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Abstract: The paper extends a higher-order type theory of acyclicrifgos by adding a reduction rule, which results
in a stronger reduction calculus. The new reduction cafcdetermines a strong algorithmic equivalence
between formal terms. It is very useful for simplifying tesnby eliminating sub-terms having superfluous
lambda abstraction and corresponding spurious functigmglications.

1 INTRODUCTION Collectively, the classes of typed formal languages
and theories of Moschovakis acyclic, and, respec-

In a sequence of papers, see (Moschovakis, 1989;t|vely, full recursion are formal systems, which we

Moschovakis, 1994; Moschovakis, 1997), Yiannis call typed theory of acyclic recursic(ﬁ'To_fAR), and,
Moschovakis introduced a new approach to the math- respectiullytyped theory of (full) recursio(T TofR).
ematical notion of algorithm, by the conceptofrecur-  TTofAR has potentials for applications to algo-
sion and mutually recursive computations. The ap- rithmic semantics of formal and natural languages.
proach, which we call Theory of Moschovakis Recur- Among the formal languages, we consider applica-
sion, uses a formal language of recursion and fine- tions of typed theory of recursion to semantics of
grained semantic distinctions between denotations of Programming languages, formalisation of compilers,
formal terms and algorithms for computing the de- languages used in database systems, and many ar-
notations, correspondingly by two semantic layers: €as of Artificial InteIIigence (A|), including robotics.
denotational and algorithmic semantics. The initial The untyped theory of recursion (Moschovakis, 1997;
work on Moschovakis Recursion was on untyped the- Moschovakis, 1989) is applied in (Hurkens et al.,
ory of algorithms and is the basis of (Moschovakis, 1998) to model reasoning. The potentials gf, with
2006), which introduced typed theon} Lof acyclic typed acyclic recursion, have been demonstrated for
recursion, as formalization of the concepts of algo- various applications, in particular, to computational
rithmic meaning in typed models. The theorywas ~ Semantics of human language. Application ¢f to
introduced in (Moschovakis, 2006) by considering its logic programming in linguistics and cognitive sci-
potentials for applications to algorithmic semantics ence is given in (Hamm and van Lambalgen, 2004).
of human language, analogously to semantics of pro- A sequence of papers initiated extending the orig-
gramming languages, where a given denotation caninal L}, and provide applications of).to computa-
be computed by different algorithms. tional semantics and computational syntax-semantics
Our ongoing work on extending the expressive- interface of human language, see (Loukanova, 2013c;
ness of I, develops a class of formal languages and Loukanova, 2013b; Loukanova, 2013a; Loukanova,
theories of typed acyclic recursion, which cover var- 2012a; Loukanova, 2012b; Loukanova and Jiménez-
ious computational aspects of the mathematical con- Lopez, 2012; Loukanova, 2011a; Loukanova, 2011c;
cept of algorithm. We target development of formal Loukanova, 2011d; Loukanova, 2011e; Loukanova,
systems and calculi, which have applications in con- 2011f; Loukanova, 2011g; Loukanova, 2011b),
temporary intelligent systems. In particular, we de- (Loukanova, 2016b; Loukanova, 2016a; Loukanova,
velop a class of type theories of algorithms, which 2016c¢; Loukanova, 2015b). By adding polymor-
have more adequate computational applications in Al, phism, the work in (Loukanova, 2016a) offers po-
by covering context dependent algorithms that de- tentials for varieties of applications with polymor-
pend on Al agents and other contextual parameters.phic, or otherwise parametric types. The work in
For instance, such work was initiated in (Loukanova, (Loukanova, 2014; Loukanova, 2015b; Loukanova,
2011d; Loukanova, 2013a; Loukanova, 2016c). 2015a; Loukanova, 2017b) provides a formal tech-
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nique for applications of }, and its extended ver- ~ T=(s—T1), of state dependent objects

sions to data science, for representation of factual of typet (2d)

and situated content of underspecified and partial in-

formation. The work (Loukanova, 2017a) extends The vocabulary of §, consists of

LA and provides a basis for applications to compu- constants:

tational neuroscience for mathematical medeling of K = Uretyoes Kt

neural structures and connections. where, foyrpeach € Types, Ky = {co', ...,y }
In this paper, at first, we present the original reduc- pyre variables:

tion calculus of the type theory of acyclic recursion, PureVars = J;c1ypes PUreVarsy,

which effectively reduces terms to their canonical where, fort € Types, PureVars; = {vo,v1,...}
forms. This reduction calculus determines a strict al- Recursion variables:

gorithmic equivalence betweer} tterms. In the rest RecVars = Uyetypes RECVarsy,

of the paper, we present our contribution. We extend  where, for each € Types, RecVarsy = {ro,r1,...}

the reduction calculus ofg,.to a strongey*-reduction

calculus We call, and denote it alsgamma-star

reduction calculus The newy*-reduction system is  ThetermsofL): The sefTermsof L} is defined by
very useful for simplifying terms, by eliminating sub-  recursion expressed by using a typed variant of BNF,
terms having superfluous lambda abstraction and cor-with the type assignments given either as superscripts
responding spurious functional applications. We give or with column sign:

motivation by using abstract examples, because the

theory has broad applications in technologies. For A=c X | (3a)
better understanding, we give supplementary exam- [B(o—n) (Co)]T | (3b)
ples that render expressions of human language to

L) -terms. In addition, the theory has direct potentials wWe (B9 | (3c)

for applications to computerised processing of human [Ago where { pot 1= AL
language, including large-scale, computational gram- 2 ol
o

i (3d)
mars of human language and NLP for Al. "= A" }]

where fornm > 0, c' € K; is a constant;x' €
PureVars; URecVars; is a pure or recursion variable;

2 SYNTAX AND SEMANTICS OF V° € PureVarsg is a pure variableA, B,AiCyi € Terms

TYPED-THEORY OF ACYCLIC (i=0,...,n) are terms of the respective typgs;c
RECURSION RecVarsg, (i =1,...,n) are pairwise different recur-
sion variables; and, in the expressions of the form
(3d), the subexpressidip;* := A7t,...,pdn = Adn}

is a sequence of assignments that satisfieadkelic-

ity constraint

2.1 Syntax

Basic Types: BTypes = {e,t,s} o _ _
The basic type is the type of the entities in the se- Acyclicity Constraint AC 1. For any given terms
mantic domains and the expressions denoting entities;A1 : 01, - .-, An : On, @nd recursion variables, : o1,
t of the truth values and corresponding expressisns, - - - Pn: On, the sequenceps :=Aq, ..., pn:=An} is
of the states. anacyclic system of assignmeiftshere is a ranking
Types: the setTypes (i.e., the set of type terms)  functionrank : {py,..., pn} — N such that, for all
is the smallest set defined recursively, by using the Pi;Pj € {P1,-.., Pn},

Backus-Naur Form (BNF) notation as follows: . .
if pj occurs freely inA;

B:=elt[s|o|(t—0) 1) thenrank(pj) < rank(pi)
The type termqt — o) are the types of functions

from objects of typer to objects of typeo, and of
expressions denoting such functions.

4

Usually, the type assignments in the term expres-
sions are skipped. The terms of the form (3d), are
calledrecursion terms

e —t, the type of characteristic function(sé a)

of sets of entities [AS where {p{* := AT!, ..., p9" := AJ"}]%° (5a)
E=(s—e), of state dependent entities  (2b) = (Aowhere { p1:=A1,...,Pn:=An}) (5b)
t=(s—t), of state dependent truths (2¢) = Aowhere {py:=Aq,.... pni=An} (5¢)
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2.2 Dynamic Specifications in Context w := wife-of (h), (7h)

by Agents h:=tom} (70)

An alternative, anaphoric reading of (6a) can be ob-

We shall render the pronoun “his” into a simple recur- tained by adding the assignmemt= j to the term
sion variablen for the purpose of the demonstration. (6b), and thus to the system of assignments in its
More adequate treatment of the pronouns is not in the canonical form (6¢), e.g., dynamically, after the agent
subject of this paper. Here we consider general un- has obtained relevant information. The result is the
derspecification of terms via free recursion variables specified term (8c)—(8f):
occurring in L, -terms. Using recursion variables al-
lows the recursion terms that contain them, like (6c),
to be expended by adding assignmemts= H, for fender, greetedwife-of (h))(john) (8b)

John greeted his (own) wife.  (8a)

some appropriate terrd. What is the termH de- = contextareetedw) ( j) where { (8¢)
pends on context, and can be specified dynamically, S

when more detailed information is provided, e.g., by j := John, (8d)
discourse or explicitly by users. Here we do not treat w := wife-of (h), (8e)
details of such contextual contributions, by focusing hi=j} (8f)

on the possibility to represent underspecification by

“underspecified” }-terms containing free recursion 2.3 Semantics

variables. Using free recursion variables in terms

gives potentials for its algorithmic resolving of un- Denotational Semantics ofL}: An L), semantic
derspecification by adding assignments to canonicalstructure also callednode] is a tuplel = (T, I), sat-

terms. isfying the following conditions (S1)—(S4):

The reductions in thisgmsection can be done by us- (S1) Tis a set, called rame of sets
ing the reduction rules off., which are given in Sec- T = {T. | o € Type 9
tion (3). {To | ypes ©)

» whereTe # @ is a nonempty set of entitied[; =
Example 2.1(Underspecified pronouns) {0,1,er} C Te is the set of theruth values Ts # &
is a nonempty set of objects callsthtes

John greeted his wife. (6a)
render (S2) T1yo1y) = {plp: Ty — Tr, }
—— greetedwife-of (h))(john) (6b) (S3) I'isafunctionl: K — T, called theinter-
pretation functionof 2, such that for every € Ky,

= greetedw)(j) where { j := john,

w1 wife-of ()} (6¢c) I(c) = cfor somec € Ty

(S4) The sefG of the variable assignments for the
The recursion variablein (6¢) is left free, whichwe ~ Semantic structurd is:

use to represents semantic underspecification of theG = {9 | g: PureVarsJ RecVars— T andg(x) €
sentence (6a), in absence of context with an agent thatl's, for everyx: o'}

lacks information to interpret the pronoun. If left un- Definition 1 (Denotation Function) The denotation
bound by any assignmertt,can be interpreted as a functionden, when it exists, of the semantics structure
deictic pronoun obtaining its denotational referents by 2L, is a function:

the agents’ references provided by context informa- den: Terms—s {f | f: G— T} (10)
tion, e.g., by adding := tomto the assignments in the
term (7c)—(7e). The result is the dynamic specifica-
tion of the underspecified term (7b), i.e., (6¢), and its
canonical form (7c)—(7e), to the sully specified term

which is defined, for each € G, by induction on the
structure of the terms, as follows:

(D1) den(x)(g) = g(x); den(c)(g) = I(c)

(D2) for application terms

(7H=(7i). (050) o1t
John greeted his wife. (7a) den([BZ(CI)(9) = den(B)(g)(den(C)(g)()ll)
rende’, greetedwife-of (h))(john)  (7b) (D3) for A-terms
= greetedw)(j) where { (7c)  den([Av°(BY)] ©70)(g) 1 Ty — T,
j == john, (7d) wherex : T gndB : 0, is the function such that, for
W= wife-of (h) } 7e) evemtels o
:comextgreeteaiw)(j) where { (7f) [den([)\vc (BT)] )(g)] (t> (12)
j :=john, (79) = den(B)(g{x:=t}) 13)
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(D4) for recursion terms only if one of them can be obtained from the other by
o 01 .  AC1L renaming bound variables and reordering assignments
den([Ag® where { p" ‘=A%, (14a) in recursion terms.

=A%)
=den(Ao)(9{p1:=D1.,....Pn:=Py}) (14b) 3.1 Reduction Rules

where for alli € {1,...,n}, P; € Ty, are defined by

recursion orrank(p;), so that: '(r:r(;%%w\(/ai?;e. If A=cB, thenA=B (cong)

P = den(A)(9{Pk, ‘= P>+ > Pk := Pin})  (15) If A=-BandB=-C, thenA=-C (trans)
i i Compositionality:
wherepy,, ..., Pk, are all the recursion variablgg ¢
{p1, ..., Pn} such thatank(p;j) < rank(p;) If A= A" andB =B, then (c-ap)
Intuitively, a system{py := Aq,...,pn = An} de- A(B) = A'(B) P

fines recursive computations of the values to be as-

signed to the locationg, ..., pn. When pj occurs If A= B, then (C\)

freely in A, the denotational value @, which is as- A(U)(A) = A(u)(B)

signed top;, may depend on the values of the variable )

pj, as well as on the values of the variabgshav- If Ai = B;, fori =0, ...,n, then

ing lower rank tharp;. Requiring a ranking function Agwhere { p1:=Aq,...,pn:=An} (c-rec)

rank, such thatank(pj) < rank(p;), i.e., an acyclic . .

system guarantees( trjwllt comp(uteztions end after finite =~ Bowhere { p1:=By,..., pn:=Bn}

number of steps. Omitting ﬂr}? acyclicity condition Head Rule: (head)

gives an extended type system, lwhich admits full

recursion. This is not in the subject of this paper. (Ao where { T := R}) where {T := B}

= Ag where { P := R, q = ﬁ}
Algorithmic Semantics: The notion of algorithmic . . .
meaning (algorithmic semantics) in the languages of ~ 9IVén that nop; occurs freely in angg, fori = 1,

recursion covers the most essential, computational as-_ *:-: " =1, e i

pect of the concept of meaning. Thadgorithmic ~ Bekic-Scottrule: (B-S)
meaning Int(A), of a meaningful tern\ is the tuple — o

of functions, a recursor, that is defined by the denota- Rejv iR IE (_?0 where {1 ﬁ})’
tionsden(A;) (i € {0,...n}) of the parts (i.e., the head T=A }

sub-termAg and of the termgy, ..., A, in the system

of assignments of its canonical form (see the next sec- = Ao where { pi=Bo, T := B,

tions)cf(A) = Agwhere {p1:=Aq,..., Pn:=An}. In- T = K}}
tuitively, for each meaningful terr, the algorithmic ) . )
meaningint(A) of A, is the mathematicalgorithm given that nog; occurs free in anw;, for i = 1,
for computing the denotatiaden(A). N )=1...,m

Two meaningful expressionsandB are algorith- ~ R€cursion-application rule: (recap)
mically equivalent,A ~ B i.e., algorithmically syn- (Ao where {ﬁ - X})(B)

onymous iff their recursormit(A) andInt(B) are nat- ¢
urally isomorphic, i.e., they are the same algorithms. = Ag(B) where {ﬁ =A}
Thus, the formal languages of recursion offer a for-
malisation of central computational aspects: denota-
tion, with at least two semantic “levelséalgorithmic

given that ngp; occurs freeiBfori=1,...,n
Application rule: (ap)

meaningsand denotations The terms in canonical A(B) = A(p) where {p:= B}
form represent the algorithmic steps for computing
semantic denotations. given thatB is a proper term ang is a fresh loca-
tion
A-rule: (A)
3 REDUCTION CALCULUS Au) (Ao where { p1:=Ad,...,pn:=An})

= A(u)Agwh = AUA, ..
Definition 2 (Congruence Relation)For any terms (U)o where { Fil. W /1
A B € Terms, A andB are congruentA =; B, if and Pn = AU)A, }
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where for alli=1, ..., n, pis a fresh lo-
cation andA; is the result of the replacement
of the free occurrences qfy,..., pn in A with
pi(u),..., pn(u), respectively, i.e.:
A= A{pri=pi(u),..., po = po(u)}
forallie {1,...,n}
Definition 3. The reduction relationis the smallest

(20)

relation between terms that is closed under the reduc-

tion rules.

The reduction relation is denoted by. That is,
for any two term&A andB, A reduces td, denoted by
A= B, iff B can be obtained frorA by finite number
of applications of reduction rules.

Definition 4 (Term Irreducibility) We say that a term
A € Terms is irreducibleif and only if

for all B¢ Terms, if A= B, thenA=.B (21)

The following theorems are major results that are
essential for algorithmic semantics.

Theorem 1(Canonical Form Theorem: existence and
uniqueness of the canonical formsyMoschovakis,
2006) For each term A, there is a unique, up to con-
gruence, irreducible term C, denoted bf(A) and
called the canonical form of A, such that:
1. cf(A) =Aowhere {p1:=Aq,...,pn:=An},
for some explicit, irreducible termsiA..., A
(n>0)
. A= cf(A)
. if A=BandBis irreducible, then B¢ cf(A), i.e.,
cf(A) is the unique, up to congruence, irreducible
term to which A can be reduced.

Theorem 2 (Referential Synonymy TheoremjSee
(Moschovakis, 2006)) Two termsB\are algorithmi-
cally equivalent, i.e., synonymouszAB, if and only
if there are explicit, irreducible terms of correspond-

ing types, A: 0o, ..., A1 0n, Bo: 0o, ..., Brion
(n>0), such that:

A% = ¢ A® where { p1 :== ATY, ..., (22a)
pni=A2"} (22b)
B = By® where { p1 :=BJ%,..., (22¢)
pn:=B3"} (22d)

andforalli=0,...,n,
den(A)(g) =den(Bi)(g), forallgeG (23)

4 ALGORITHMIC PATTERNS
AND A-ABSTRACTIONS

In this section we demonstrate the technique of under-
specified, parametric algorithm, i.e., algorithmic pat-
terns that represent classes of specified algorithm in

A Parametric Algorithm:

Gamma-star Reduction in the Type-theory of Acyclic Algorithms

reduction steps . We use the technique with some ex-
amples to motivate thg'-reduction introduced in the
second part of the paper.

Now, we can use a more
general term of an algorithmic pattern, as paramet-
ric algorithm. For any proper termW, J, G1, G, that

to not contain free occurrences of the pure variables
X1,X2,X3, €.9., constants, the following reductions can
be done by using the reduction rules @t,lwhich are
given in Section (3).

Po = q(W(h))(J) where { (24a)
q:= (G1(x1) + G2(x2)) } (24Db)
= (W) (]j) where {
q:=(qa+02),
ji=J, (24c¢)
w:=W(h),

0= Gi(x1), 02 := Gz(x2) }
The termP, in (24a)- (24c) can be preceded by a

sequence of-abstractions, as in the teffa in (25a)—

(25b). By using the reduction rules given in Sec-

tion (3), P1 can be reduced to the term (25d)—(25i).

(

q:= (Gi(x1) +Ga(x2)) }] (25b)
= Mx1)M(%2) A(x3) [a(w)(j) where {

q:= (a1 +02),

ji=3, (25¢)

w:=W(h),

01 = G1(x1), G2 := Ga(x2) }]
= )\(xl))\(xz))\(X3)[

o (x1) (x2) (%) ]| (W (x1) (x2) (X3)) ~ (25d)

(' (1) () (x3)) | where {
¢ = A0a) M) A)

(0 (x2) (%2) (%) + (25€)
dhlx1) () (%3))|

i’ = A(x) A(%2) A (xa) M : (25)

W= Ax)A) M) [W(h) |, (259)

th = A0 Axe) M) | o5)

G1(X1)} ;
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G = M)A () M)
Gz(Xz)} }

The term (25d)—(25i) has vacuoNsabstractions,
e.g., (25f), (25g), (25h), (25i), which denote con-
stant functions, and corresponding applications, e.g.,
in (25d), that give the same values.

They*-reduction, introduced in this paper, reduces
such spurious sub-terms.

(25i)

5 GAMMA-STAR REDUCTION

5.1 They*-Rule

In the following sections, we give the definition of
they*-rule, see Table 1, and its major properties. Ex-
panding the reduction calculus ogrlwith they*-rule
simplifies some terms, by reducing sub-terms with
vacuoush-abstractions, while maintaining closely the
original algorithmic structure. By using thg-rule,

the canonical forms determine more efficient versions
of algorithms, by maintaining the essence of the com-
putational steps.

Definition 5 (Strongy*-condition) A recursion term

A € Terms satisfies the strong*-condition for an
: e =

assignmenp := A(THAVP : (§ = (8 = 1)),

with respect to\(v), if and only if A is of the form:

(26a)—(26¢):

A= Agwhere { @ = X, (26a)
pi=A(T)A(W)P, (26b)
~E} (26¢)

with the sub-terms of correspondingly appropriate
types, and which is such that the following holds:

1. ThetermP € Terms; does not have any (free) oc-
currences offin it, i.e.,v¢ FreeV(P)

. All the occurrences g in Ag, A, andﬁ are oc-
currences in sub-terms(U')(v), modulo renam-
ing the variables, v

In such a case, we also say thihe assignment
p:= A(U)\(v)P satisfies thg*-condition in the re-
cursion term A in26a){(26c¢).

6 THE y*-REDUCTION

Adding the= to the reduction rules of, deter-

mines an extended reduction relation between terms

as follows.
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Table 1: They*-rule

")

A= Agwhere {3 = &, (27a)
p:=A(T)A(V)P, (27b)
b:=F) 27¢)

= Apwhere { @ := A, (27d)
p = AT)P, (27e)
=B 27f)

where
e the term A € Terms satisfies the (strongy*-
condition (in Definition 5) forp := A(T) A (V)P

e p € Recvars, . is afresh recursion variable

(87
« X = X {p(TW)(v) := p'(T)} is the result of the
replacements(.{p(ﬁ)(v) = p’(ﬁ)}, i.e., of all
occurrences ob(ﬁ)(v) p'(T), in all parts

by p
X; in (27d)—(27f), modulo renaming the variables

,V

Definition 6 (y*-reduction) They*-reductionrelation
is the smallest relation,:n*,k C Terms x Terms (also
denoted by=), between terms that is closed under
the L) -reduction rules, given in Section 3.1, and the
y*-rule, given in Table 1.
We refer to the set of all 4, reduction rules ex-
tended with the*-rule as the set of*-reduction rules
In addition to the notations>Y., and=-y, for the
y*-reduction, we also use the usual notation for re-
flexive and transitive closure of a relation, given in
(28a). To specify that thg*-rule has been applied
certain number of times (including zero times), pos-
sibly intervened by applications of some of the other
reduction rules, we use the notation (28b)—(28c).
n *
A=y B« A=B
by n applications of reduction rules, (28a)
possiblyy* (n > 0)
A=y" B Aé;*[n] B, forn>0
by using=-rules and (28b)
n applications of thg*-rule

A:;; B« A=y Bforn>1

[n]
by using=--rules and

n applications of thg*-rule

(28c¢)

Definition 7 (y*-irreducible terms) We say that a



termA € Terms is y*-irreducibleif and only if

forallBe Terms, A=\ B = A=.B (29)

Definition 8 (y*-irreducible recursion terms for a spe-

cific assignment := A(T)A(v)C). We say that a re-
cursion term

A=Agwhere { P := X7 c:=AU)AVC, T := ﬁ}

is y*-irreduciblefor the assignment:= A(T)A(v)C,
with respect to\(v), if and only if the conditions for
they*-rule are not satisfied for it, i.e., either

(1) v & FreeV(C), or

(2) v ¢ FreeV(C), and not all of the occurrences of

. — .
in Ag, A, and B are sub-occurrences in a term
c(U)(y), modulo congruence by renaming the
Variablesﬁ,y € PureVars.

Theorem 3 (Criteria fory*-irreducibility). By struc-
tural induction:
1. If A€ Const UVars, then A isy*-irreducible.

2. An application term M) is y*-irreducible if and
only if Ais explicit and irreducible and B is imme-
diate.

3. AA-termA(x)A isy*-irreducible if and only if A is
explicit and irreducible.

4. Arecursionterm A
A=[Aowhere {p1:=A1,...,pn:=An}] (n>0)

is y*-irreducible if and only if
(a) all of the parts A, ..., A, are explicit and
irreducible, and

(b) A does not satisfy thg-condition

Proof. By structural induction on terms and inspec-
tion of they*-reduction rules. O

7 CANONICAL FORMS AND
y*-REDUCTION

Theorem 4 (Extendedy*-Canonical Form Theorem)
For every Ac Terms, the following holds:

1. (Existence of g‘-canonical form of A) There ex-
ist explicit, irreducible A, ..., A, € Terms (n > 0)
such that the term ¢where { p1 :=A4,...,pn =
An} is y*-irreducible, i.e., irreducible and does
not satisfy the~condition, and

cfyr (A) = Ao where { p1 i= Ay, ...,
Pn:=An }a
Thus.cf- (A) is y*-irreducible.

(30)

Gamma-star Reduction in the Type-theory of Acyclic Algorithms

2. A constantc € K or a recursion variable ps
RecVars occurs freely incf,- (A) if and only if it
occurs freely in A.

3. A=y ey (A)

4. If Aisy'-irreducible, thercf,: (A) =¢ A.

5. If A= B, thencfs (A) =¢ cf,; (B)

6. (Uniqueness aff,; (A) up to congruence) if Ao
B and B isy*-irreducible, then B=c cf- (A),
i.e., cfz(A) is unique, up to congruencey-
irreducible term. We write

A=, B < B= cfy* (A) (31a)
A=rgscs cfyr (A) (31b)

Proof. The statement (1) is proved by induction on

term structure, using the definition of thig; (A). The

statements (2) and (3) are proved by induction on term

structure, using the criteria fgi-irreducibility 3. (4)

is proved by induction on the definition of thg-

reduction relation. (5) follows from (3) and (4). O

Definition 9 (y*-equivalence\{*-synonymy) relation
~y). ForanyA B e Terms:

A=y B < cf;(A) =cf,(B) (32)

WhenA =~y B, we say thaf andB arey*-equivalent,
alternativelyy*-synonymous.

Note 1. If we have added an additional restriction in
they*-condition of they*-rule that all the occurrences
of the sub-termg(U)(v) have to be in the scope
of A(v) (modulo renaming congruence), thg-rule
would have preserved all the free variablesfoin
cf,» (A), including the pure variables, not only the re-
cursion variables, so théteeV (cf,- (A)) = FreeV/(A)
(see they*-Canonical Form Theorem 4). In this
strongy*-reduction, we refrain from adding such an
extra restriction. Note also that the replacements
A{p(T)(v) = p(T)}, Bi{p(T)(v) = p/(T)} in
they*-rule (Table 1) are not necessarily “free”, in the
inverse sense that the-.-rule may remove occur-
rences ofv which are in the scope df(v), in some
parts, due to the clause (2) in tifecondition (5).

8 SOME PROPERTIES OF THE
y*-EQUIVALENCE

Theorem 5 (y*-Equivalence Theorem)Two terms
A, B are algorithmicallyy*-synonymous, Ay B, if
and only if there are explicit, irreducible terms of cor-
responding types,iAci, B : i (i=0,...,n), (n>0),
such that:

A =g Agwhere { p1:=Aq,...,Pn:=An}

=cfy (A) (i.e.,y"-irreducible) (333)
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B =gecf Bowhere { p1:=B1,...,pn:=Bn}

=cf(B) (i.e.,y"irreducible) (33b)
andforalli=0,...,n,
den(Ai)(g) =den(Bj)(g), forallge G (34)

Proof. The theorem follows from Definition 9 of -
equivalence and Theorem 2. O

Definition 10 (Syntactic Synonymy (Equivalence)
~sg). ForanyA B € Terms,

ArsB < cf(A) = cf(B) (35)

For more details about syntactic synonymy, see
Moschovakis (Moschovakis, 2006). The difference
between syntactic and algorithmic synonymies is that
syntactic synonymy does not apply to denotationally

while there exist (many) terms B,C € Terms such
that

A=B=,C, C#B, and C£A (39)
Proof. (38) follows from Definition 9, the Canonical
Form Theorems 1, and 4. O

By Definition 9 of y*-equivalence between two
terms A,B as algorithmic synonymy between their
y*-canonical forms, various properties of algorithmic
synonymy are inherited by*-equivalence, reflected,
e.g., by the/*-Equivalence Theorem 5 and the compo-
sitionality of y*-equivalence, with the very restricted
form of 3-reduction.

Assume that theyk)-rule, see Table 1, is applied
to a termAin canonical form, i.e A=. cf(A). By ap-
plication of the «)-rule until we obtain thg* canon-

equivalent constants and syntactic constructs such asca| form cf,; (A) of A. The corresponding parts in

A-terms. For instance, assuming tlklagandcanine
are constants, such thdén(dog) = den(canine, it
holds thatdog = canine (by the Referential Syn-

onymy Theorem 2), because both terms are in canon-

ical forms, with the same denotations, i.e., they de-
note the same function obtainable by the same al-
gorithm, determined by the interpretation function
of the semantics structuf® = (T, I). On the other
hand, dog #s canine since dog #. canine Also,
den(dog) = den(A(x)dog(x)) (by the clauses (D1),
(D3) of the Definition 1 of the denotation function).
Thereforedog~ A(x)dog(x) (by the Referential Syn-
onymy Theorem 2), because both terms are in canoni-
cal forms. These two terms are syntactically different,
dog#s A(x)dog(x), becauselog . A(x)dog(x).

Theorem 6. For any AB € Terms,

A=B = A=sB (36a)

— A=B (36b)

— A~y B = AHB (36¢)

Proof. By using the definitions. O

Theorem 7. For any AB € Terms,
cf(A) =y cf(B) <=
cf(A) =y A, cf(B) = B, and A~y B, (37a)
for some AB' € Terms
cf(A) =y cf(B) <= A~y B (37b)

Proof. The directions— are proved by using Defi-
nition 9, Referential Synonymy Theorem 2, and Ex-
tendedy*-Canonical Form Theorem 4. O

Corollary 1. Forall A,B,C € Terms,

A=B=,C = AxB = A=y Bzv{:;%)
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the assignments (27b)—(27e) are not denotationally
equivalent, since they are not of the same type. By
they*-Equivalence Theorem &~ cf(A) % cf,; (A).
They*-reduction calculus does not preserve per se
the algorithmic synonymy between terms. That is, in
general, it is possible th&t~ B, while A%+ B.
Nevertheless, thg*-reduction relation=-. be-
tween terms is very useful. For any teridisand B,
ay'-reductionA = cf.» (A) preserves the most es-
sential algorithmic components of the canonical form
cf(A) in cf+ (A). It reduces vacuous-abstractions,
which denote constant functions, and corresponding
applications that give the constant values.

9 APPLICATIONS OF THE
y*-RULE

In this section, we give pattern examples for possi-
ble renderenings of expressions in human language
to Lgr-terms that can represent their algorithmic se-
mantics. A definition of a rendering relation be-
tween human language expressions and their seman-
tic representations byA-terms is not in the subject

of this paper. Rendering can be defined in a computa-
tional mode, via syntax-semantics interfaces, within a
computational grammar, e.g., see (Loukanova, 2011f;
Loukanova, 2017b). Typically,). offers alternative
terms for representing algorithmic semantics of hu-
man language expressions. The choice would depend
on applications.

Developments of new, hybrid machine learning
techniques and statistical approaches for extraction of
semantic information from text can provide more pos-
sibilities for rendering human language expressions to
LA-terms.



Example 9.1.
Kim hugs some dog'% A (40a)
A= [)\(yk (some{dog)
(Axa)hugixa) (%)) (40b)

] (kim)

Proposition 1. Given that A is the term if40b), its
canonical andy*-canonical formsef (A) andcf.: (A),
are as in(41)and(42), correspondingly:

cf(A) =
[ () (somed () ((y) ) | () where

(41)
{h:=A(yk) A(xa)huggxa) (Y«),
d':=A(yk)dog k:=kim}
cfy (A) = [A(yk)somed) (h(yk))] (k) where
{h:=A(yi) A(xa)hugsxa) (Vi) (42)
d:=dog k:=kim}
cf (A) # cfyy (A) (43a)
cf (A) ~y cfy; (A) (43b)

Proof. The following reductions hold for the ter#
in (40b).

A= ... (44a)
= [A(yk) (some{d’(yk)) (h(yk))) where
{d’ == A(yk)dog
hi=AIAChugsx) )}
](kim)
=< [ Ay (somed () (h(y)) ) | (K
where { h:= A(yi) A(xa)huggxa) (i), (44€)
d":=A(yk)dog k:=kim}
=y [A(yk)soméd) (h(yk))] (k) where
{h:=A(yk) A(xa)hugsxa) (Yi), (44d)

d:=dog k:=kim}

(43a) follows from Theorem 2 and (43b) from Theo-
rem 5. o

The term in (44d), and thus, the tewfy; (A) in
(41) too, is in a canonical form, but it is not algorith-
mically equivalent to the term (44c), i.e., ¢6(A) in
(42) too, by the original reduction calculus of,lin

Moschovakis (Moschovakis, 2006). The term (44d)

Gamma-star Reduction in the Type-theory of Acyclic Algorithms

is simpler than (44c), which has an extraneous, vac-
uousA-abstraction overy in the assignmend’ :=
A(yk)dog while the termdogdoes not have any (free)
occurrences ofy, i.e., the values ok (yx)dog stored

in d’ are constant and do not dependXyx). The
terms (44c) and (44d) denote very similar algorithms
that arey*-equivalent, by applying thg*-rule. The
term (44d) is iny*-canonical form.

Example 9.2. Assume that the sentence (45) is ren-
dered to a (\,,—term B = B; that is given in (46a)—
(46h).

[Jim]; sent Mia the article about

the [discovery of Protein353 by [hin]]

render
— B

Alternatively, depending on specific applicatiolis,
may be a term that is reduced to the term in (46a)—
(46h).

(45)

B=B;= (46a)
A(2) [)\(x) [sendm®)(al)(z) where (46b)
{al :=the(r!), (46¢)
r!:= article-aboutb?), (46d)

bl := the(d?), (46e)

d! := discoveryof-by(pt)(2), (46f)

p! := protein353 (4609)

mt = mia}]} (jim) (46h)

TheA(x) abstractions inside the assignmentsin (47a)—
(47h) are the typical result of th@)-rule of the re-
duction calculus of },, in this case, to the tergy.

Br =) B2= (47a)
()[ (x)sendn(x))(a?(x))(z) where  (47b)
{a 1= AX)the(r?(x)), (47c)

‘= A(x)article-abou{b?(x)), (47d)
‘= M(X)the(d?(x)), (47¢e)
:)\(x)discoveryof—by(pz(x))(z), (47f)
= A(X)protein353 (479)

A(x)mia}} (jim) (47h)

Another application of théA)-rule reduces the term
B, to Bz in (48a)—(48h).

Bz :><)\) Bs = (48a)

| A@A(X)sendnr(2)(x))(a*(2)(x)) (2) where
(48b)
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{a®:= AN X)the(r*(2) (x)), (48c)
r3:= A\(2) A\(x)article-aboutb®(z)(x)), (48d)
b® := A(2) A (¥)the(d*(2) (¥)). (48¢)

d*:=A2)A (%)
(48f)
discoveryof-by(p3(2)(x))(2),
= A(2) A(x)protein353 (489)
= A(Z)A(x)miat}| (jim) (48h)

The termBy in (49a)—(49h) is the result of applying

the Recursion-application rule (recap)Bgin (48a)—
(48h).

B3 =(recap)B4 = (49a)
)\(z)A(x)senc{m3(z)(x))(as(z)(x))(z)} (jim) (49b)

where

{ = A2 AXthe(r*(2)(¥)), (49¢)
= A(2) A(x)article-aboutb®(2)(x)),  (49d)
= M2 A(X)the(d?(2) (x)), (49€)
=A2)A(x)

5 (49f)
discoveryof-by(p®(z)(x))(2),

p° = A(2) A(x)protein353 (499)

m°® := A(2) \(x)mia} (49h)

The termBy is reduced to the terBs in (50a)—(50h),

by successive applications of the reduction rule (ap)
to the head part in (49b), the Compositionality rule
(c-rec) for recursion terms, the Head rule (head), and
Congruence of the order of the recursion assignments.

Bs= Bs = (50a)
M2)A(x)sendm®(2)(x))(a%(2)(¥))(2)| (i) (50b)
where

{ =M2)A(X)the(r*(2) (x)), (50c)
= A(z)A(x)article-aboutb®(z)(x)),  (50d)
= A2 A(X)the(d3(2)(x)), (50e)

d3 = AN2)A(X)
3 (50f)

discoveryof-by(p*(z)(x))(2),

p° := A(2) A\(X)protein353 (509)
m° = A(2)A(X)mia, j :=jim} (50h)
The denotations of the term$z) A (x)protein353and

A(2)A(x)mia, ‘saved’ respectively irp® and m?, by

The termBs is reduced tdg, by four successive
applications of the*-rule, for the assignments® :=
A(2) A(x)protein353andm?® := A(2) A(x)mia.

Bs =y Bs = (513)
A(Z)?\(X)Senclm)(&13(2)(><))(Z)] (1) (51b)
where

{ =2 AX)the(r(2)(x)), (51c)

= A(2) A(x)article-aboutb®(2)(x)), (51d)

b® := A(2) A(x)the(d*(2) (X)), (51e)
&= A@AX)

discoveryof-by(p)(z), (510

p := protein353 (519)

m:=mia, j :=jim} (51h)

Now, the termBg satisfies the*-condition for the as-
signment (51f), with respect t(x). Application of
they*-rule toBg, reduce®g to By.

Bs =y By = (52a)
A(2)A(x)sendm)(a%(2)(x))(2)| (j) (52b)
where
{ = M2 AXthe(r* () (X)), (52c)
:)\( 2) \(x)article-aboutb®(2)(x)),  (52d)
=A(2)A(x)the(d(2)), (52e)

d:= )\( z)discoveryof-by(p)(2), (52f)

p := protein353 (520)

m:=mia, j :=jim} (52h)
Now, the ternBy; satisfies the/*-condition for the as-

signment (52e), with respect ¥qx). Application of
they*-rule toBy, reduced; to Bs.

B~ =y Bs = (533)

A2 A(x)sendm)(a(2)(x)(2)| (i) (53b)

where

{a:= A2 A(the(r®(2) (%)), (53c)
r3:= A(2) A\(x)article-aboutb(z)), (53d)
b:=A(2)the(d(2)), (53e)

d := A(z)discoveryof-by(p)(z), (53f)
p := protein353 (539)
m:=mia, j :=jim} (53h)

(509g) and (50h), are constant functions that do not In (54a), the terniBg is reduced tdBg, i.e.,Bg = Bo,
depend on the argument roles of the abstractionsby two successive applications of thierule, at first

A(Z)A(X).
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for r3 := A(2) \(x)article-aboutb(z)), with respect to



A(x), and then fora® := A(2) A(X)the(r (2)), with re-
spect ta\(x).

Bs =y 2 Bg = (54a)

@A (sendm)(a(2))2)] (i) (54b)
where

{a:=A(2)the(r(2)), (54c)

r := A(2)article-aboutb(z)), (54d)

b:=A(2)the(d(2)), (54e)

d := A(z)discoveryof-by(p)(2), (541)

p := protein353 (549)

m:=mia j :=jim} (54h)

10 FUTURE WORK

We work on applications of the type-theory of acyclic
algorithms. For example, most promising results have
been achieved in language processing of formal and

natural languages. Specific applications are computa-
tional semantics and computational syntax-semantics

interfaces. These lines of work continue.

A new direction of applications is to computa-
tional neuroscience, by algorithmic modelling of pro-
cedural, factual, and declarative memory, and depen-
dencies between those, by mutual recursion.

Along such applications to advanced technologies
and Al, we work on theoretical developments. The
results in this paper are part of such long-term work.
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