
Extending CryptDB to Operate an ERP System on Encrypted Data

Kevin Foltz and William R. Simpson
Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311, U.S.A.

Keywords: Enterprise, Enterprise Resource Planning, Database, System Design, Confidentiality, Integrity,
Homomorphic Encryption, Partial Homomorphic Encryption, Application Security, Security, Cloud
Services, End-to-End Encryption, Key Management, Database Security.

Abstract: Prior work demonstrated the feasibility of using partial homomorphic encryption as part of a database
encryption scheme in which standard SQL queries are performed on encrypted data. However, this work
involved only translating raw SQL queries to the database through the CryptDB proxy. Our work extends
the prior work to an Oracle application. The goal for this work was to determine feasibility for a full-scale
implementation on a real Oracle Enterprise Resource Planning (ERP) system. This requires accommodating
extra features such as stored procedures, views, and multi-user access controls. Our work shows that these
additional functionalities can be practically implemented using encrypted data, and they can be
implemented in a way that requires no code changes to the ERP application code. The overall request
latency and computational resource requirements for operating on encrypted data are under one order of
magnitude and within a small factor of those for unencrypted data. These results demonstrate the feasibility
of operating an Oracle ERP on encrypted data.

1 INTRODUCTION

Homomorphic encryption provides a way to
manipulate encrypted data to perform computations
on the underlying plaintext without decrypting the
data. It provides added security for hosting in a
cloud, where sensitive data may be accessible to an
untrusted third party. By homomorphically
encrypting data prior to storing it in the cloud, the
data can be used for computations while remaining
protected. This stops threats to confidentiality posed
by the cloud provider, its employees, and any
external entity that may compromise the cloud
provider.

Full homomorphic encryption (FHE) allows any
sequence of operations to be performed on the
encrypted data, so any computation can be done
encrypted (Gentry, 2009). However, FHE is
prohibitively slow for all but the simplest of
computations (Gligor, 2014). Partial homomorphic
encryption (PHE) has higher performance, but it
allows only a single type of operation, such as
addition or multiplication. An extensive survey of
homomorphic encryption methods is provided in
(Acar et al., 2017).

Our prior work suggested that FHE was not
practical, but methods using PHE showed promise
(Foltz and Simpson, 2017). Research involving PHE
has shown that a SQL database (DB) can be
encrypted such that standard SQL queries can be run
against this encrypted database (Popa et al., 2011).
The encryption is performed by the CryptDB proxy,
which is located between the database requester and
the database. The CryptDB proxy translates queries
on unencrypted data into queries on encrypted data,
allowing a user to access the encrypted database as if
it were not encrypted. The CryptDB proxy also
translates encrypted responses to unencrypted
responses.

Real systems are not as simple as a single
database. A typical Enterprise Resource Planning
(ERP) system has the following additional
complications:

• Proprietary ERP code that cannot be changed,
• Primary and foreign key reference integrity,
• Stored procedures,
• Views, and
• Multiple accounts with different permissions.

The original CryptDB implementation used
MySQL and did not account for these complications.

Foltz, K. and Simpson, W.
Extending CryptDB to Operate an ERP System on Encrypted Data.
DOI: 10.5220/0006661701030110
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 103-110
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

103

Our work ports CryptDB from MySQL to Oracle’s
SQL database and addresses the items listed above.
This demonstrates that CryptDB can be integrated
with existing operational Oracle ERP systems and is
not restricted to the research laboratory or custom-
built systems.

2 RELATED WORK

There are many approaches to securing database
information. Monomi, another CryptDB-based
approach, allows more complex queries by splitting
computation between server and client (Tu et al.,
2013). The L-EncDB system uses techniques to
preserve the data formats and lengths between
unencrypted and encrypted data (Li et al., 2015).

The BigSecret system secures NoSQL databases
using property-preserving encryption on indices of
data encrypted with standard techniques (Pattuk et
al., 2013). A modular framework for providing
varying degrees of privacy and performance for
NoSQL databases is provided in (Macedo et al.,
2017).

3 RESEARCH METHODS

This section presents the experimentation and test
process. Maintaining correct functionality was
required. Experiments determined relative
performance in encrypted searches. This work
consists of the following steps:

1) Select database,
2) Determine the selected database schema,
3) Develop partial homomorphic encryption

schemes,
4) Perform credential mapping,
5) Develop SQL translation schemes,
6) Develop a web application test harness,
7) Establish a set of nominal work queries, and
8) Measure performance.

The implementation was performed in a lab with
commodity hardware and software, with the
exception of the CryptDB proxy and other code and
scripts written specifically for this work.

3.1 HR Database Selection

This work used the Oracle 12c database system and
the sample HR database that is provided with it by
Oracle. This database was used as the starting point
for development and testing. It provided an adequate

test system for many of the complexities of a full-
scale HR ERP system.

3.2 HR Database Schema

The HR DB schema consists of seven tables:
• Employees,
• Jobs,
• Job_History,
• Departments,
• Locations,
• Countries,
• Regions.

The Employees table schema is shown in Figure
1. The HR schema and the data for the HR DB were
used for unencrypted operation of the ERP and
served as the baseline for performance
measurements.

Figure 1: HR Schema for Employees Table.

For encrypted operation, the HR DB schema had
to be modified for encrypted data. This involved
modification of data types and sizes to accommodate
encrypted data. It also included additional columns
for multiple encryption methods where required. The
names of tables and columns were encrypted as well.
The ERP was not modified for these changes. It
communicated through the CryptDB proxy, which
mapped requests from the unencrypted schema to
the encrypted schema.

3.3 Encryption Schemes

Different encryption methods offer different
properties that are useful for operations on encrypted
data. The proper encryption scheme for data depends
on its intended use. The encryption methods and
supported SQL operations are shown in Table 1.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

104

Table 1: Encryption Methods.

Type
Encryption
Method

SQL
Operation

RND AES in CBC mode None
HOM Paillier Addition
SEARCH * Word Search
DET_EQ AES in CBC mode Equality
OPE * Order
EQ_JOIN * Join
OPE_JOIN * Range Join

* custom encryption methods

These encryption methods are listed in
approximate order of security protection, from
highest to lowest. Security protection decreases as
more information is revealed about the data. For
example, assuming the cryptographic methods are
known, random encryption reveals essentially no
information about the plaintext. Deterministic
encryption (DET) allows determination of whether
two encrypted values have the same plaintext values
without revealing what this plaintext is. Order-
preserving encryption (OPE) leaks the relative size
of the plaintext values without revealing the values
themselves.

Generally speaking, the encryption methods
reveal the amount of information needed to perform
the associated SQL operation. A determination of
whether this amount is acceptable must be made at
design time (Akin and Berk, 2015; Naveed et al.,
2015). For this work, we assume this is acceptable
for our intended use cases. In cases in which this is
not acceptable, there are methods to reduce it, and
these are briefly mentioned as future work.

Because different encryption schemes may reveal
different information when the cryptographic
methods are known, it is possible to layer them.
Plaintext can be encrypted with EQ_JOIN, and this
can again be encrypted with DET. We refer to a data
element that has undergone this multi-layer
encryption as an “onion,” with each different
encryption method being a layer of the onion. The
four encryption onions listed below are used for this
work. The EQ onion is illustrated in Figure 2.

1) Search: SEARCH
2) Add: HOM
3) EQ: RND, DET, EQ_JOIN
4) Ord: RND, OPE,

OPE_JOIN

Figure 2: EQ Onion Layering.

For situations in which these innermost onion
layers are rarely used, the onions-and-layers
approach provides increased security by revealing
the least secure inner layers only when needed. For
simplicity and performance, it is also possible to use
only the innermost layer.

3.4 Credential Mapping

To provide proper access to different users, different
accounts are set up within the ERP and database.
The ERP uses its accounts and credentials to make
queries to the database. To use these accounts
through the CryptDB proxy, separate accounts must
be created for the encrypted database. The CryptDB
proxy maps the existing accounts for the
unencrypted database to accounts for the encrypted
database.

Along with the accounts are keys and other
information that a user must have to encrypt requests
and decrypt responses. These keys are themselves
encrypted using information from the user account
so that only the appropriate accounts have access to
the proper cryptographic keying material. Other
accounts may be able to access the database of ERP
cryptographic keys, but they will not be able to
decrypt and use keys for which they are not
authorized.

3.5 SQL Translation Schemes

With the encryption methods and accounts set up,
we need a way to translate an unencrypted request to
an encrypted request. This translation depends on
the type of data and the type of encryption. For
normal requests, the column names and data are
encrypted. For other requests, such as addition, the
query itself must be modified. For example, with
Paillier encryption addition of plaintext corresponds
to multiplication of ciphertext.

Other translations are similar. For searching, text
strings must be converted to binary values. If a
numerical value is part of a query, it may need to be
encrypted in multiple ways if it is used with data in
different columns with different encryption methods
or keys.

With multiple users, which user will be calling a
stored procedure is not known, so encrypted values
in stored procedure queries cannot be pre-
determined. In this case, these values must be
inserted at execution time by determining the user
and updating the query based on the appropriate
user-specific information.

Extending CryptDB to Operate an ERP System on Encrypted Data

105

3.6 Web Application

To test an encrypted versus unencrypted database, a
web application was implemented to act as a
frontend for both the encrypted and unencrypted
databases. This web application runs natively on the
unencrypted database, and it can send requests to the
CryptDB proxy for operation on the encrypted
database. No code changes are needed in the
application itself. The switch to operate on
encrypted data is simply a configuration change.

In addition to the web application frontend,
various tools allowed more in-depth testing of the
encrypted database. Direct queries of the encrypted
database are possible using the sqlplus tool, but due
to the encrypted values, it is difficult to create the
requests or interpret the results. A script, cryptdb-
sqlplus was developed to make a subset of such
queries on the encrypted database. It uses the
CryptDB keys and mappings to translate and send
user requests to the encrypted DB and translate
responses.

3.7 Assessments

Assessment of the encrypted database consists of
three parts. The first part validates that each
implemented capability works as expected. A
sequence of requests is made to the unencrypted and
encrypted databases, and the results are compared.
Identical results confirm that the capabilities are
implemented correctly.

The second part consists of performance tests in
which the same sequence of queries is sent to the
same application, first using the unencrypted
database and then using the encrypted database
through CryptDB. Latency and throughput of the
encrypted database queries are compared to the
values for the unencrypted database.

The third part consists of multiple users with
simultaneous access, to confirm that the multi-user
access controls are performing properly and not
negatively affecting performance.

3.8 Lab Setup

The development work for the encrypted database
was done on a single machine. This allowed
functional testing and very limited performance
testing. For full performance testing, a dedicated lab
was set up with the following equipment:

• Database server laptop;
• Application server laptop;

• Multi-use desktop for application server,
loader, and client;

• Additional client laptop; and
• Ethernet switch.

The application server was a Dell Mobile
Precision 7710 laptop with four cores @ 3 GHz, 64
GB memory, 2 TB SSD, and 1 Gb/s Ethernet
running Windows 10.

The database server was identical to the
application server, except storage was two 1 TB
PCIe drives in a RAID 0 configuration.

A Dell Precision Tower 7910 served as multi-use
desktop. It had dual 20 core processors @ 2.2 GHz,
512 GB memory, a 2 TB SSD, and 1 Gb/s Ethernet
running Windows 10.

The additional client laptop had two cores @ 2.8
GHz, 8 GB memory, and 100 Mb/s Ethernet running
Windows 10.

Connecting these machines was an eight-port
gigabit Ethernet switch.

Software included the following:
• Oracle 12c database – database to store both

unencrypted and encrypted data;
• H2 database – database to store the CryptDB

keys and other cryptographic and mapping
data;

• CryptDB proxy – ported to Oracle from
original MySQL implementation;

• WebLogic 12.1.3 – web server for the test
application;

• Java JDK 7 update 80 for Windows x64 –
platform for various applications;

• JMeter – test tool to execute test scripts and
capture performance data;

• Bouncycastle – library for cryptographic
operations;

• Cygwin – application that enables Linux-style
scripting within a Windows operating system;

• Various scripts and tools developed for
automating the setup of the encrypted database
and loading the encrypted data into the
encrypted database.

4 RESULTS

This section presents the results for tests of proper
functionality and performance.

4.1 Proper Functionality

Porting the MySQL-based CryptDB implementation
to an Oracle-based implementation was tested first.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

106

Direct queries on the encrypted database showed
that the tables, columns, and values were properly
encrypted. Queries through the CryptDB proxy on
the encrypted database provided results that matched
results from the unencrypted database. This
confirmed the proper functioning of the encrypted
database and CryptDB.

4.2 Enhancements

Next, certain improvements were made to the
CryptDB implementation, including referential
constraints, views, and stored procedure capabilities.
These features, which are required for an ERP
instantiation, were not part of the original MySQL
implementation.

Stored procedures in the unencrypted database
are converted to stored procedures that perform
equivalent operations on the encrypted database.
This involves encrypting raw data in the procedures,
mapping table and column names, changing
operations (such as addition to multiplication for
Paillier encryption), and changing commands where
appropriate. Stored procedures use the PL/SQL
language, and for this work, a core subset of
PL/SQL was implemented to enable testing of stored
procedures.

Referential constraints are important for primary
key and foreign key references. When the primary
and foreign keys are encrypted with different
encryption keys, the database cannot guarantee
integrity across these two columns. CryptDB has
been modified to recognize these references and add
two additional columns that contain keyed hashes of
the primary and foreign keys. The keyed hash of the
foreign key is set to reference the keyed hash of the
primary key. CryptDB uses the same key to generate
the two columns of hashes, which allows the
database to maintain referential integrity of the
primary and foreign keys through these extra
columns.

Views are like tables, but they have some
important differences that require special
consideration for implementation. A table has one
column for random initialization vectors (IVs).
However, a view must have multiple such columns
because it may be constructed as a join across
multiple tables, each with its own IVs. CryptDB
must also maintain the mappings from each
encrypted column to its IV column.

Like tables, views can operate at different onion
layers of encryption. If these layers are unwrapped
or rewrapped on the underlying tables, the views
must keep track of these changes. A query on a view

that requires adjusting onion layers also requires
changes to the base tables. As a result, the query
translation for views is more complicated, and the
resulting query may contain additional queries to
change onion layers on the view and associated
tables, and changes to internal state to keep track of
the view-to-table mappings.

Stored procedures are groups of SQL statements
and control statements. They offer many benefits,
including performance, security, scalability, and
maintainability. However, they require CryptDB to
be extended to support creating, dropping, and
calling these stored procedures.

Additional complications arise in stored
procedures. The same encrypted value in a query
may be used across multiple columns and onions.
Instead of simply encrypting a value once, it must be
encrypted for each possible use. With multiple users,
a method for determining which principal is making
a request is required to select and use the proper key.

An additional challenge is that a result may be
from one or another column, and which column the
value comes from is determined at runtime. In this
case, CryptDB must keep track of which column,
onion, and principal a response came from, and use
this additional information for proper decryption.

The issues of multi-user stored procedures and
dynamic column determination have not been
addressed yet, and these present challenges for
future work. However, the solution concepts are
generally understood, so the challenge is simply
implementing them.

4.3 Performance

Performance testing was conducted to assess how
well suited this new CryptDB implementation is for
real-world implementations.

4.3.1 Operational Latency and Throughput

Operational performance testing was conducted
through the web application using a web browser.
For normal queries that completed quickly, there
was no noticeable difference in latency. For longer
queries that returned hundreds of thousands of
results, the difference was noticeable. However,
upon closer inspection, much of the time was
actually due to the larger data sizes for encrypted
data and the correspondingly longer time to transmit
them over Ethernet. Although this larger
transmission time is a valid concern for real-world
systems, it is only observed in queries with very
large result sets.

Extending CryptDB to Operate an ERP System on Encrypted Data

107

For a more comprehensive analysis, JMeter was
used as a test tool with a set of queries that
represented a normal mix for typical business. The
mix of queries included at least one use of each of
the following:

• Insert, Update, and Delete,
• DET-based queries,
• ORD-based queries,
• HOM-based queries.

In general, HOM, which is implemented using
Paillier encryption, is the most costly. It imposes a
significant computational burden on the Application/
CryptDB server beyond not only the unencrypted
queries but also the other encrypted queries. ORD is
also computationally expensive, but less so. The
others impose little additional overhead. The mix of
queries used for testing consisted of the following:

1) 3% Get all managers (35% of all employees
returned),

2) 2% Search on employees (3% returned),
3) 1% Search on employees (.15% returned),
4) 1% Search with salary range (1% returned),
5) 1% Search on employees (85% returned),
6) 3% Search on employees (5% returned),
7) 10% Search on employees (few returned),
8) 5% Search with salary range (ORD) (few

returned),
9) 5% Search on employees (few returned),
10) 10% Search with salary range (ORD) (few

returned),
11) 10% Search on employees (few returned),
12) 5% Search for employees with salary range

(ORD) (0 returned),
13) 2% Search for partial match in phone number

(1 returned),
14) 2% Search with partial match (1 returned),
15) 5% Search with addition of a constant to

results (HOM) (.2% returned),
16) 15% Insert an employee (Ins),
17) 15% Update an employee (Upd),
18) 5% Delete an employee (Del).

Queries 1 through 6 return large data sets, and it
is anticipated that these types of queries would be
executed occasionally only by users with special
privileges. Queries 7 through 18 represent standard
application queries that would be expected during
ongoing business operations.

Figure 3: Performance Summary, Queries 7–15.

To compare the user experience and resource
requirements for encrypted operation versus
unencrypted operation, increasing numbers of active
threads repeatedly cycled through queries 7 through
15, with the relative ratios as listed. This excludes
the queries with large result sets as well as the insert,
update, and delete operations, and it is intended to
represent normal user queries.

Figure 3 shows the observed latencies and
throughputs on the databases with one million users.
For this mix, the baseline latency was approximately
double with the encrypted database (36 ms vs. 19
ms), and achievable throughput was about 25% (155
req/s vs. 575 req/s). This suggests that encrypted
operation for these queries would require four times
the computational resources as unencrypted
operation to support the same request rates, and
latency would be approximately double under these
conditions.

Figure 4: Latency Ratios for Individual Queries and Mixes of Queries.

Completed requests per second

Encrypted Unencrypted

L
at

en
cy

 (
se

c)

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

108

Additional testing was performed for each
individual query and for some combinations of
queries. Latency results are shown in Figure 4.
Queries 7 through 15 (Q7 – Q15), inserts (Ins),
updates (Upd), and deletes (Del) were tested
individually. Mixes 1 through 4 were as follows:

1) Q7-15, Ins, Upd, Del;
2) Q8, Q10, Q12;
3) Q7, Q9, Q11, Q13-15, Ins, Upd, Del;
4) Q7, Q9, Q11, Q13, Q14, Ins, Upd, Del.

Mix 1 is the baseline experience, representing a
normal mix of queries. Mix 2 examines just Queries
8, 10, and 12, which individually show improved
performance on encrypted data. In combination, they
show no change compared to unencrypted data. Mix
3 excludes Queries 8, 10, and 12 from the baseline
and shows degraded performance compared to the
baseline. Mix 4 is similar to Mix 3, but it excludes
the computationally intensive Query 15, revealing
that the degradation with increasing users was due
primarily to Query 15.

Query 15 performance degrades roughly linearly
with increasing request loads beyond five users. This
is because throughput is already saturated on the
encrypted system and additional queries simply
queue up and wait longer. For these tests the CPU
approached 100% utilization at seven users.

The Paillier encryption (HOM) of Query 15 is
the biggest bottleneck for performance and is the
most likely target for performance improvements in
a real system. The simple solution is to allocate
more resources to this type of encryption, either
through more servers, higher-performance servers,
or offloading the Paillier computations to more
efficient and parallelized GPUs rather than faster but
less parallel CPUs.

Although full multi-user functionality that
includes the use of stored procedures is not yet
implemented, performance testing was conducted
for multiple users on queries that do not use stored
procedures. For such queries the test tool JMeter was
launched with up to 100 parallel threads of
execution on a single machine. This simulates a high
load from many different users. This leveraged the
powerful desktop’s ability to run many threads.
Tests were also run from multiple requester
machines using multiple requester threads on each
machine.

Performance for multiple users showed no
significant degradation compared to the single user
case until CPU and other resources were nearly
consumed. No problems with encryption-related
locking of database resources were observed.

4.3.2 Data Load Time

The main question to answer for loading is whether
encryption adds significantly to the loading time.
Even when query performance is acceptable,
excessive time to encrypt and load the data may
create complications when a database must be
reloaded. Testing with a high-performance
commodity machine showed that encrypting the
database with one million employee records can be
completed in about one hour.

Figure 5: Database Loading Times.

The times are nearly linear in the size of the
database to be loaded. The speed of encryption is
also nearly linear in the number of processors. Thus,
the encryption time can be reduced by increasing
parallelism. Figure 5 shows results for single
machines with 4 and 40 cores.

5 CONCLUSIONS

This work assesses whether running an ERP on an
encrypted database is feasible. Prior work showed
that basic queries without the full complexities of a
real system were possible, but it was not clear
whether the additional complexities of a real system
could be accommodated and if so, whether the
performance would be acceptable.

The primary conclusion is that the Oracle-based
CryptDB system shows strong feasibility for real-
world implementations. It supports referential
integrity, views, and stored procedures, which are
three major areas of concern for real systems that
were not previously implemented.

The performance measured across individual
queries and in aggregate showed a small degradation
compared to the same queries on unencrypted data.
This degradation varies among the individual

Extending CryptDB to Operate an ERP System on Encrypted Data

109

queries, so a careful consideration of the mix of
queries is important.

Overall computational resource requirements are
increased due to the need for encryption, extra logic,
and processing, with an overall increase of a small
factor over the unencrypted computing resources.
This factor may vary depending on the particular
application and mix of queries.

Performance with multiple users showed good
scalability, with no observable encryption-related
latency.

Using CryptDB with an encrypted database is
feasible for moving a sensitive database to an
untrusted cloud hosting environment. The latency
performance is comparable to the use of an
unencrypted database, and comparable throughput
can be achieved with additional resources to support
the encryption-related computation.

6 FUTURE WORK

Follow-on work to this study includes testing on an
operational Oracle ERP system under normal use
cases and workflows.

Additional extensions and improvements are
planned for CryptDB, and PL/SQL support is to be
expanded. Performance improvement for Paillier
encryption may be possible using GPUs, which
should improve performance and reduce the load on
the CPU. This will provide the benefits of improved
scalability for Paillier encryption and reduced CPU
contention for other queries.

It was noted earlier that there are possible
leakages of information about plaintext through
some of the encryption schemes. For example,
relative sizes and distributions of numbers can be
calculated for OPE encryption, which could lead to a
few known values revealing other encrypted values.

This leakage cannot be completely eliminated,
but it can be reduced by various methods. First,
additional entries can be added to the database to
smooth out the distribution of values. Additional
queries would be inserted periodically to access
these otherwise unused values. Second, existing
entries with the same values can be split into
different categories by CryptDB so that they appear
different in the database. Third, encryption keys can
be changed periodically. These all impose a resource
burden on the system through additional storage and
computation.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Virgil Gligor for
his deep insights and broad knowledge in
homomorphic encryption and related areas.

REFERENCES

Acar, A., Aksu, H., Uluagac, A. S., and Conti, M. A.
Survey on Homomorphic Encryption Schemes:
Theory and Implementation. arXiv preprint
arXiv:1704.03578v1, April 12, 2017.

Akin, I. H., and Berk, S. 2015. “On the Difficulty of
Securing Web Applications using CryptDB,”
International Association for Cryptologic Research.
Available at https://eprint.iacr.org/2015/082.

Foltz, K. and Simpson, W. Enterprise Level Security with
Homomorphic Encryption. In Proceedings of 19th
International Conference on Enterprise Information
Systems (ICEIS 2017), Porto, Portugal, April 26–29,
2017.

Gentry, C. 2009. “A Fully Homomorphic Encryption
Scheme.” Doctoral thesis. Stanford University.
Available at https://crypto.stanford.edu/craig/craig-
thesis.pdf.

Gligor, V. 2014. “Homomorphic Computations in Secure
System Design,” Final Report. Pittsburgh, PA:
Carnegie Mellon University.

Li, J., Liu, Z., Chen, X., Xhafa, F., Tan, X., and Wong, D.
S. “L-encdb: A lightweight framework for privacy-
preserving data queries in cloud computing,” Knowl.-
Based Syst., vol. 79, pp. 18–26, 2015.

Macedo, R. et al., “A Practical Framework for Privacy-
Preserving NoSQL Databases,” 2017 IEEE 36th
Symposium on Reliable Distributed Systems (SRDS),
Hong Kong, 2017, pp. 11–20.

Naveed, M., Kamara, S., and Wright, C. V. “Inference
Attacks on Property-Preserving Encrypted Databases.”
In: CCS’15, Denver, CO, 2015.

Pattuk, E., Kantarcioglu, M., Khadilkar, V., Ulusoy, H.,
and Mehrotra, S. “Bigsecret: A secure data
management framework for key-value stores,”
International Conference on Cloud Computing, 2013.

Popa, R. A., Redfield, C. M.S., Zeldovich, N., and
Balakrishnan, H. 2012 “CryptDB: Processing Queries
on an Encrypted Database,” Comm. ACM, vol. 55, no
9, Sept. 2012 (also Proc. of 23rd ACM SoSP, Sept.
2011).

Tu, S., Kaashoek, M. F., Madden, S., and Zeldovich, N.
“Processing analytical queries over encrypted data,”
Proc. VLDB Endow., 2013.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

110

