Keywords:

Abstract:

Reactive Through Services
Opinionated Framework for Developing Reactive Services

Micael Pedrosa, Jorge Miguel and Carlos Costa

Institute of Electronics and Informatics Engineering of Aveiro, Aveiro University,
Campus Universitdrio de Santiago, Aveiro, Portugal

Web Services, Service Specification, Reactive.

Front-end development is inherently asynchronous, and for some time there was no correct way on how to
build it in a reactive manner. Reactive Programming is a paradigm of software development centered in
asynchronous data streams. Lately, this paradigm has been getting a lot of visibility due to integrations with
frameworks like Angular and React. However, there is (from the electronic jargon) an impedance mismatch
between the reactive Ul and the required server-side services. Since common REST services do not integrate
well with this new paradigm and JSON-RPC lacks some of the communication models described in this
publication, we present a possible alternative for an opinionated framework which fills the gap between the
reactive front-end and back-end services, maintaining the straightforward way of development that REST and
JSON-RPC provides. This framework offers possibilities for new protocols and models, extending the basic
REST and JSON-RPC models. It also delivers a reference implementation, certifying the viability of the

proposal. Available at https://github.com/shumy/reactive-through-services.

1 INTRODUCTION

Web services have become popular in the early 90s
from the DCE/RPC (Distributed Computing Envi-
ronment/Remote Procedure Call), designed to dis-
tribute computation across different physical devices.
This concept is now reused in the known JSON-RPC.
Alongside also came up the (Representational State
Transfer) REST services, introducing resources that
have an associated set of standardized verbs, being
these the two most used standards for Web Service
Architectures. However sometimes it is difficult to
map certain API concepts to the REST or RPC model.
For example, REST services resolve a particularly
narrow range of communication models, namely the
pull based request/reply model that is fundamentally
blocking and synchronous. As such, REST services
have a limited use on more modern reactive applica-
tions (Mesbah and Van Deursen, 2008). It’s possible
to use asynchronous mode with the 202 HTTP code.
Yet, standardization of asynchronous REST services
in parallel with other web protocols would need to
discard most of the HTTP codes and standardize some
JSON structures for the requests and responses.

A complex service back-end maintains connec-
tions to other services in a chain of dependencies,

330

Pedrosa, M., Miguel, J. and Costa, C.
Reactive Through Services.
DOI: 10.5220/0006661403300337

propagating state changes as is defined in the Reac-
tive Programming model (Webber, 2014). In this sce-
nario a state change in a downstream service will be
propagated to upstream services without any explicit
request. In this model the application user is always
aware of the status of his data by this constant feed-
back, even when the application is under heavy load
or in a failed status. Reactive applications need to
be responsive, resilient and elastic, as stated in the
Reactive Manifesto (Boner et al., 2014). Message-
driven architectures and push style libraries are the
foundation for such responsive systems. Although
there are some push style libraries available on top
of HTTP, like the APE Project 1 none is quite well
integrated with modern reactive libraries. The RP im-
proves the level of abstraction of code and feedback
of your applications, as such, code in RP will likely
be more concise, focused in defining business logic
and less on implementation details. The RP model
yields higher throughput just for one thread imply-
ing lower resource usage, and most importantly, more
predictable behavior under load. This programming
model has become very popular due to the Node.js
platform.

Thttp://ape-project.org/
Zhttps://nodejs.org

In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 330-337

ISBN: 978-989-758-295-0

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



The RTS (Reactive Through Services) framework
was designed to build services with different commu-
nication models in a declarative way through anno-
tations. Implementations may be provided by con-
tainers similar to JEE, aspect weavers or other similar
mechanisms, or in the case of this reference imple-
mentation with compile time generators. The RTS
platform was born by a necessity of building mod-
ern reactive web user interfaces that needed to con-
nect to reactive back-end services. By defining what
are the data streams, how they are linked together and
what happens when their values change over time, it is
possible to simplify the program flow in a declarative
way. In the web environment there are many client
side libraries that help in this task, one of the most
known is ReactiveX 3. Although our purpose is not to
solve entirely the Reactive Manifesto challenges, we
provide communication models and also ideas regard-
ing what could be the future of reactive web services
and similar frameworks.

2 TECHNOLOGY EVALUATION

It is worth mentioning that this framework is not in-
tended to be used as an industrial system for hard or
firm real time products, or even for power-constrained
devices. The project goals are divided in: the archi-
tecture definition, the implementation reference and
the RTS protocol. Some of the requirements that the
RTS framework is trying to achieve are:

e Providing a small learning curve and development
time for reactive applications.

e Improving the efficient usage of web services by
providing an asynchronous API and not just an
integration like in Servlets 3.0.

e Providing a good interoperability with common
web technologies, like JSON, REST, WebSockets
and ReactiveX.

e Providing service definitions compatible with dif-
ferent communication models, adding reactive
models to services.

e Supporting bi-directional services where both
clients and servers can act as endpoints for any
communication model, avoiding additional net-
work configurations or firewall and NAT issues.

e Providing endpoints for other protocol integra-
tions.

3http://reactivex.io/

Reactive Through Services

2.1 Protocols Comparison

In Table 1 there is a diversified qualitative comparison
of the RTS protocol with other alternatives. A variety
of scopes were selected, so to identify the exact places
where the RTS fits. These scopes are classified in:

e Device-To-Device (D2D) - As defined in other
publications, (Asadi et al., 2014) D2D is a di-
rect communication between two systems without
traversing the Base Station or core network.

e Device-To-Service (D2S) - Is the common client
server tier architecture, using a central point for
message relay.

e Service-To-Service (S2S) - Normally used for ser-
vice synchronization in the underlying infrastruc-
ture and also exchanging information to maintain
service availability.

Some qualitative measures are represented with:
excellent, good, nice and bad. These measures con-
sider message payload sizes, library availability and
browser integration, that will serve as baselines to
compare between protocols. For instance, CoAP and
DDS are considered incompatible with web clients
due to the underlying protocol used, not aligned with
TCP/IP and thus it is not a good fit for our require-
ments. The RTS protocol was initially targeting the
D2S scope, yet because of the framework symmetry
between the client and server implementation, it can
be easily extended to a S2S context. Protocols are
also classified based on their communication models,
with detailed descriptions in section 3.1. The RTS
protocol can implement services on all the described
models. In contrast, most other protocols just provide
messaging and framing and are limited in describing
the service semantics.

2.2 State of the Art

There are other projects that pursue some of the same
RTS principles. Following is a small representation
list:

e Spark Java 4 is lightweight Java web framework
that despite not using annotations it follows a
straight forward approach to define services. It is
primarily oriented for REST and web interfaces.
There is no clear separation from the service def-
initions and the implementations, making it diffi-
cult to integrate with other protocols and commu-
nication models. This is the norm in most REST
frameworks.

“http://sparkjava.com/

331



CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

Table 1: Qualitative comparison of some common used protocols. Purposely chosen in a wide range of contexts. Scope
descriptions: S2S (Service To Service), D2S (Device To Service), D2D (Device To Device).

: Network
Web friendly Model Net boundary efficiency QoS Scope
request/reply
RTS excellent fire-and-forget none nice reliable D2S, S2S
request/stream
REST excellent req/reply none bad reliable D2S
JSON-RPC | excellent | 'SdUesVreply none nice reliable D2S
pub/sub
STOMP good pub/sub none nice reliable D2S
XMPP nice request/reply none bad reliable | D28, S2
pub/sub
. minimal
MQTT nice pub/sub none good config D2S
CoAP bad request/reply NAT issues excellent g;r:ggal D2S
AMQP nice pub/sub none excellent | ‘ransaction S2S8
Treol reliable
DDS/RTPS bad requesyreply LAN excellent | high config D2D
pub/sub

e Project Reactor 3 is an initiative to implement the
new Reactive Streams standard (Streams, 2016)
for several languages in an asynchronous founda-
tion. It adds many additional functionalities to the
standard, yet it is still just a stream library, not
defining service interface semantics for the web.
This can be a good project to integrate with some
RTS asynchronous modules.

e Akka is a serious competition, a very established
framework providing reactive streams. There is a
distinct list of options for endpoint interfaces with
Akka-Camel (Lightbend, 2016b), cluster manage-
ment, load balancing and other features. It is
based in a simple message-driven architecture, not
presenting any service descriptors or high level in-
terfaces, diverging from a SOA viewpoint. When
multiple actors need to be orchestrated in order
to provide a specific application function, proper
intertwined messaging can become demanding.
There is a need for providing a higher-level ab-
straction. Akka is good candidate to explore in
some of the RTS integrations, essentially extend-
ing endpoints.

e Lagom 7 is the most similar with RTS. Declared
as a Reactive Microservice architecture (Boner,
2016) it handles service requests in a similar way
and it has analogous communication models. Ser-
vice descriptors are declared in Java interfaces and
can be also configured for distinct transport proto-
cols. Still there is no clear concept of communica-

Shitps://projectreactor.io/

Shttp://akka.io/
7https://www.lagomframework.com/

332

tion models, and the service descriptors are bound
to one kind of endpoint, e.g. when using REST
identifiers (Lightbend, 2016a), not being reusable
with other service interfaces. RTS is also more
direct when constructing services, using a straight
forward way of defining services.

2.3 Xtend and Typescript Language
Choice

For the reference implementation Xtend and Type-
script languages were selected. Xtend is a language
that is compiled to Java (similar to a pre-processor)
specially useful when using lambda functions and
asynchronous programming. Also the use of fea-
tures like AA (Active Annotations) ® aid in the imple-
mentation of declarative instructions in compile time.
Avoids complex code injectors similar to the ones
used in JEE containers, likewise the use of the Java
reflection framework. Typescript ? is another emerg-
ing language in the web development, introducing op-
tional static types and other facilities that are boost-
ing productivity for medium to large projects. Yet not
very productive for small ones due to the complexi-
ties in project setup compared to JavaScript. It was
also selected because it is the preferred choice when
developing in Angular 2 '°. Despite the RTS having
no dependencies on the framework, the client library
uses RxJS 5 from ReactiveX that is also extensively
used in Angular 2.

8https://eclipse.org/xtend/documentation/204._

activeannotations.html
https://www.typescriptlang.org/
Onhttps://angular.io/



3 RTS ARCHITECTURE
OVERVIEW

Even thought current web architectures apply almost
the same protocols as the first web servers did, inter-
nals parts have changed considerably. Notably, the
rise of dynamic web contents and constant demand of
feedback produced reasonable impact, pushing those
architectures to a more asynchronous model. The
RTS service interfaces should be considered an ex-
tension of REST services from a client point of view,
it adds the push model to the existent pull network
style. However from the architecture view it is quite
different. The whole architecture in Fig. 1 is designed
from ground to be compatible with asynchronous ap-
plication servers like Vertx !! and message-driven ar-
chitectures. These are required features to fulfill the
reactive manifesto (Boner et al., 2014). But there are
also other points to mention in the RTS architecture:

e As presented in Fig. 1, network endpoints and
protocols are detached from the service endpoints,
this is a similar attempt from what was done in the
SOAP architecture. In other words, the same com-
patible service can be accessed from a REST end-
point or from an RTS endpoint, by providing just
some configurations. Endpoints are configured in
designated routers for a particular protocol. It is
possible to use other protocols, if they are compat-
ible with the same communication model, men-
tioned in section 3.1. This improves SoC (Separa-
tion of Concerns) (Hursch and Lopes, 1995) and
contribute to clean service definitions.

e Endpoint requests and replies are transformed in
a Message based processing scheme. After going
through the network endpoint, the created mes-
sage enters the processing Pipeline where it can
be intercepted by any custom user code. At this
point the message can be forwarded to the next in-
terceptor, delivered to the service or rejected, e.g
by some Access Control component. Again the
SoC principle is applied for these horizontal as-
pects of the services, by implementing common
interceptors.

e Messages at the end of the Pipeline go through a
decision process based on some message fields,
e.g. the message type will decide if is to be de-
livered to a request or to a reply service handler,
and if there should be a response or it’s just only a
notification. Some message fields reflect the used
communication model avoiding the need of ser-
vice descriptors to build client proxy implementa-
tions.

Uhttp://vertx.io/

Reactive Through Services

e There are some architecture symmetries on the
client side. This means the client also has the
Pipeline and the MessageBus components. It is
possible to install the same services on the client
Pipeline and invert the request/reply flux from
server to client. However the network connec-
tion is always made in the client-server direction,
avoiding network issues.

‘ Network Endpoints (REST, RTS, ..}

W w—

Custom Interceptor
I I

[ OAuth Interceptor

[‘ .

Messages in the PipeResource
are only intercepted from endpoint to
service direction

PipeContext includes the Message and
other processing context information

Pipeline

anosayadid

Authorization

Publish or Reply

fiday 1o ysigng

MessageBus

Services

Figure 1: RTS Architecture essential blocks. From top to
bottom: network endpoints, message pipeline, message bus
and services.

3.1 RTS Communication Models

A message-driven architecture benefits from com-
ponent decoupling, providing isolation through a
message-bus and it’s easy to add functionalities to the
system over time. However messages are lazy struc-
tures when defining semantics, requiring more code
to wire and construct complex service scenarios. We
can verify this when trying to construct a request/re-
ply service solely based on the pub/sub model. We
need to link messages through the same identifica-
tion, handle timeouts and sessions for state-full ser-
vices. The RTS architecture is trying to achieve a bal-
ance between message flexibility and service seman-
tics, by defining different feasible models in the router

333



CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

endpoints. RTS endpoints are build on top of Web-
Socket frames with JSON formatted messages. The
use of JSON-RPC was initial proposed for these mes-
sages, unfortunately JSON-RPC is also bound to the
request/reply and fire-and-forget models. The model
we want to extend needs at least a way to send pro-
visional responses and a correct way to identify these
message types.

RTS existing models are represented in the sim-
plified sequence diagrams on Fig. 2. Here we re-
fer to clients and endpoints distinctly from network
clients and servers. These distinctions are needed be-
cause RTS endpoints are not necessarily in the net-
work servers, due to the already mentioned client-
server symmetry. Services can be installed in the net-
work clients or servers, however the connection is al-
ways established from client to server, avoiding net-
work and firewall issues. We should look at the dia-
grams independently from who is the network client
or the server.

The typical request/reply model that is used in
REST services is enlarged by the JSON-RPC fire-
and-forget model with the use of notifications. RTS
extends this with the concept of requesting streams
instead of getting all the data as a single response,
each element is streamed back in order. Streams have
a life cycle that can end with a complete or error sig-
nal from the server, a cancel signal from the client or
with a session disconnect. Stream requests are auto-
matically bound to the Pipeline flow that can be in-
tercepted and controlled by any implemented Access
Control mechanism without further coding.

Specifying communication models adds some ad-
vantages in terms of service compatibility. We can
clearly define that REST endpoints are only compat-
ible with the request/reply model, excluding any re-
quest/stream services to be linked to the REST end-
point. These definitions are not a common procedure
when describing services. We propose that, commu-
nication models should be part of any service descrip-
tion and should be included in specs like RAML !? or
Swagger !3. Although further studies should be car-
ried out to conclude that the models described here
can completely define all case scenarios.

3.2 Component Interactions

Looking at the architecture in Fig.1 we have identified
some Pipeline components that will be used in the se-
quence diagrams Fig. 3. This is a detailed descrip-
tion for the interaction of the request/stream model.
Two new components are presented, C-Observable

2https://raml.org/
Bhttps://swagger.io/

334

and S-Observable, but actually can be considered
the Stub (C)lient-Observable and Skeleton (S)ervice-
Observable sides of the same component. In the Type-
script client module, the C-Observable is in truth a
ReactiveX Observable. Part of the initial flow is iden-
tical to a basic request/reply, but returning an Observ-
able flag, detected by the client framework as a mes-
sage reply with the field cmd="obs* instead of the
typical cmd="ok*. The result value is an UUID for
the Observable. The client requests a response stream
in step (1) and waits for the asynchronous response
using the well know Promise pattern in step (2), sig-
naling that a background process is running. A typical
use case for this, is requesting a long task in the server
and receiving intermediate feedbacks (3) for the on-
going process, until it ends or fails (4). When the
message is delivered to the Service, it is translated to
a method invocation, as also the method return to a
translated reply message. The PipeContext life-cycle
is also extended until the stream is completed or an
error is thrown. We will not describe here all the de-
tails of all models, since the others already fall in the
common knowledge. The messages are processed by
the following Pipeline components:

o PipeResource is an abstraction for any connec-
tion or session (using TCP or any other protocol).
Is also a placeholder for the connection resources,
hence the chosen name. Any resources or sub-
scriptions are state-full until the connection is re-
leased.

e PipeContext is an abstraction for a request con-
text. In a REST endpoint this has the same life-
cycle of a PipeResource, but in RTS with keep
alive WebSockets, PipeResource’s can live much
longer than any PipeContext. The context is
available to services via Dependency Injection to
the method parameters, e.g providing the context
User to the service.

e Service is a user class extension of an available
interface IComponent (more on this later). Ser-
vices expose methods as public endpoints and de-
pending on the declared returned value it maps to
a defined communication model.

3.3 Service Meta-Data and Descriptors

Service Descriptors are useful for integrations, ser-
vice discover and Proxy Stub generators, effec-
tively removing the guesswork in calling the ser-
vice. In RTS, descriptors are decoupled from the
service meta-data similar to how service endpoints
are from the definitions. The meta-data is gener-
ated from Xtend Active Annotations and from ser-



Client |

Reactive Through Services

Endpoint |

snd |

X X ‘Cﬁentl ‘EndpoMtl
| Client | ‘ Endpoint | , ,

| | i snd |

| | >

pub | rpl (ok, err) |
|CHent| ‘Endpohﬁl ‘Cﬁentl ‘EndpoMtl

snd )

L
1 >

rpl (obs, err)
PRl RN

pub (ok) E( pub (ok) <of x2 values=

—
v

1. Pub (ck) <of x1 values>

| pub [reg) <next x2 values=>

pub (enl) cancel

i pub (cpl, err)

Client

pub (cpl, err) complete

Omntl

Endpoint

Figure 2: Available communication models in RTS endpoints. From left to right, fire-and-forget - no reply needed, re-
quest/reply - mostly used in web services, request/stream and request/stream + flow control - with or without flow control,

requesting multiple asynchronous responses until completion.

Client Service

]
Client | C—Obsewab\e" | Endpcmt“ | PipeRescurcen [ mpecontext" Senvice | Srobser\/able"
L

<create>

(1) snd

<process>

<create>

<deliver>
<create>
(=]

L (2 rpl (obs, prr

<resohverreects | |

<create>

(3) pub (ok)

(pub) messages goes through PipeContext and PipeResource
25 in any other message, but the flow is simpliied here I

J I

other stream messages.

i
I

e | | | e | | | e

Figure 3: Request/stream model, details for message flow
and component interactions.

<next>

1 1

‘L(ﬂ)p (cpl, brr)
I;

<completeerror>

vice DTO’s (Data Transfer Objects) (Pantaleev and
Rountev, 2007). It is possible to generate different
descriptors for the same service e.g. both RAML and
Swagger specifications. However, the problem found
in most specifications is that these are frequently ori-
ented to REST services, not describing communica-
tion models beyond the request/reply. RTS architec-
ture is paving the way for the reactive models to be
included in the service descriptors, not committing to
a predefined format.

4 RTS DEMONSTRATION

Asynchronous programming is notoriously tricky, but
it doesn’t have to be, at least when providing service
interfaces. In this section we will show some straight
forward examples on how to use the framework to de-
liver REST and RTS services in a declarative way, us-
ing features of the Xtend language and Active Anno-

tations. This will just demonstrate the easy of use,
not covering many other optional features. In List. 1
we set a default server implementation where inter-
ceptors and services can be added. A common used
interceptor is the JwtAuthInterceptor for JSON Web
Token validations, and it’s available in the rts-service-
utils module. Also, there is a FolderManagerService
service exposing a server folder for file download, up-
load and listing. In the service configuration, the first
two parameters (service name and implementation)
are mandatory. The third parameter (a similar JSON
type structure) for group Access Control is optional.
We will not explain the Access Control mechanisms
in this document, but the code should be self explana-

tory.

Listing 1: Pipeline configuration example.

val server =
new DefaultVertxServer (vertx, '/clt’, '’)

//services
val folderManagerSrv =
FolderManagerService => [
folder = ’./downloads’

]

server.pipeline => [
addInterceptor(...)
addService(...)
addService (
"folder-manager’,
folderManagerSrv,
#{
"list’ -> "all’,
"download’ -> "all’,
"upload’ -> "admin’
}
)

failHandler = [
println (/PIPELINE-FAIL: ' + message)

335



CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

In the default server implementation (Default-
VertxServer) there are 2 routers for deploying REST
and RTS endpoints, available with the properties we-
bRouter and wsRouter respectively. The provided
configuration example in List. 2 for a REST end-
point and GET action at the path “/file-list/:path* will
redirect to the service name “folder-manager* and the
provided “list” method previously defined. The REST
path is defining an input variable “:path* that, in this
case is automatically mapped to the first parameter of
the service method. RTS endpoints don’t need addi-
tional configurations, the wsRouter is only available
to intercept some type of messages and actions e.g:
on opening a connection.

Listing 2: Web Router endpoint configuration example.

server => |
webRouter => [
route(...)
get (
"/file-list/:path’,
"folder-manager’ -> ’list’
)

]
]

A simple service declaration example is provided
in List. 3. We only need to declare the class as a
Service and mark the methods as Public available for
endpoints. In the hello method the return type is syn-
chronous, but it is always processed by the internal
asynchronous engine. The streamExample method
returns an Observable that is recognized by the RTS
as a stream response and is processed accordingly.
Other options that are provided but not explained here
are: service meta-data generation, interface mapping
and other asynchronous options.

Listing 3: Service declaration example.

@Service
class TestService {
@Public
def hello(String firstName, String lastName)
""THello <<firstName>> <<lastName>>!’"’

def streamExample() {
val ObservableResult<String> pResult = [
sub |

sub.next (' string-value-1'

sub.next ("string-value-2")

336

sub.complete

]

return pResult.observe
}
}

To access the RTS endpoints there are client li-
braries in Xtend and Typescript. The way proxy stubs
are created is by defining an interface and get the im-
plementation from a router component, described in
Listing 4. The “test” name reference is just the service
name provided in the Pipeline configuration. How to
create a router is not described here, but it’s normally
a step in the client initialization.

Listing 4: Service proxy stub interface definition and use
example for Typescript.

//service proxy for TestService
interface TestProxy {
hello(
firstName: string,
lastName: string
) : Promise<string>

}

//use the proxy implementation
let testProxy =
router.createProxy (' test’) as TestProxy

testProxy.hello(’Johnny’, "English’)
.then(_ => { ... })

S CONCLUSIONS

The myriad of emerging technologies is huge in the
field that RTS is trying to innovate. To defend our-
selves from redoing work from other projects, the
RTS architecture was carefully constructed to achieve
maximum decoupling of any implementations. It is
possible to verify such claims looking at the project
code, where even a simple asynchronous instruction
is abstracted, like a “while* in the rt.async.AsyncUtils
class. These are not supported natively by the lan-
guage and are dissociated from the reference imple-
mentation, implemented in Vertx. The RTS archi-
tecture is abstracting several concepts in a form that
should be easy to plug other different technologies, to
create routers and endpoints and integrate them in the
same Pipeline and MessageBus. Even if the RTS pro-
tocol is proven not to be adequate for a particular use
case, there are several other useful modules that can
be reused to declare services and service meta-data
for other implementations. We envision the use of
other projects to build a micro-service oriented archi-



tecture. e.g. Eclipse Aether ' is already integrated to
build simple plugins, Apache Spark ! is a nice target
for providing processing clusters, and Akka-Camel '©
for constructing different endpoints in several proto-
cols. Performance tests were not included since the
main goal was to present the communication models,
and the reference implementation that is still in an ex-
perimental stage.

6 FUTURE WORK

Although we thought that was a good idea to expose
the service API’s using the JavaScript Proxy, essen-
tially reflecting the API design to the client. The main
fact is that the JS Proxy is a relatively new spec, and
there are no good polyfills that can be used for old
browsers. This can be solved by generating the client
API with the service description, instead of the dy-
namic construction.

The reactive-streams standard will be part of the
Java 9, exposed by the Flow class. We should look
at this and adapt, so that the RTS service API’s could
more compliant with those specs.

One of the key principles governing the Reactive
Manifesto stands for quick responsiveness of the sys-
tem, no matter if the response is positive or not. In
a chain of asynchronous service calls, multiple fail-
ures can put the client in a long waiting due to service
timeouts. There are some proposed solutions to min-
imize this problem, one is adding a Circuit Breaker
(Fowler, 2014) between service calls for a fail fast re-
sponse.

Further integration tests with stream engines are
needed, e.g: Apache Spark or Akka. The implemen-
tations of meta-data and service description genera-
tions are still immature.

We recognize that breaking changes could be in-
serted due to advanced requirements in this future
work, and that’s why we are not committing to release
1.0.

7 ACKNOWLEDGMENTS

This work is financed by the ERDF European Re-
gional Development Fund through the Operational
Programme for Competitiveness and International-
ization - COMPETE 2020 Programme, and by Na-
tional Funds through the FCT Fundacdo para a

4https://projects.eclipse.org/projects/technology.aether
Bhttps://spark.apache.org/
16http://doc.akka.io/docs/akka/snapshot/scala/camel.html

Reactive Through Services

Ciéncia e a Tecnologia (Portuguese Foundation for
Science and Technology) within project CMUP-
ERI/TIC/0028/2014.

REFERENCES

Asadi, A., Wang, Q., and Mancuso, V. (2014). A survey
on device-to-device communication in cellular net-
works. IEEE Communications Surveys & Tutorials,
16(4):1801-1819.

Boner, J. (2016). Design Principles for Distributed Sys-
tems: Reactive Microservices Architecture. O’Reilly.

Boner, J., Farleyy, D., Kuhn, R., and Thomp-
son, M. (2014). The reactive manifesto.
http://www.reactivemanifesto.org/. Accessed
September 20, 2016.

Fowler, M. (2014). Circuit breaker pattern.
http://martinfowler.com/bliki/CircuitBreaker.html.
Accessed October 24, 2016.

Hursch, W. L. and Lopes, C. V. (1995). Separation of con-
cerns.

Lightbend, 1. (2016a). Lagom service descriptors: about
rest identifiers. http://www.lagomframework.com/
documentation/1.1.x/java/ServiceDescriptors.htmI#REST-
identifiers. Accessed October 24, 2016.

Lightbend, 1. (2016b). Untyped actors to receive and send
messages over a great variety of protocols and apis.

Mesbah, A. and Van Deursen, A. (2008). A component-and
push-based architectural style for ajax applications.
Journal of Systems and Software, 81(12):2194-2209.

Pantaleev, A. and Rountev, A. (2007). Identifying data
transfer objects in ejb applications. In Proceedings of
the 5th international Workshop on Dynamic Analysis,
page 5. IEEE Computer Society.

Streams, R. (2016). Standard for asynchronous stream pro-
cessing with non-blocking back pressure.

Webber, K. (2014). What is reactive programming?
https://medium.com/reactive-programming/what-
is-reactive-programming-bc9fa7f4a7fc# . wr20gleev.
Accessed October 16, 2016.

337



