
Gamma-star Reduction in the Type-theory of Acyclic Algorithms

Roussanka Loukanova
Department of Philosophy, Stockholm University, Stockholm, Sweden

Keywords: Mathematics Of Algorithms, Recursion, Types, Semantics, Algorithmic Semantics, Denotation, Canonical
Computations.

Abstract: The paper extends a higher-order type theory of acyclic algorithms by adding a reduction rule, which results
in a stronger reduction calculus. The new reduction calculus determines a strong algorithmic equivalence
between formal terms. It is very useful for simplifying terms, by eliminating sub-terms having superfluous
lambda abstraction and corresponding spurious functionalapplications.

1 INTRODUCTION

In a sequence of papers, see (Moschovakis, 1989;
Moschovakis, 1994; Moschovakis, 1997), Yiannis
Moschovakis introduced a new approach to the math-
ematical notion of algorithm, by the concept of recur-
sion and mutually recursive computations. The ap-
proach, which we call Theory of Moschovakis Recur-
sion, uses a formal language of recursion and fine-
grained semantic distinctions between denotations of
formal terms and algorithms for computing the de-
notations, correspondingly by two semantic layers:
denotational and algorithmic semantics. The initial
work on Moschovakis Recursion was on untyped the-
ory of algorithms and is the basis of (Moschovakis,
2006), which introduced typed theory Lλ

ar of acyclic
recursion, as formalization of the concepts of algo-
rithmic meaning in typed models. The theory Lλ

ar was
introduced in (Moschovakis, 2006) by considering its
potentials for applications to algorithmic semantics
of human language, analogously to semantics of pro-
gramming languages, where a given denotation can
be computed by different algorithms.

Our ongoing work on extending the expressive-
ness of Lλar develops a class of formal languages and
theories of typed acyclic recursion, which cover var-
ious computational aspects of the mathematical con-
cept of algorithm. We target development of formal
systems and calculi, which have applications in con-
temporary intelligent systems. In particular, we de-
velop a class of type theories of algorithms, which
have more adequate computational applications in AI,
by covering context dependent algorithms that de-
pend on AI agents and other contextual parameters.
For instance, such work was initiated in (Loukanova,
2011d; Loukanova, 2013a; Loukanova, 2016c).

Collectively, the classes of typed formal languages
and theories of Moschovakis acyclic, and, respec-
tively, full recursion are formal systems, which we
call typed theory of acyclic recursion(TTofAR), and,
respectfully,typed theory of (full) recursion(TTofR).

TTofAR has potentials for applications to algo-
rithmic semantics of formal and natural languages.
Among the formal languages, we consider applica-
tions of typed theory of recursion to semantics of
programming languages, formalisation of compilers,
languages used in database systems, and many ar-
eas of Artificial Intelligence (AI), including robotics.
The untyped theory of recursion (Moschovakis, 1997;
Moschovakis, 1989) is applied in (Hurkens et al.,
1998) to model reasoning. The potentials of Lλ

ar, with
typed acyclic recursion, have been demonstrated for
various applications, in particular, to computational
semantics of human language. Application of Lλ

ar to
logic programming in linguistics and cognitive sci-
ence is given in (Hamm and van Lambalgen, 2004).

A sequence of papers initiated extending the orig-
inal Lλ

ar, and provide applications of Lλ
ar to computa-

tional semantics and computational syntax-semantics
interface of human language, see (Loukanova, 2013c;
Loukanova, 2013b; Loukanova, 2013a; Loukanova,
2012a; Loukanova, 2012b; Loukanova and Jiménez-
López, 2012; Loukanova, 2011a; Loukanova, 2011c;
Loukanova, 2011d; Loukanova, 2011e; Loukanova,
2011f; Loukanova, 2011g; Loukanova, 2011b),
(Loukanova, 2016b; Loukanova, 2016a; Loukanova,
2016c; Loukanova, 2015b). By adding polymor-
phism, the work in (Loukanova, 2016a) offers po-
tentials for varieties of applications with polymor-
phic, or otherwise parametric types. The work in
(Loukanova, 2014; Loukanova, 2015b; Loukanova,
2015a; Loukanova, 2017b) provides a formal tech-

Loukanova, R.
Gamma-star Reduction in the Type-theory of Acyclic Algorithms.
DOI: 10.5220/0006662802310242
In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 2, pages 231-242
ISBN: 978-989-758-275-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

231

nique for applications of Lλar and its extended ver-
sions to data science, for representation of factual
and situated content of underspecified and partial in-
formation. The work (Loukanova, 2017a) extends
Lλ

ar and provides a basis for applications to compu-
tational neuroscience for mathematical medeling of
neural structures and connections.

In this paper, at first, we present the original reduc-
tion calculus of the type theory of acyclic recursion,
which effectively reduces terms to their canonical
forms. This reduction calculus determines a strict al-
gorithmic equivalence between Lλ

ar-terms. In the rest
of the paper, we present our contribution. We extend
the reduction calculus of Lλar to a strongerγ∗-reduction
calculus. We call, and denote it alsogamma-star
reduction calculus. The newγ∗-reduction system is
very useful for simplifying terms, by eliminating sub-
terms having superfluous lambda abstraction and cor-
responding spurious functional applications. We give
motivation by using abstract examples, because the
theory has broad applications in technologies. For
better understanding, we give supplementary exam-
ples that render expressions of human language to
Lλ

ar-terms. In addition, the theory has direct potentials
for applications to computerised processing of human
language, including large-scale, computational gram-
mars of human language and NLP for AI.

2 SYNTAX AND SEMANTICS OF
TYPED-THEORY OF ACYCLIC
RECURSION

2.1 Syntax

Basic Types: BTypes= {e, t,s}
The basic typee is the type of the entities in the se-
mantic domains and the expressions denoting entities;
t of the truth values and corresponding expressions,s
of the states.

Types: the setTypes (i.e., the set of type terms)
is the smallest set defined recursively, by using the
Backus-Naur Form (BNF) notation as follows:

θ :≡ e | t | s | σ | (τ → σ) (1)

The type terms(τ → σ) are the types of functions
from objects of typeτ to objects of typeσ, and of
expressions denoting such functions.
e→ t, the type of characteristic functions

of sets of entities
(2a)

ẽ≡ (s→ e), of state dependent entities (2b)

t̃≡ (s→ t), of state dependent truths (2c)

τ̃ ≡ (s→ τ), of state dependent objects

of typeτ
(2d)

The vocabulary of Lλar consists of
Constants:

K =
⋃

τ∈Types Kτ,
where, for eachτ ∈ Types, Kτ = {c0τ, . . . ,cτ

k, . . .}
Pure variables:

PureVars =
⋃

τ∈Types PureVarsτ,
where, forτ ∈ Types, PureVarsτ = {v0,v1, . . .}

Recursion variables:
RecVars =

⋃
τ∈Types RecVarsτ,

where, for eachτ∈Types, RecVarsτ = {r0, r1, . . .}

The terms ofLλ
ar: The setTerms of Lλ

ar is defined by
recursion expressed by using a typed variant of BNF,
with the type assignments given either as superscripts
or with column sign:

A :≡ cτ | xτ | (3a)
[
B(σ→τ)(Cσ)

]τ | (3b)
[

λvσ (Bτ)
](σ→τ) | (3c)

[
Aσ0

0 where { pσ1
1 := Aσ1

1 , . . . ,

pσn
n := Aσn

n }
]σ0

(3d)

where for n,m ≥ 0, cτ ∈ Kτ is a constant;xτ ∈
PureVarsτ∪RecVarsτ is a pure or recursion variable;
vσ ∈ PureVarsσ is a pure variable;A,B,Aσi

i ∈ Terms
(i = 0, . . . ,n) are terms of the respective types;pi ∈
RecVarsσi (i = 1, . . . ,n) are pairwise different recur-
sion variables; and, in the expressions of the form
(3d), the subexpression{pσ1

1 := Aσ1
1 , . . . , pσn

n := Aσn
n }

is a sequence of assignments that satisfies theacyclic-
ity constraint:

Acyclicity Constraint AC 1. For any given terms
A1 : σ1, . . . , An : σn, and recursion variablesp1 : σ1,
. . . , pn : σn, the sequence{p1 := A1, . . . , pn := An} is
anacyclic system of assignmentsiff there is a ranking
function rank : {p1, . . . , pn} −→ N such that, for all
pi , p j ∈ {p1, . . . , pn},

if p j occurs freely inAi

thenrank(p j)< rank(pi)
(4)

Usually, the type assignments in the term expres-
sions are skipped. The terms of the form (3d), are
calledrecursion terms:

[Aσ
0 where {pσ1

1 := Aσ1
1 , . . . , pσn

n := Aσn
n }]σ0 (5a)

≡ (A0 where { p1 := A1, . . . , pn := An}) (5b)

≡ A0 where { p1 := A1, . . . , pn := An} (5c)

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

232

2.2 Dynamic Specifications in Context
by Agents

We shall render the pronoun “his” into a simple recur-
sion variableh for the purpose of the demonstration.
More adequate treatment of the pronouns is not in the
subject of this paper. Here we consider general un-
derspecification of terms via free recursion variables
occurring in Lλ

ar -terms. Using recursion variables al-
lows the recursion terms that contain them, like (6c),
to be expended by adding assignmentsh := H, for
some appropriate termH. What is the termH de-
pends on context, and can be specified dynamically,
when more detailed information is provided, e.g., by
discourse or explicitly by users. Here we do not treat
details of such contextual contributions, by focusing
on the possibility to represent underspecification by
“underspecified” Lλar-terms containing free recursion
variables. Using free recursion variables in terms
gives potentials for its algorithmic resolving of un-
derspecification by adding assignments to canonical
terms.

The reductions in this section can be done by us-
ing the reduction rules of Lλar, which are given in Sec-
tion (3).

Example 2.1(Underspecified pronouns).

John greeted his wife. (6a)
render−−−→ greeted(wife-of(h))(john) (6b)

⇒cf greeted(w)(j) where { j := john,

w := wife-of(h)} (6c)

The recursion variableh in (6c) is left free, which we
use to represents semantic underspecification of the
sentence (6a), in absence of context with an agent that
lacks information to interpret the pronoun. If left un-
bound by any assignment,h can be interpreted as a
deictic pronoun obtaining its denotational referents by
the agents’ references provided by context informa-
tion, e.g., by addingh := tomto the assignments in the
term (7c)–(7e). The result is the dynamic specifica-
tion of the underspecified term (7b), i.e., (6c), and its
canonical form (7c)–(7e), to the sully specified term
(7f)–(7i).

John greeted his wife. (7a)
render−−−→ greeted(wife-of(h))(john) (7b)

⇒cf greeted(w)(j) where { (7c)

j := john, (7d)

w := wife-of(h)} (7e)

⇒contextgreeted(w)(j) where { (7f)

j := john, (7g)

w := wife-of(h), (7h)

h := tom} (7i)

An alternative, anaphoric reading of (6a) can be ob-
tained by adding the assignmenth := j to the term
(6b), and thus to the system of assignments in its
canonical form (6c), e.g., dynamically, after the agent
has obtained relevant information. The result is the
specified term (8c)–(8f):

John greeted his (own) wife. (8a)
render−−−→ greeted(wife-of(h))(john) (8b)

⇒contextgreeted(w)(j) where { (8c)

j := john, (8d)

w := wife-of(h), (8e)

h := j } (8f)

2.3 Semantics

Denotational Semantics ofLλ
ar: An Lλ

ar semantic
structure, also calledmodel, is a tupleA= 〈T,I 〉, sat-
isfying the following conditions (S1)–(S4):

(S1) T is a set, called aframe, of sets

T= {Tσ | σ ∈ Types} (9)

whereTe 6= ∅ is a nonempty set of entities,Tt =
{0,1,er} ⊆ Te is the set of thetruth values, Ts 6= ∅
is a nonempty set of objects calledstates

(S2) T(τ1→τ2) = { p | p: Tτ1 −→ Tτ2 }
(S3) I is a functionI : K −→ T, called theinter-

pretation functionof A, such that for everyc ∈ Kτ,
I (c) = c for somec∈ Tτ

(S4) The setG of the variable assignments for the
semantic structureA is:
G = {g | g: PureVars∪ RecVars−→ T andg(x) ∈
Tσ, for everyx: σ}
Definition 1 (Denotation Function). The denotation
functionden, when it exists, of the semantics structure
A, is a function:

den : Terms−→ { f | f : G−→ T} (10)

which is defined, for eachg∈ G, by induction on the
structure of the terms, as follows:

(D1) den(x)(g) = g(x); den(c)(g) = I (c)
(D2) for application terms

den([B(σ→τ)(Cσ)]τ)(g) = den(B)(g)(den(C)(g))
(11)

(D3) for λ-terms
den([λvσ (Bτ)

](σ→τ)
)(g) : Tτ −→ Tσ,

wherex : τ andB : σ, is the function such that, for
everyt ∈ Tτ:

[den([λvσ (Bτ)
](σ→τ)

)(g)]
(
t
)

(12)

= den(B)(g{x := t}) (13)

Gamma-star Reduction in the Type-theory of Acyclic Algorithms

233

(D4) for recursion terms

den([Aσ0
0 where { pσ1

1 := Aσ1
1 , . . . ,

pσn
n := Aσn

n }]σ0)
(14a)

= den(A0)(g{p1 := p1, . . . , pn := pn}) (14b)

where for alli ∈ {1, . . . ,n}, pi ∈ Tτi are defined by
recursion onrank(pi), so that:

pi = den(Ai)(g{pk1 := pk1
, . . . , pkm := pkm

}) (15)

wherepk1, . . . , pkm are all the recursion variablesp j ∈
{p1, . . . , pn} such thatrank(p j)< rank(pi)

Intuitively, a system{p1 := A1, . . . , pn := An} de-
fines recursive computations of the values to be as-
signed to the locationsp1, . . . , pn. When p j occurs
freely in Ai , the denotational value ofAi , which is as-
signed topi , may depend on the values of the variable
p j , as well as on the values of the variablespk hav-
ing lower rank thanp j . Requiring a ranking function
rank, such thatrank(p j) < rank(pi), i.e., an acyclic
system guarantees that computations end after finite
number of steps. Omitting the acyclicity condition
gives an extended type system Lλ

r , which admits full
recursion. This is not in the subject of this paper.

Algorithmic Semantics: The notion of algorithmic
meaning (algorithmic semantics) in the languages of
recursion covers the most essential, computational as-
pect of the concept of meaning. Thealgorithmic
meaning, Int(A), of a meaningful termA is the tuple
of functions, a recursor, that is defined by the denota-
tionsden(Ai) (i ∈ {0, . . .n}) of the parts (i.e., the head
sub-termA0 and of the termsA1, . . . ,An in the system
of assignments of its canonical form (see the next sec-
tions)cf(A)≡ A0 where {p1 := A1, . . . , pn := An}. In-
tuitively, for each meaningful termA, the algorithmic
meaningInt(A) of A, is the mathematicalalgorithm
for computing the denotationden(A).

Two meaningful expressionsA andB are algorith-
mically equivalent,A ≈ B i.e., algorithmically syn-
onymous iff their recursorsInt(A) andInt(B) are nat-
urally isomorphic, i.e., they are the same algorithms.
Thus, the formal languages of recursion offer a for-
malisation of central computational aspects: denota-
tion, with at least two semantic “levels”:algorithmic
meaningsand denotations. The terms in canonical
form represent the algorithmic steps for computing
semantic denotations.

3 REDUCTION CALCULUS

Definition 2 (Congruence Relation). For any terms
A,B ∈ Terms, A andB are congruent,A≡c B, if and

only if one of them can be obtained from the other by
renaming bound variables and reordering assignments
in recursion terms.

3.1 Reduction Rules

Congruence: If A≡c B, thenA⇒ B (cong)
Transitivity:

If A⇒ B andB⇒C, thenA⇒C (trans)
Compositionality:

If A⇒ A′ andB⇒ B′, then

A(B)⇒ A′(B′)
(c-ap)

If A⇒ B, then

λ(u)(A)⇒ λ(u)(B)
(c-λ)

If Ai ⇒ Bi , for i = 0, . . . ,n, then

A0 where { p1 := A1, . . . , pn := An}
⇒ B0 where { p1 := B1, . . . , pn := Bn}

(c-rec)

Head Rule: (head)
(
A0 where {−→p :=

−→
A}

)
where {−→q :=

−→
B}

⇒ A0 where {−→p :=
−→
A , −→q :=

−→
B}

given that nopi occurs freely in anyB j , for i = 1,
. . . , n, j = 1, . . . ,m

Bekič-Scott rule: (B-S)

A0 where { p :=
(
B0 where {−→q :=

−→
B}

)
,

−→p :=
−→
A }

⇒ A0 where { p := B0,
−→q :=

−→
B ,

−→p :=
−→
A}

given that noqi occurs free in anyA j , for i = 1,
. . . , n, j = 1, . . . ,m

Recursion-application rule: (recap)

(A0 where {−→p :=
−→
A }

)
(B)

⇒ A0(B) where {−→p :=
−→
A }

given that nopi occurs free inB for i = 1, . . . ,n
Application rule: (ap)

A(B) ⇒ A(p) where {p := B}
given thatB is a proper term andp is a fresh loca-
tion

λ-rule: (λ)

λ(u)(A0 where { p1 := A1, . . . , pn := An})
⇒ λ(u)A′

0 where { p′1 := λ(u)A′
1, . . . ,

p′n := λ(u)A′
n}

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

234

where for all i = 1, . . . , n, p′i is a fresh lo-
cation andA′

i is the result of the replacement
of the free occurrences ofp1, . . . , pn in Ai with
p′1(u), . . . , p

′
n(u), respectively, i.e.:

A′
i ≡ Ai{p1 :≡ p′1(u), . . . , pn :≡ p′n(u)}
for all i ∈ {1, . . . ,n} (20)

Definition 3. The reduction relationis the smallest
relation between terms that is closed under the reduc-
tion rules.

The reduction relation is denoted by⇒. That is,
for any two termsA andB, A reduces toB, denoted by
A⇒ B, iff B can be obtained fromA by finite number
of applications of reduction rules.

Definition 4 (Term Irreducibility). We say that a term
A∈ Terms is irreducibleif and only if

for all B∈ Terms, if A⇒ B, thenA≡c B (21)

The following theorems are major results that are
essential for algorithmic semantics.

Theorem 1(Canonical Form Theorem: existence and
uniqueness of the canonical forms). (Moschovakis,
2006) For each term A, there is a unique, up to con-
gruence, irreducible term C, denoted bycf(A) and
called the canonical form of A, such that:

1. cf(A)≡ A0 where { p1 := A1, . . . , pn := An},
for some explicit, irreducible terms A1, . . . , An
(n≥ 0)

2. A⇒ cf(A)
3. if A⇒B and B is irreducible, then B≡c cf(A), i.e.,

cf(A) is the unique, up to congruence, irreducible
term to which A can be reduced.

Theorem 2 (Referential Synonymy Theorem). (See
(Moschovakis, 2006)) Two terms A,B are algorithmi-
cally equivalent, i.e., synonymous, A≈ B, if and only
if there are explicit, irreducible terms of correspond-
ing types, A0 : σ0, . . . , An : σn, B0 : σ0, . . . , Bn : σn
(n≥ 0), such that:

Aσ0 ⇒cf Aσ0
0 where { p1 := Aσ1

1 , . . . , (22a)

pn := Aσn
n } (22b)

Bσ0 ⇒cf Bσ0
0 where { p1 := Bσ1

1 , . . . , (22c)

pn := Bσn
n } (22d)

and for all i= 0, . . . , n,

den(Ai)(g) = den(Bi)(g), for all g ∈ G (23)

4 ALGORITHMIC PATTERNS
AND λ-ABSTRACTIONS

In this section we demonstrate the technique of under-
specified, parametric algorithm, i.e., algorithmic pat-
terns that represent classes of specified algorithm in

reduction steps . We use the technique with some ex-
amples to motivate theγ∗-reduction introduced in the
second part of the paper.

A Parametric Algorithm: Now, we can use a more
general term of an algorithmic pattern, as paramet-
ric algorithm. For any proper termsW,J, G1,G2 that
to not contain free occurrences of the pure variables
x1,x2,x3, e.g., constants, the following reductions can
be done by using the reduction rules of Lλ

ar, which are
given in Section (3).

P0 ≡ q(W(h))(J) where { (24a)

q := (G1(x1)+G2(x2))} (24b)

⇒cf q(w)(j) where {
q := (q1+q2),

j := J,

w :=W(h),

q1 := G1(x1), q2 := G2(x2)}

(24c)

The termP0 in (24a)– (24c) can be preceded by a
sequence ofλ-abstractions, as in the termP1 in (25a)–
(25b). By using the reduction rules given in Sec-
tion (3),P1 can be reduced to the term (25d)–(25i).

P1 ≡ λ(x1)λ(x2)λ(x3)
[
q(W(h))(J) where { (25a)

q := (G1(x1)+G2(x2))}
]

(25b)

⇒ λ(x1)λ(x2)λ(x3)
[
q(w)(j) where {

q := (q1+q2),

j := J,

w :=W(h),

q1 := G1(x1), q2 := G2(x2)}
]

(25c)

⇒ λ(x1)λ(x2)λ(x3)
[

[
q′(x1)(x2)(x3)

](
w′(x1)(x2)(x3)

)

(j ′(x1)(x2)(x3))
]
where {

(25d)

q′ := λ(x1)λ(x2)λ(x3)
[

(q′1(x1)(x2)(x3)+

q′2(x1)(x2)(x3))
] (25e)

j ′ := λ(x1)λ(x2)λ(x3)
[
J
]
, (25f)

w′ := λ(x1)λ(x2)λ(x3)
[
W(h)

]
, (25g)

q′1 := λ(x1)λ(x2)λ(x3)
[

G1(x1)
]
,

(25h)

Gamma-star Reduction in the Type-theory of Acyclic Algorithms

235

q′2 := λ(x1)λ(x2)λ(x3)
[

G2(x2)
]
}

(25i)

The term (25d)–(25i) has vacuousλ-abstractions,
e.g., (25f), (25g), (25h), (25i), which denote con-
stant functions, and corresponding applications, e.g.,
in (25d), that give the same values.

Theγ∗-reduction, introduced in this paper, reduces
such spurious sub-terms.

5 GAMMA-STAR REDUCTION

5.1 Theγ∗-Rule

In the following sections, we give the definition of
theγ∗-rule, see Table 1, and its major properties. Ex-
panding the reduction calculus of Lλ

ar with theγ∗-rule
simplifies some terms, by reducing sub-terms with
vacuousλ-abstractions, while maintaining closely the
original algorithmic structure. By using theγ∗-rule,
the canonical forms determine more efficient versions
of algorithms, by maintaining the essence of the com-
putational steps.

Definition 5 (Strongγ∗-condition). A recursion term
A ∈ Terms satisfies the strongγ∗-condition for an

assignmentp := λ(−→u
−→
ϑ)λ(vϑ)Pτ : (

−→
ϑ → (ϑ → τ)),

with respect toλ(v), if and only if A is of the form:
(26a)–(26c):

A≡ A0 where {−→a :=
−→
A , (26a)

p := λ(−→u)λ(v)P, (26b)
−→
b :=

−→
B } (26c)

with the sub-terms of correspondingly appropriate
types, and which is such that the following holds:

1. The termP∈ Termsτ does not have any (free) oc-
currences ofv in it, i.e.,v 6∈ FreeV(P)

2. All the occurrences ofp in A0,
−→
A , and

−→
B are oc-

currences in sub-termsp(−→u)(v), modulo renam-
ing the variables−→u ,v

In such a case, we also say thatthe assignment
p := λ(−→u)λ(v)P satisfies theγ∗-condition in the re-
cursion term A in(26a)–(26c).

6 THE γ∗-REDUCTION

Adding the⇒γ∗ to the reduction rules of Lλar deter-
mines an extended reduction relation between terms
as follows.

Table 1: Theγ∗-rule

(γ∗)

A≡ A0 where {−→a :=
−→
A , (27a)

p := λ(−→u)λ(v)P, (27b)
−→
b :=

−→
B } (27c)

⇒γ∗ A′
0 where {−→a :=

−→
A ′, (27d)

p′ := λ(−→u)P′, (27e)
−→
b :=

−→
B′ } (27f)

where

• the term A ∈ Terms satisfies the (strong)γ∗-
condition (in Definition 5) forp := λ(−→u)λ(v)P

• p′ ∈ RecVars
(
−→
ϑ→τ) is a fresh recursion variable

• −→
X′ ≡ −→

X {p(−→u)(v) :≡ p′(−→u)} is the result of the
replacementsXi{p(−→u)(v) :≡ p′(−→u)}, i.e., of all
occurrences ofp(−→u)(v) by p′(−→u), in all parts
Xi in (27d)–(27f), modulo renaming the variables−→u ,v

Definition 6 (γ∗-reduction). Theγ∗-reductionrelation
is the smallest relation,⇒∗

γ∗ ⊆ Terms×Terms (also
denoted by⇒γ∗), between terms that is closed under
the Lλ

ar-reduction rules, given in Section 3.1, and the
γ∗-rule, given in Table 1.

We refer to the set of all Lλar reduction rules ex-
tended with theγ∗-rule as the set ofγ∗-reduction rules.

In addition to the notations⇒∗
γ∗ , and⇒γ∗ , for the

γ∗-reduction, we also use the usual notation for re-
flexive and transitive closure of a relation, given in
(28a). To specify that theγ∗-rule has been applied
certain number of times (including zero times), pos-
sibly intervened by applications of some of the other
reduction rules, we use the notation (28b)–(28c).

A⇒n
γ∗ B ⇐⇒ A⇒∗

γ∗ B

by n applications of reduction rules,

possiblyγ∗ (n≥ 0)

(28a)

A⇒γ∗
∗ B ⇐⇒ A⇒∗

γ∗ [n] B, for n≥ 0

by using⇒-rules and

n applications of theγ∗-rule

(28b)

A⇒+
γ∗ B ⇐⇒ A⇒∗

γ∗ [n] B for n≥ 1

by using⇒-rules and

n applications of theγ∗-rule

(28c)

Definition 7 (γ∗-irreducible terms). We say that a

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

236

termA∈ Terms is γ∗-irreducibleif and only if

for all B∈ Terms, A⇒∗
γ∗ B =⇒ A≡c B (29)

Definition 8 (γ∗-irreducible recursion terms for a spe-
cific assignmentc := λ(−→u)λ(v)C). We say that a re-
cursion term

A≡A0where {−→p :=
−→
A , c := λ(−→u)λ(v)C, −→q :=

−→
B }

is γ∗-irreduciblefor the assignmentc := λ(−→u)λ(v)C,
with respect toλ(v), if and only if the conditions for
theγ∗-rule are not satisfied for it, i.e., either

(1) v∈ FreeV(C), or
(2) v 6∈ FreeV(C), and not all of the occurrences ofc

in A0,
−→
A , and

−→
B are sub-occurrences in a term

c(−→u)(y), modulo congruence by renaming the
variables−→u ,y∈ PureVars.

Theorem 3 (Criteria for γ∗-irreducibility). By struc-
tural induction:

1. If A∈ Const ∪Vars, then A isγ∗-irreducible.
2. An application term A(B) is γ∗-irreducible if and

only if A is explicit and irreducible and B is imme-
diate.

3. Aλ-termλ(x)A isγ∗-irreducible if and only if A is
explicit and irreducible.

4. A recursion term A

A≡ [A0 where { p1 := A1, . . . , pn := An}] (n≥ 0)

is γ∗-irreducible if and only if
(a) all of the parts A0, . . . , An are explicit and

irreducible, and
(b) A does not satisfy theγ∗-condition

Proof. By structural induction on terms and inspec-
tion of theγ∗-reduction rules.

7 CANONICAL FORMS AND
γ∗-REDUCTION

Theorem 4(Extendedγ∗-Canonical Form Theorem).
For every A∈ Terms, the following holds:

1. (Existence of aγ∗-canonical form of A) There ex-
ist explicit, irreducible A0, . . . ,An ∈Terms (n≥ 0)
such that the term A0 where { p1 := A1, . . . , pn :=
An} is γ∗-irreducible, i.e., irreducible and does
not satisfy theγ-condition, and

cfγ* (A)≡ A0 where { p1 := A1, . . . ,

pn := An},
(30)

Thus,cfγ* (A) is γ∗-irreducible.

2. A constantc ∈ K or a recursion variable p∈
RecVars occurs freely incfγ* (A) if and only if it
occurs freely in A.

3. A⇒∗
γ∗ cfγ* (A)

4. If A isγ∗-irreducible, thencfγ* (A)≡c A.

5. If A⇒∗
γ∗ B, thencfγ* (A)≡c cfγ* (B)

6. (Uniqueness ofcfγ* (A) up to congruence) if A⇒∗
γ∗

B and B is γ∗-irreducible, then B≡c cfγ* (A),
i.e., cfγ* (A) is unique, up to congruence,γ∗-
irreducible term. We write

A⇒gscf B ⇐⇒ B≡c cfγ* (A) (31a)

A⇒gscf cfγ* (A) (31b)

Proof. The statement (1) is proved by induction on
term structure, using the definition of thecfγ* (A). The
statements (2) and (3) are proved by induction on term
structure, using the criteria forγ∗-irreducibility 3. (4)
is proved by induction on the definition of theγ∗-
reduction relation. (5) follows from (3) and (4).

Definition 9 (γ∗-equivalence (γ∗-synonymy) relation
≈γ∗). For anyA,B∈ Terms:

A≈γ∗ B ⇐⇒ cfγ* (A)≈ cfγ* (B) (32)

WhenA≈γ∗ B, we say thatA andB areγ∗-equivalent,
alternatively,γ∗-synonymous.

Note 1. If we have added an additional restriction in
theγ∗-condition of theγ∗-rule that all the occurrences
of the sub-termsp(−→u)(v) have to be in the scope
of λ(v) (modulo renaming congruence), the⇒γ∗-rule
would have preserved all the free variables ofA in
cfγ* (A), including the pure variables, not only the re-
cursion variables, so thatFreeV(cfγ* (A)) = FreeV(A)
(see theγ∗-Canonical Form Theorem 4). In this
strongγ∗-reduction, we refrain from adding such an
extra restriction. Note also that the replacements
Ai{p(−→u)(v) :≡ p′(−→u)}, B j{p(−→u)(v) :≡ p′(−→u)} in
theγ∗-rule (Table 1) are not necessarily “free”, in the
inverse sense that the⇒γ∗-rule may remove occur-
rences ofv which are in the scope ofλ(v), in some
parts, due to the clause (2) in theγ∗-condition (5).

8 SOME PROPERTIES OF THE
γ∗-EQUIVALENCE

Theorem 5 (γ∗-Equivalence Theorem). Two terms
A,B are algorithmicallyγ∗-synonymous, A≈γ∗ B, if
and only if there are explicit, irreducible terms of cor-
responding types, Ai : σi , Bi : σi (i = 0, . . . ,n), (n≥ 0),
such that:

A⇒gscf A0 where { p1 := A1, . . . , pn := An}
≡ cfγ* (A) (i.e.,γ∗-irreducible)

(33a)

Gamma-star Reduction in the Type-theory of Acyclic Algorithms

237

B⇒gscf B0 where { p1 := B1, . . . , pn := Bn}
≡ cfγ* (B) (i.e.,γ∗-irreducible)

(33b)

and for all i= 0, . . . , n,

den(Ai)(g) = den(Bi)(g), for all g ∈ G (34)

Proof. The theorem follows from Definition 9 ofγ∗-
equivalence and Theorem 2.

Definition 10 (Syntactic Synonymy (Equivalence)
≈s). For anyA,B∈ Terms,

A≈s B ⇐⇒ cf(A)≡c cf(B) (35)

For more details about syntactic synonymy, see
Moschovakis (Moschovakis, 2006). The difference
between syntactic and algorithmic synonymies is that
syntactic synonymy does not apply to denotationally
equivalent constants and syntactic constructs such as
λ-terms. For instance, assuming thatdogandcanine
are constants, such thatden(dog) = den(canine), it
holds thatdog≈ canine (by the Referential Syn-
onymy Theorem 2), because both terms are in canon-
ical forms, with the same denotations, i.e., they de-
note the same function obtainable by the same al-
gorithm, determined by the interpretation functionI
of the semantics structureA = 〈T,I 〉. On the other
hand, dog 6≈s canine, since dog 6≡c canine. Also,
den(dog) = den(λ(x)dog(x)) (by the clauses (D1),
(D3) of the Definition 1 of the denotation function).
Therefore,dog≈ λ(x)dog(x) (by the Referential Syn-
onymy Theorem 2), because both terms are in canoni-
cal forms. These two terms are syntactically different,
dog 6≈s λ(x)dog(x), becausedog 6≡c λ(x)dog(x).

Theorem 6. For any A,B∈ Terms,

A⇒ B =⇒ A≈s B (36a)

=⇒ A≈ B (36b)

=⇒ A≈γ∗ B =⇒ A |=| B (36c)

Proof. By using the definitions.

Theorem 7. For any A,B∈ Terms,

cf(A)≈γ∗ cf(B) ⇐⇒
cf(A)⇒∗

γ∗ A′, cf(B)⇒∗
γ∗ B′, and A′ ≈γ∗ B′,

for some A′,B′ ∈ Terms

(37a)

cf(A)≈γ∗ cf(B) ⇐⇒ A≈γ∗ B (37b)

Proof. The directions⇐= are proved by using Defi-
nition 9, Referential Synonymy Theorem 2, and Ex-
tendedγ∗-Canonical Form Theorem 4.

Corollary 1. For all A,B,C∈ Terms,

A⇒ B⇒∗
γ∗ C =⇒ A≈ B =⇒ A≈γ∗ B≈γ∗ C

(38)

while there exist (many) terms A,B,C ∈ Terms such
that

A⇒ B⇒∗
γ∗ C, C 6≈ B, and C 6≈ A (39)

Proof. (38) follows from Definition 9, the Canonical
Form Theorems 1, and 4.

By Definition 9 of γ∗-equivalence between two
terms A,B as algorithmic synonymy between their
γ∗-canonical forms, various properties of algorithmic
synonymy are inherited byγ∗-equivalence, reflected,
e.g., by theγ∗-Equivalence Theorem 5 and the compo-
sitionality of γ∗-equivalence, with the very restricted
form of β-reduction.

Assume that the (γ∗)-rule, see Table 1, is applied
to a termA in canonical form, i.e.,A≡c cf(A). By ap-
plication of the (γ∗)-rule until we obtain theγ∗ canon-
ical form cfγ* (A) of A. The corresponding parts in
the assignments (27b)–(27e) are not denotationally
equivalent, since they are not of the same type. By
theγ∗-Equivalence Theorem 5,A≈ cf(A) 6≈ cfγ* (A).

Theγ∗-reduction calculus does not preserve per se
the algorithmic synonymy between terms. That is, in
general, it is possible thatA≈ B, while A 6≈γ∗ B.

Nevertheless, theγ∗-reduction relation⇒∗
γ∗ be-

tween terms is very useful. For any termsA andB,
a γ∗-reductionA ⇒γ∗ cfγ* (A) preserves the most es-
sential algorithmic components of the canonical form
cf(A) in cfγ* (A). It reduces vacuousλ-abstractions,
which denote constant functions, and corresponding
applications that give the constant values.

9 APPLICATIONS OF THE
γ∗-RULE

In this section, we give pattern examples for possi-
ble renderenings of expressions in human language
to Lλ

ar-terms that can represent their algorithmic se-
mantics. A definition of a rendering relation be-
tween human language expressions and their seman-
tic representations by Lλar-terms is not in the subject
of this paper. Rendering can be defined in a computa-
tional mode, via syntax-semantics interfaces, within a
computational grammar, e.g., see (Loukanova, 2011f;
Loukanova, 2017b). Typically, Lλar offers alternative
terms for representing algorithmic semantics of hu-
man language expressions. The choice would depend
on applications.

Developments of new, hybrid machine learning
techniques and statistical approaches for extraction of
semantic information from text can provide more pos-
sibilities for rendering human language expressions to
Lλ

ar-terms.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

238

Example 9.1.

Kim hugs some dog
render−−−→ A (40a)

A≡
[

λ(yk)
(

some
(
dog

)

(
λ(xd)hug(xd)(yk)

))

]
(kim)

(40b)

Proposition 1. Given that A is the term in(40b), its
canonical andγ∗-canonical forms,cf(A) andcfγ* (A),
are as in(41)and (42), correspondingly:

cf(A)≡
[

λ(yk)
(

some
(
d′(yk)

)
(h(yk))

)]
(k) where

{h := λ(yk)λ(xd)hugs(xd)(yk),

d′ := λ(yk)dog, k := kim}

(41)

cfγ* (A)≡
[

λ(yk)some(d)
(
h(yk)

)]
(k) where

{h := λ(yk)λ(xd)hugs(xd)(yk),

d := dog, k := kim}
(42)

cf(A) 6≈ cfγ* (A) (43a)

cf(A)≈γ∗ cfγ* (A) (43b)

Proof. The following reductions hold for the termA
in (40b).

A⇒ . . . (44a)

⇒
[

λ(yk)
(

some
(
d′(yk)

)(
h(yk)

))
where

{d′ := λ(yk)dog,

h := λ(yk)λ(xd)hugs(xd)(yk)}]
(kim)

(44b)

⇒cf

[
λ(yk)

(
some

(
d′(yk)

)
(h(yk))

)]
(k)

where {h := λ(yk)λ(xd)hugs(xd)(yk),

d′ := λ(yk)dog, k := kim}
(44c)

⇒γ∗
[

λ(yk)some(d)
(
h(yk)

)]
(k) where

{h := λ(yk)λ(xd)hugs(xd)(yk),

d := dog, k := kim}
(44d)

(43a) follows from Theorem 2 and (43b) from Theo-
rem 5.

The term in (44d), and thus, the termcfγ* (A) in
(41) too, is in a canonical form, but it is not algorith-
mically equivalent to the term (44c), i.e., tocf(A) in
(42) too, by the original reduction calculus of Lλ

ar in
Moschovakis (Moschovakis, 2006). The term (44d)

is simpler than (44c), which has an extraneous, vac-
uousλ-abstraction overyk in the assignmentd′ :=
λ(yk)dog, while the termdogdoes not have any (free)
occurrences ofyk, i.e., the values ofλ(yk)dogstored
in d′ are constant and do not depend onλ(yk). The
terms (44c) and (44d) denote very similar algorithms
that areγ∗-equivalent, by applying theγ∗-rule. The
term (44d) is inγ∗-canonical form.

Example 9.2. Assume that the sentence (45) is ren-
dered to a Lλar-term B ≡ B1 that is given in (46a)–
(46h).

[Jim] j sent Mia the article about

the [discovery of Protein353 by [him]j]
render−−−→ B

(45)

Alternatively, depending on specific applications,B
may be a term that is reduced to the term in (46a)–
(46h).

B⇒ B1 ≡ (46a)

λ(z)
[

λ(x)
[
send(m1)(a1)(z) where (46b)

{a1 := the(r1), (46c)

r1 := article-about(b1), (46d)

b1 := the(d1), (46e)

d1 := discovery-of-by(p1)(z), (46f)

p1 := protein353, (46g)

m1 := mia}
]]
(jim) (46h)

Theλ(x) abstractions inside the assignments in (47a)–
(47h) are the typical result of the(λ)-rule of the re-
duction calculus of Lλar, in this case, to the termB1.

B1 ⇒(λ) B2 ≡ (47a)

λ(z)
[

λ(x)send(m2(x))(a2(x))(z) where (47b)

{a2 := λ(x)the(r2(x)), (47c)

r2 := λ(x)article-about(b2(x)), (47d)

b2 := λ(x)the(d2(x)), (47e)

d2 := λ(x)discovery-of-by(p2(x))(z), (47f)

p2 := λ(x)protein353, (47g)

m2 := λ(x)mia}
]
(jim) (47h)

Another application of the(λ)-rule reduces the term
B2 to B3 in (48a)–(48h).

B2 ⇒(λ) B3 ≡ (48a)
[

λ(z)λ(x)send(m3(z)(x))(a3(z)(x))(z) where

(48b)

Gamma-star Reduction in the Type-theory of Acyclic Algorithms

239

{a3 := λ(z)λ(x)the(r3(z)(x)), (48c)

r3 := λ(z)λ(x)article-about(b3(z)(x)), (48d)

b3 := λ(z)λ(x)the(d3(z)(x)), (48e)

d3 := λ(z)λ(x)

discovery-of-by(p3(z)(x))(z),
(48f)

p3 := λ(z)λ(x)protein353, (48g)

m3 := λ(z)λ(x)mia}
]
(jim) (48h)

The termB4 in (49a)–(49h) is the result of applying
the Recursion-application rule (recap) toB3 in (48a)–
(48h).

B3 ⇒(recap)B4 ≡ (49a)
[

λ(z)λ(x)send(m3(z)(x))(a3(z)(x))(z)
]
(jim) (49b)

where

{a3 := λ(z)λ(x)the(r3(z)(x)), (49c)

r3 := λ(z)λ(x)article-about(b3(z)(x)), (49d)

b3 := λ(z)λ(x)the(d3(z)(x)), (49e)

d3 := λ(z)λ(x)

discovery-of-by(p3(z)(x))(z),
(49f)

p3 := λ(z)λ(x)protein353, (49g)

m3 := λ(z)λ(x)mia} (49h)

The termB4 is reduced to the termB5 in (50a)–(50h),
by successive applications of the reduction rule (ap)
to the head part in (49b), the Compositionality rule
(c-rec) for recursion terms, the Head rule (head), and
Congruence of the order of the recursion assignments.

B4 ⇒ B5 ≡ (50a)
[

λ(z)λ(x)send(m3(z)(x))(a3(z)(x))(z)
]
(j) (50b)

where

{a3 := λ(z)λ(x)the(r3(z)(x)), (50c)

r3 := λ(z)λ(x)article-about(b3(z)(x)), (50d)

b3 := λ(z)λ(x)the(d3(z)(x)), (50e)

d3 := λ(z)λ(x)

discovery-of-by(p3(z)(x))(z),
(50f)

p3 := λ(z)λ(x)protein353, (50g)

m3 := λ(z)λ(x)mia, j := jim} (50h)

The denotations of the termsλ(z)λ(x)protein353and
λ(z)λ(x)mia, ‘saved’ respectively inp3 and m3, by
(50g) and (50h), are constant functions that do not
depend on the argument roles of the abstractions
λ(z)λ(x).

The termB5 is reduced toB6, by four successive
applications of theγ∗-rule, for the assignmentsp3 :=
λ(z)λ(x)protein353andm3 := λ(z)λ(x)mia.

B5 ⇒γ∗ B6 ≡ (51a)
[

λ(z)λ(x)send(m)(a3(z)(x))(z)
]
(j) (51b)

where

{a3 := λ(z)λ(x)the(r3(z)(x)), (51c)

r3 := λ(z)λ(x)article-about(b3(z)(x)), (51d)

b3 := λ(z)λ(x)the(d3(z)(x)), (51e)

d3 := λ(z)λ(x)
discovery-of-by(p)(z),

(51f)

p := protein353, (51g)

m := mia, j := jim} (51h)

Now, the termB6 satisfies theγ∗-condition for the as-
signment (51f), with respect toλ(x). Application of
theγ∗-rule toB6, reducesB6 to B7.

B6 ⇒γ∗ B7 ≡ (52a)
[

λ(z)λ(x)send(m)(a3(z)(x))(z)
]
(j) (52b)

where

{a3 := λ(z)λ(x)the(r3(z)(x)), (52c)

r3 := λ(z)λ(x)article-about(b3(z)(x)), (52d)

b3 := λ(z)λ(x)the(d(z)), (52e)

d := λ(z)discovery-of-by(p)(z), (52f)

p := protein353, (52g)

m := mia, j := jim} (52h)

Now, the termB7 satisfies theγ∗-condition for the as-
signment (52e), with respect toλ(x). Application of
theγ∗-rule toB7, reducesB7 to B8.

B7 ⇒γ∗ B8 ≡ (53a)
[

λ(z)λ(x)send(m)(a3(z)(x))(z)
]
(j) (53b)

where

{a3 := λ(z)λ(x)the(r3(z)(x)), (53c)

r3 := λ(z)λ(x)article-about(b(z)), (53d)

b := λ(z)the(d(z)), (53e)

d := λ(z)discovery-of-by(p)(z), (53f)

p := protein353, (53g)

m := mia, j := jim} (53h)

In (54a), the termB8 is reduced toB9, i.e.,B8 ⇒γ∗ B9,
by two successive applications of theγ∗-rule, at first
for r3 := λ(z)λ(x)article-about(b(z)), with respect to

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

240

λ(x), and then fora3 := λ(z)λ(x)the(r(z)), with re-
spect toλ(x).

B8 ⇒γ∗ [2] B9 ≡ (54a)
[

λ(z)λ(x)send(m)(a(z))(z)
]
(j) (54b)

where

{a := λ(z)the(r(z)), (54c)

r := λ(z)article-about(b(z)), (54d)

b := λ(z)the(d(z)), (54e)

d := λ(z)discovery-of-by(p)(z), (54f)

p := protein353, (54g)

m := mia, j := jim} (54h)

10 FUTURE WORK

We work on applications of the type-theory of acyclic
algorithms. For example, most promising results have
been achieved in language processing of formal and
natural languages. Specific applications are computa-
tional semantics and computational syntax-semantics
interfaces. These lines of work continue.

A new direction of applications is to computa-
tional neuroscience, by algorithmic modelling of pro-
cedural, factual, and declarative memory, and depen-
dencies between those, by mutual recursion.

Along such applications to advanced technologies
and AI, we work on theoretical developments. The
results in this paper are part of such long-term work.

REFERENCES

Hamm, F. and van Lambalgen, M. (2004). Moschovakis’
notion of meaning as applied to linguistics. InLogic
Colloqium, volume 1.

Hurkens, A. J. C., McArthur, M., Moschovakis, Y. N.,
Moss, L. S., and Whitney, G. T. (1998). The logic of
recursive equations.The Journal of Symbolic Logic,
63(2):451–478.

Loukanova, R. (2011a). Constraint Based Syntax of Mod-
ifiers. 2011 IEEE/WIC/ACM International Confer-
ences on Web Intelligence and Intelligent Agent Tech-
nology, 3:167–170.

Loukanova, R. (2011b). From Montague’s Rules of Quan-
tification to Minimal Recursion Semantics and the
Language of Acyclic Recursion. In Bel-Enguix, G.,
Dahl, V., and Jiménez-López, M. D., editors,Biology,
Computation and Linguistics — New Interdisciplinary
Paradigms, volume 228 ofFrontiers in Artificial Intel-
ligence and Applications, pages 200–214. IOS Press,
Amsterdam; Berlin; Tokyo; Washington, DC.

Loukanova, R. (2011c). Minimal Recursion Semantics and
the Language of Acyclic Recursion. In Bel-Enguix,
G., Dahl, V., and Puente, A. O. D. L., editors,AI Meth-
ods for Interdisciplinary Research in Language and
Biology, pages 88–97, Rome. SciTePress — Science
and Technology Publications.

Loukanova, R. (2011d). Modeling Context Information
for Computational Semantics with the Language of
Acyclic Recursion. In Pérez, J. B., Corchado, J. M.,
Moreno, M., Julián, V., Mathieu, P., Canada-Bago,
J., Ortega, A., and Fernández-Caballero, A., editors,
Highlights in Practical Applications of Agents and
Multiagent Systems, volume 89 ofAdvances in Intel-
ligent and Soft Computing. Springer, pages 265–274.
Springer.

Loukanova, R. (2011e). Reference, Co-reference and
Antecedent-anaphora in the Type Theory of Acyclic
Recursion. In Bel-Enguix, G. and Jiménez-López,
M. D., editors,Bio-Inspired Models for Natural and
Formal Languages, pages 81–102. Cambridge Schol-
ars Publishing.

Loukanova, R. (2011f). Semantics with the Language of
Acyclic Recursion in Constraint-Based Grammar. In
Bel-Enguix, G. and Jiménez-López, M. D., editors,
Bio-Inspired Models for Natural and Formal Lan-
guages, pages 103–134. Cambridge Scholars Publish-
ing.

Loukanova, R. (2011g). Syntax-Semantics Interface for
Lexical Inflection with the Language of Acyclic Re-
cursion. In Bel-Enguix, G., Dahl, V., and Jiménez-
López, M. D., editors,Biology, Computation and Lin-
guistics — New Interdisciplinary Paradigms, volume
228 ofFrontiers in Artificial Intelligence and Applica-
tions, pages 215–236. IOS Press, Amsterdam; Berlin;
Tokyo; Washington, DC.

Loukanova, R. (2012a). Algorithmic Semantics of Am-
biguous Modifiers by the Type Theory of Acyclic Re-
cursion. IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology,
3:117–121.

Loukanova, R. (2012b). Semantic Information with Type
Theory of Acyclic Recursion. In Huang, R., Ghorbani,
A. A., Pasi, G., Yamaguchi, T., Yen, N. Y., and Jin, B.,
editors,Active Media Technology - 8th International
Conference, AMT 2012, Macau, China, December 4-
7, 2012. Proceedings, volume 7669 ofLecture Notes
in Computer Science, pages 387–398. Springer.

Loukanova, R. (2013a). Algorithmic Granularity with
Constraints. In Imamura, K., Usui, S., Shirao, T.,
Kasamatsu, T., Schwabe, L., and Zhong, N., edi-
tors, Brain and Health Informatics, volume 8211 of
Lecture Notes in Computer Science, pages 399–408.
Springer International Publishing.

Loukanova, R. (2013b). Algorithmic Semantics for Pro-
cessing Pronominal Verbal Phrases. In Larsen, H. L.,
Martin-Bautista, M. J., Vila, M. A., Andreasen, T., and
Christiansen, H., editors,Flexible Query Answering
Systems, volume 8132 ofLecture Notes in Computer
Science, pages 164–175. Springer Berlin Heidelberg.

Loukanova, R. (2013c). A Predicative Operator and Un-
derspecification by the Type Theory of Acyclic Re-

Gamma-star Reduction in the Type-theory of Acyclic Algorithms

241

cursion. In Duchier, D. and Parmentier, Y., editors,
Constraint Solving and Language Processing, volume
8114 of Lecture Notes in Computer Science, pages
108–132. Springer Berlin Heidelberg.

Loukanova, R. (2014). Situation Theory, Situated Informa-
tion, and Situated Agents. In Nguyen, N. T., Kowal-
czyk, R., Fred, A., and Joaquim, F., editors,Transac-
tions on Computational Collective Intelligence XVII,
volume 8790 ofLecture Notes in Computer Science,
pages 145–170. Springer Berlin Heidelberg.

Loukanova, R. (2015a). Representing parametric concepts
with situation theory. In2015 Federated Conference
on Computer Science and Information Systems (Fed-
CSIS), volume 5, pages 89–100. IEEE.

Loukanova, R. (2015b). Underspecified Relations with a
Formal Language of Situation Theory. In Loiseau,
S., Filipe, J., Duval, B., and van den Herik, J., edi-
tors,Proceedings of the 7th International Conference
on Agents and Artificial Intelligence, volume 1, pages
298–309. SCITEPRESS — Science and Technology
Publications, Lda.

Loukanova, R. (2016a). Acyclic Recursion with Polymor-
phic Types and Underspecification. In van den Herik,
J. and Filipe, J., editors,Proceedings of the 8th In-
ternational Conference on Agents and Artificial Intel-
ligence, volume 2, pages 392–399. SCITEPRESS —
Science and Technology Publications, Lda.

Loukanova, R. (2016b). Relationships between Speci-
fied and Underspecified Quantification by the Theory
of Acyclic Recursion. ADCAIJ: Advances in Dis-
tributed Computing and Artificial Intelligence Jour-
nal, 5(4):19–42.

Loukanova, R. (2016c). Specification of Underspecified
Quantifiers via Question-Answering by the Theory of
Acyclic Recursion. In Andreasen, T., Christiansen,
H., Kacprzyk, J., Larsen, H., Pasi, G., Pivert, O., Tré,
G. D., Vila, M. A., Yazici, A., and Zadrożny, S., edi-
tors,Flexible Query Answering Systems 2015, volume
400 of Advances in Intelligent Systems and Comput-
ing, pages 57–69. Springer International Publishing.

Loukanova, R. (2017a). Binding operators in type-theory
of algorithms for algorithmic binding of functional
neuro-receptors. In2017 Federated Conference on
Computer Science and Information Systems (FedC-
SIS), volume 11, pages 57–66. IEEE.

Loukanova, R. (2017b). Typed Theory of Situated Informa-
tion and its Application to Syntax-Semantics of Hu-
man Language. In Christiansen, H., Jiménez-López,
M. D., Loukanova, R., and Moss, L. S., editors,Par-
tiality and Underspecification in Information, Lan-
guages, and Knowledge, pages 151–188. Cambridge
Scholars Publishing.

Loukanova, R. and Jiménez-López, M. D. (2012). On
the Syntax-Semantics Interface of Argument Mark-
ing Prepositional Phrases. In Pérez, J. B., Sánchez,
M. A., Mathieu, P., Rodrı́guez, J. M. C., Adam, E.,
Ortega, A., Moreno, M. N., Navarro, E., Hirsch, B.,
Lopes-Cardoso, H., and Julián, V., editors,Highlights
on Practical Applications of Agents and Multi-Agent
Systems, volume 156 ofAdvances in Intelligent and

Soft Computing, pages 53–60. Springer Berlin / Hei-
delberg.

Moschovakis, Y. N. (1989). The formal language of recur-
sion. The Journal of Symbolic Logic, 54(04):1216–
1252.

Moschovakis, Y. N. (1994). Sense and denotation as algo-
rithm and value. In Oikkonen, J. and Vaananen, J.,
editors,Lecture Notes in Logic, number 2 in Lecture
Notes in Logic, pages 210–249. Springer.

Moschovakis, Y. N. (1997). The logic of functional recur-
sion. InLogic and Scientific Methods, pages 179–207.
Kluwer Academic Publishers. Springer.

Moschovakis, Y. N. (2006). A logical calculus of meaning
and synonymy.Linguistics and Philosophy, 29(1):27–
89.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

242

