

of QEMU’s Platform Virtual Bus, converting them to

SystemC transactions/signals (e.g., address, data, in-

terrupt) and (iii) a SystemC Wrapper, encapsulating

the whole package as a SystemC module, providing

all defined model interfaces (e.g., TLM sockets).

Furthermore, vECUs contain various in-house de-

signed peripheral devices, e.g., an on-chip memory,

a system bus, serial communication modules (UART)

and a Vectored Interrupt Controller (VIC), among ot-

hers. The particular set of HW peripherals and virtual

devices was chosen so that vECUs are able to exe-

cute full-fledged OSs. Moreover, the platform archi-

tecture was designed to be scalable by instantiating

a configurable number of interconnected vECUs, so

to resemble a distributed multi-core system. Hence,

each vECU was also equipped with a Controller Area

Network (CAN) transceiver for inter-vECU commu-

nication over a single CAN-bus, as shown in Fig.5.

After its construction, the platform was converted

into a tool-coupling FMU (recalling Sec.3.1). Simi-

larly as for the driving simulator, first a VP FMU Stub

Figure 5: Block diagram excerpt of the proposed VP.

was created to process FIP commands. Depicted in

Fig.5, the stub also executes control operations via the

SystemC Simulation Control component, which is re-

sponsible for creation/deletion of SystemC modules

and run-state control. To expose the internal HW/SW

state towards the co-simulation, an FMU Residual

Bus Coupling unit was designed, acting as a bridge

between SystemC and FMI. This module is capable

of buffering/updating certain user-selected messages

via their unique CAN identifiers as they are transmit-

ted over the CAN bus. Each of these can correspond

to specific HW/SW parameters (e.g., SW variables,

HW signals). If the FMI master requires reading a

parameter, a lookup is performed in the buffer for the

corresponding CAN identifier, and the message is fe-

tched, decoded and interpreted. Conversely, when the

master sends data to the VP, the buffer embeds the pa-

rameter into a CAN message and injects it to the bus.

However, initial VP performance tests shown a

notable simulation slowdown in multi-core setups, li-

nearly with the number of added CPU models. As this

issue contradicted the scalability and performance

requirements, a more effective simulation techno-

logy was required alongside the GreenSoCs approach.

Thus, the idea arose to exploit the inherent parallelism

of the VP due to its modular structure. This resul-

ted in executing each CPU model on a separate host

thread and the remaining peripherals of the vECU on

another, as they are less performance-critical. The re-

sulting parallel segments run decoupled, ahead of the

global simulation time, but are synchronized whene-

ver their own local time reaches the quantum (recal-

ling Sec.2). Platform parallelization achieves major

performance gains, reaching execution speeds beyond

real-time, as presented later.

The resulting performance-optimized VP addres-

ses the #2-#5 objectives of this work (Sec.1). Fir-

stly, it extends the simulation spectrum to the ADAS

Fully Virtual Rapid ADAS Prototyping via a Joined Multi-domain Co-simulation Ecosystem

63

Figure 6: Joined framework system, co-simulation interconnection and design automation flow for rapid ADAS prototyping.

HW/SW system, covering analysis of non-functional

properties (e.g., HW/SW partitioning). Moreover,

the FMU adaptation allows for external connections

and control, required for multi-domain co-simulation.

Lastly, the presented performance improvements ad-

dress the speed/accuracy trade-off and the pursuit for

near real-time whole-system execution.

3.4 The Virtual Platform SW Stack

Next, the SW layers were designed for integrating

ADAS prototypes as embedded code onto the crea-

ted VP. At first, the integration can be performed in

form of bare-metal SW. For this purpose, base SW

components were created, consisting of low-level uti-

lities (e.g., cross-toolchain, linker script, bootloader),

a standard C library and a driver layer for the peripher-

als. The bare-metal setup enables early functional va-

lidation of ADAS properties, as well as HW/SW de-

sign space exploration, partitioning and distribution.

However, safety-critical ADAS applications have

far stricter requirements, e.g., hard real-time execu-

tion guarantees and HW/SW protection mechanisms.

To manage such applications, the automotive indu-

stry laid down Real-Time Operating System (RTOS)

standards, such as OSEK/VDX (OSEK Group, 2005)

and its successor AUTOSAR (AUTOSAR, 2014).

Both impose portability of SW components, priority-

based multi-tasking, standard communication layers,

safe resource management and real-time scheduling,

among others. Since AUTOSAR implementations

were not available at the point this work was con-

ducted, OSEK/VDX was chosen instead. Herein se-

veral variants were examined, and ERIKA Enterprise

(EE) (Evidence, 2017) was selected among them, a

comprehensive, open-source OSEK/VDX implemen-

tation with full tool support. EE is especially favored

in open-source RTOS-based research activities, since

it is developed towards the AUTOSAR specification.

In this work, EE was ported to the designed

VP following the guidelines outlined in (Evidence,

2014). Herein various mechanisms were adapted,

e.g., for fixed-priority scheduling, nested interrupt

(IRQ) handling and inter-task communication beyond

vECUs. However, since all details would go beyond

the boundaries of this work, a full description of the

porting instructions can be found in (Evidence, 2014).

3.5 The Full Design Automation Flow

After having all subsystems in place, the joined fra-

meworking can be used as follows. Shown in Fig.6a,

Simulink is the starting point for ADAS development

and early functional testing. Once a prototype is ma-

ture enough, Simulink’s built-in code generator can

be invoked to obtain embedded code for it. The re-

sulting ADAS C-modules can first be integrated onto

the VP as bare-metal SW for early functional valida-

tion and HW/SW design space exploration. To sup-

port this, the VP can be configured to include as many

vECUs as desired for the current development stage

(Fig.6b). Moreover, SW integration and validation is

supported by the possibility of run-time debugging on

the VP, as the GreenSoCs technology allows attaching

SW debuggers to the virtual CPU models. In more

mature development stages, ADAS applications can

be integrated as EE tasks onto the VP for refinement

of non-functional properties, e.g., execution times and

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

64

Algorithm 1: LKA optimal steer angle control.

Input: wroad :road width [m], wlane:lane width [m], ∢veh abs:vehicle-road

angle [rad], θrel :segment-relative yaw [rad], lane:ongoing/incoming

Output: ∢steer : steer angle

// Update current and optimal vehicle position in lane

1: dle f t ← get dist from left(...)

2: dright ← get dist from right(...)

3: dopt ← wlane/2

// Get target lane for the LKA to operate in

4: if lane == ongoing then

5: ddi f f ← dright - dopt

6: else

7: ddi f f ← dopt - dle f t

// Correct steer angle ∢steer

8: ∢steer ←∢veh abs +θrel −dopt/wroad

// Normalize ∢steer to −Π...Π
9: while ∢steer > Π do

10: ∢steer ←∢steer −2∗Π
11: while ∢steer <−Π do

12: ∢steer ←∢steer +2∗Π

and scheduling. For all such design iterations, a full

co-simulation can be set up via the FMI master, lo-

ading the tool-coupling FMUs of the VP and SD2

(Fig.6e). In this setup, the user can engage virtual

test driving in SD2, while the target ADAS is execu-

ted on the VP, regulating the behavior of the virtual

vehicle. In case of spuriously occurring errors, a Dri-

ver Behavior Record/Replay FMU was added to the

co-simulation (Fig.6d), so to ensure exact test repea-

tability. The most notable feature of the presented sy-

stem in terms of productivity is that it can achieve the

complete ADAS exploration cycle (adjustment, code

generation/integration, test drive) in minutes. To pre-

sent its detailed capabilities, two driver assistance ap-

plications were prototyped with its help, as presented

next.

4 RAPID ADAS PROTOTYPING

This section presents the refinement process of the

created ADAS benchmarks. It must be noted that the

focus here is not on the designed ADAS itself, but on

the capability of the assembled frameworking to ex-

plore system properties on various abstraction levels.

4.1 Lane Keep Assistant (LKA)

This ADAS performs a closed-loop steering control

of the vehicle, positioning it inside the driving lane.

The LKA was designed for two operating modes, (i)

automatically keeping the mid-point of the lane (ii)

actively avoiding lane departure, while the driver is

Figure 7: Flow chart of the automatic transmission control.

still mainly in control. Algorithm 1 presents a meta-

code description of the former mode. Herein, first the

road and lane widths are used to calculate the opti-

mal and actual vehicle positions in the driving road-

way (lines 1-3). Next, according to the selection of

the incoming/ongoing lane, the distance error is cal-

culated (lines 4-7). Subsequently, the steer angle is

corrected using the current vehicle-road angle and the

segment-relative yaw to compensate the distance er-

ror (line 8). The segment-relative yaw is defined as

the rotational movement along the axis which is per-

pendicular to the chassis plane. This value is compu-

ted as the angular difference between the x-y plane of

the car chassis coordinate system and the x-y plane of

the road segment within the world coordinate system.

Lastly, the updated steer angle is normalized to the

range {∢steer ∈ R |−Π≤ ∢steer ≤Π}.

4.2 Automatic Transmission Control

(ATC)

This algorithm was created as a closed-loop, finite

state machine, periodically providing the gear control

output after evaluating its inputs: the engine speed,

the state of the virtual clutch release sensor and the

user throttle control. The ATC supports various use-

cases, e.g., regular up and downshift with respect to

the current engine speed, vehicle start / stop and over-

take assistance, shifting one gear down once it is re-

cognized that more engine power is required. The

operation of the automatic transmission control is best

described by a flow chart, as depicted in Fig.7:

Fully Virtual Rapid ADAS Prototyping via a Joined Multi-domain Co-simulation Ecosystem

65

SCA Both ADAS integrated on 1x vECU as bare-metal SW.

SCB Both ADAS integrated on 1x vECU as EE tasks.

SCC Two ADAS separated on 2x vECUs as bare-metal SW.

SCD Two ADAS separated on 2x vECUs as EE tasks.

Figure 8: VP system setup used for benchmarking.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Time [s]

L
an

e
P

o
si

ti
o
n

[m
]

SCA
SCB

Figure 10: LKA lane position in various SCs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−20

−10

0

10

Time [s]

S
te

er
si

g
n
al

[%
]

SCA
SCB

Figure 12: LKA steer output in various SCs.

0 25 50

BT

LKA

ATC

1000 1025

System Time [µs]
Figure 14: EE task execution times measured in SCB.

1. From the initial vehicle start condition, the gear is

incremented upon changes in the user throttle input.

2. Next, the clutch status is evaluated. If the vehicle

is in the middle of a transmission, the algorithm enters

a wait state until the clutch is released again, allowing

for further possible gear changes.

3. Then, additional engine power request is checked.

If the engine speed is lower but the user throttle cont-

rol higher than certain predefined thresholds, the gear

value is decremented so to provide more power, e.g.,

in a vehicle takeover scenario.

4. Lastly, the engine speed is evaluated with respect

to predefined upper and lower thresholds. If the en-

gine speed remains within these bounds, the algo-

rithm enters a wait state, else an increment or decre-

ment of the gear value is performed accordingly. He-

rein a final check is performed to avoid unrequested

switching to natural gear.

SW \ HW 1x vECU 2x vECU

Bare-metal SCA SCC

EE task SCB SCD

Figure 9: Stage transitions of HW/SW system design.

0 1 2 3 4 5 6 7 8 9 10 11 12
2000

3000

4000

5000

6000

Time [s]E
n
g
in

e
S

p
ee

d
[R

P
M

]

SCA SCB
SCC SCD

Figure 11: ATC engine speed in various SCs.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

Time [s]

G
ea

r
N

u
m

b
er

[#
] SCA SCB

SCC SCD

Figure 13: ATC gear control in various SCs.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Time [s]

C
lu

tc
h

si
g
n
al

[%
]

Figure 15: ATC clutch oscillation error discovered in SCA.

4.3 HW/SW System Configurations

Both ADAS were integrated on the VP in the System

Configurations (SCs) shown in Fig.8. The correspon-

ding transitions in system design stages are detailed in

Fig.9. This order was established to continuously ex-

plore and refine new HW/SW properties by lowering

the design abstraction level as follows:

1. SCA: algorithmic prototyping and integration
2. SCB: timing analysis, RTOS support, inter-task comm.

3. SCC: refining spatial distribution

4. SCD: adding standard inter-vECU communication

The novelty of the frameworking is to enable such

a design space exploration of non-functional traits

(e.g., timing behavior, HW/SW partitioning), while

stepwise refining the level of system abstraction.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

66

100 500 1000 1500 2000

0

30

60

90

120

150

3
3
.5

6
2
.5

8
2

1
0
8
.3

1
1
9

1
0 2

1 2
7
.4

2
8
.7

2
9
.8

3
1
.7

3
4
.5 4
2
.2 5

8
.6

6
2
.9

1
2
.2

1
5
.2

1
5
.6

1
5
.8

1
7
.3

4
6
.3 5
7 5
9
.8

9
2
.3 1
0
0

1
2
.7 2

5
.1

2
7
.2

2
8
.1

2
8
.3

Quantum Time [µs]S
p
ee

d
o
f

C
P

U
M

o
d
el

s
[M

IP
S

]

SCA SCB

SCC : ATC on virtual ECU1 SCD: ATC on virtual ECU1

SCC : LKA on virtual ECU2 SCD: LKA on virtual ECU2

Figure 16: Execution speeds of the CPU model(s) within the VP, using various quantum settings, measured in various SCs.

4.4 Functional and Temporal Analysis

Numerous co-simulation runs1 were executed in the

setup shown in Fig.6 for ADAS test and refinement.

All of these were orchestrated by the FMI master ap-

plying a fixed step size of 2 ms on every subsystem.

First, signals of the LKA were captured. Fig.10

shows the lane position of the test vehicle around the

optimum mid-point of 2.5 m. The resulting steer con-

trol is shown in Fig.12, where negative values indicate

right, positive values left steering. The reaction of the

LKA in auto mode can be observed between 1.5-3.5 s

in a sharp right, and between 9.5-15 s in a longer left

curve. Only minor differences can be noted in both

plots between SCA vs. SCB which can be explained

by the short execution time of the ADAS. Thus, even

as EE task, less system events (e.g., IRQs) disturb its

execution. Data was also gathered in SCC and SCD,

but as only minor changes were noted (due to CAN

messages transmit times), the results are not shown.

More variance was found refining the ATC. Fig.11

depicts the engine speed between 1-5 s while steadily

accelerating, and between 5-12 s while alternating the

throttle. The resulting gear control is shown in Fig.13.

Functional and temporal deviations can be noted in

both plots. As before, the minor timing differences

between SCA vs. SCC and SCB vs. SCD are caused

by CAN message delays induced by distribution. Yet,

bare-metal vs. EE task implementations (SCA,C vs.

SCB,D) vary strongly, causing even extra gear shifts

(around 9 s). The reason is that in SCA,C gear control

occurs more frequently, triggered by ad hoc activa-

tions via CAN message IRQs. Conversely, the refi-

nements of SCB,D grant a scheduler-based execution

with activations at discrete time stamps. Although

this occurs less often in the current setup, it provides

real-time execution guarantees, that SCA,C lack.

Moreover, Fig.15 shows the captured clutch sig-

nal, where an unexpected oscillation was observed be-

1Simulation host: 6x AMD Phenom II 1100T x86 64,
fclk=3.3 GHz, 64K L1D and L1I, 512K L2 and 6144K L3
caches, 12 GB RAM, using Scientific Linux 6.8.

tween 6.5-9.2 s. Herein an algorithmic error was iden-

tified, violating a mandatory wait time between gear

shifts, found and corrected by attaching a debugger to

the vECU. This finding further affirms the advantages

of the co-simulation system for ADAS prototyping.

Lastly, ADAS execution times were measured in

SCB. Herein tasks were assigned fixed priorities from

highest to lowest as follows: ATC, LKA and the idle

background task (BT). As shown in Fig.14, EE sche-

dules the tasks with the period of 1 ms, following their

priorities. Moreover, the runtimes of both ADAS can

be observed: around 2 µs for the ATC and 8 µs for the

LKA. Herein, the ATC required less time to finish as it

was in a wait state, checking only for the expiration of

the mandatory stay in gear time. Although no timing

violations were detected due to the relatively short

application runtimes, the measurements demonstrated

the potential of the proposed frameworking to provide

dynamic execution time and schedulability analyses.

4.5 Co-simulation Performance

Evaluation

After profiling the co-simulation system, the VP was

found to be the main performance bottleneck. To ana-

lyze its impact, the number of executed Million In-

structions Per Second (MIPS) was captured for all

CPU models, shown in Fig.16. To quantify the speed

of the full VP, the Real-Time Factor (RTF) was used,

i.e., wall-clock time divided by simulated time, where

RTF≤1 corresponds to real-time. As the CPU mo-

dels were clocked at fclk=100 MHz, the goal was that

they reach 100 MIPS (RTF=1). To achieve this, the

quantum was also increased, with the trade-off of lo-

sing accuracy. Here it must be noted, that even higher

quanta did not cause disturbances in OS scheduling.

As shown in Fig.16, bare-metal vs. EE-based SCs

achieve higher performance (SCA vs. SCB and SCC

vs. SCD), as the OS induces extra events (e.g., IRQs)

causing simulation overhead. Fig.16 also indicates

that multi-vECU setups are less efficient than single-

vECU ones (SCC vs. SCA and SCD vs. SCB), as the

Fully Virtual Rapid ADAS Prototyping via a Joined Multi-domain Co-simulation Ecosystem

67

Table 1: Achieved co-simulation speeds in various SCs.

System Configuration SCA SCB SCC SCD

Average Co-Simulation

Execution Speed [FPS]
31.7 14.49 19.06 7.63

simulation effort scales linearly with added vECUs

but parallel efficiency does not. In SCC and SCD it

can also be seen that the vECU executing the LKA is

faster than the one running the ATC. This is explained

by the relatively simple implementation of the LKA,

leading to faster runs and more simulation idle time.

Lastly, the efficiency of the full system (Fig.6)

was evaluated, with the quantum set to the overall

co-simulation step size of 2 ms. The average Frames

Per Second (FPS) rendered by the SD2 graphic engine

was chosen as measure, as it reflects the real-time be-

havior of the full simulator. Table 1 holds the achie-

ved results. As the VP dominates the whole system

efficiency, the same trends can be noted as for the VP

with regards to various system configurations.

Summary: Sec.4.4 highlights the potentials of the

frameworking for system exploration and validation

of functional and non-functional ADAS traits. The re-

sults in Sec.4.5 indicate that the co-simulation system

can include the developer in virtual test driving. He-

rein certain setups (e.g., SCA,C) reach near real-time

whole-system execution, as frame rates over 20 FPS

are considered adequate for human perception. This

final achievement covers the #5 objective of the paper,

thus accomplishing all predefined goals.

5 RELATED WORK

Several approaches emerged for simulation-driven

ADAS design by joining distinct tools and techniques.

The authors of (Schneider and Frimberger, 2014)

present an FMI-based co-simulation framework, joi-

ning a driving environment with a purely functional

ADAS simulator to develop a dynamic headlight ad-

justment unit. Herein the HW/SW simulation was ab-

stracted away by static test benches, excluding closed-

loop ADAS testing and non-functional evaluation.

To bridge this gap, authors of (Bücs et al., 2015)

present techniques to couple SystemC-based HW/SW

simulators with FMI. Although the work covers many

aspects of HW exploration and ADAS design automa-

tion, the rudimentary vehicle models used for evalua-

tion strongly limit test capabilities. Moreover, bench-

marking implies RTF=22.4 for VP execution, making

it impossible to include the developer in test driving.

Authors of (Wehner and Göhringer, 2013) pro-

totype an adaptive cruise control via a Xilinx Zynq

VP (Cadence, 2012) and a driving simulator. Herein

the used VP is constrained by not allowing to cre-

ate multiple platform instances, required for distribu-

ted setups. Authors also recognize that the used em-

bedded Linux lacks real-time guarantees needed by

safety-critical ADAS. As the VP achieves RTF=5.3, it

heavily limits interactive ADAS test driving. Lastly,

an ad hoc coupling is used between the subsystems,

restraining the scalability of the simulation system.

Authors of (Raffaëlli et al., 2016) use a joined si-

mulation framework to validate a lane departure war-

ning and an emergency brake system. They couple a

driving simulator over a test automation server with

a fast QEMU-based VP, named Rabbits (Gligor et al.,

2009). Since the VP is not parallel, a linear slowdown

is expected with each added CPU model. Although

performance numbers remain undisclosed, as the VP

was used in an octa-core setup, it very likely excludes

a human for ADAS test driving. Thus, although the

setup is conceptually similar to the presented system,

it can not reach the same efficiency.

The frameworking proposed in this paper combi-

nes the benefits of model-based design, driving simu-

lators and VPs to accelerate ADAS prototyping. He-

rein FMI is used for tool coupling to overcome the

inflexibility of ad hoc connections. The main no-

velty lies in the developed VP, used to explore non-

functional traits. In contrast to previous works, the

VP includes advanced technologies for accurate and

fast simulation. Thus, the overall co-simulation sy-

stem can reach near real-time speeds, allowing to in-

clude the developer in ADAS test driving. As to the

best knowledge of the authors, these aspects have not

yet been addressed by other scientific efforts.

6 CONCLUSIONS

This work presented a multi-domain co-simulation

framework system to establish a fully virtual ADAS

rapid prototyping environment. Putting this in

practice, first the SD2 driving simulator was adap-

ted for virtual test driving, urban traffic and multi-

domain simulation. At the heart of the system, a high-

speed VP was presented supporting distributed, multi-

core vECU configurations and FMI coupling. To pro-

vide real-time guarantees for safety-critical ADAS,

the ERIKA Enterprise RTOS was ported to the VP

as part of a full SW design automation flow. Las-

tly, the capabilities of the joined tools were shown by

prototyping an ATC and an LKA application in va-

rious system configurations. Regarding future work,

the design of further ADAS is planned, heading to-

wards highly automated driving.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

68

REFERENCES

Accelera (2012). SystemC Language Reference Manual.
IEEE Std. 1666-2011 (Revision of IEEE Std. 1666-
2005), pages 1–638.

ARM (2012). ARM Cortex-A15 MPCore Technical Refe-
rence Manual. Available at http://arm.com.

ARM (2017). Versatile board. Avail. at http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.
dsi0034a/index.html.

AUTOSAR (2014). AUTomotive Open System ARchitec-
ture Operating System Standard v4.1. Available at
www.autosar.org/.

Bellard, F. (2005). QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
ATEC ’05, pages 41–41.

Bücs, R. L., Murillo, L. G., Korotcenko, E., Dugge, G.,
Leupers, R., Ascheid, G., Ropers, A., Wedler, M.,
and Hoffmann, A. (2015). Virtual hardware-in-the-
loop co-simulation for multi-domain automotive sys-
tems via the functional mock-up interface. In Forum
on Specification and Design Languages, pages 1–8.

Cadence (2012). Virtual Platform for Xilinx Zynq-7000
EPP User Guide.

Charette, R. (2009). This car runs on code. IEEE Spectrum.
spectrum.ieee.org/transportation/systems/this-car-
runs-on-code.

Evidence (2014). Porting procedure for ERIKA Enterprise.
http://erika.tuxfamily.org/wiki/index.php?title=Portin
g ERIKA Enterprise and RT-
Druid to a new microcontroller.

Evidence (2017). ERIKA Enterprise Website.
erika.tuxfamily.org/.

FMI (2017). Modelica Association - Functional Mock-up
Interface (FMI) Standard Official Website. www.fmi-
standard.org/.

GDB (2017). Remote Serial Protocol. https://sourceware.
org/gdb/onlinedocs/gdb/Remote-Protocol.html.

Georgakos, G., Schlichtmann, U., Schneider, R., and Cha-
kraborty, S. (2013). Reliability challenges for elec-
tric vehicles: From devices to architecture and sys-
tems software. In Design Autom. Conf. (DAC), pages
1–9.

Gligor, M., Fournel, N., and Pétrot, F. (2009). Using binary
translation in event driven simulation for fast and flex-
ible MPSoC simulation. In IEEE/ACM International
Conference on HW/SW Codesign and System Synthe-
sis (CODES+ISSS), pages 71–80.

GreenSoCs (2017). Virtual Platforms. www.greensocs.
com/.

ISO 26262 (2011). Road vehicles - Functional safety. ISO,
Geneva, CH.

MathWorks (2017). Simulink. http://mathworks.com/help/
simulink/.

NHTSA (2017). National Highway Traffic Safety Adminis-
tration, U.S. Dept. of Transportation - SafeCar Web-
site. www.safercar.gov.

OSEK Group (2005). OSEK/VDX Operating System Stan-
dard v2.2.3. Available at www.osek-vdx.org/.

Raffaëlli, L., Vallée, F., Fayolle, G., Souza, P. D., Rouah,
X., Pfeiffer, M., Géronimi, S., Pétrot, F., and Ahiad,
S. (2016). Facing ADAS validation complexity with
usage oriented testing. Computing Research Reposi-
tory (CoRR), arXiv:1607.07849.

Schneider, S. and Frimberger, J. (2014). Significant re-
duction of validation efforts for dynamic light functi-
ons with FMI for multi-domain integration and test
platforms. In International Modelica Conf. 2014.

SD2 (2017). Speed Dreams 2 Website. www.speed-
dreams.org/.

Wehner, P. and Göhringer, D. (2013). Evaluation of driver
assistance systems with a car simulator a virtual and a
real FPGA platform. In Design and Architectures for
Signal and Image Processing, pages 345–346.

Fully Virtual Rapid ADAS Prototyping via a Joined Multi-domain Co-simulation Ecosystem

69

