
Using Structure of Automata for Faster Synchronizing Heuristics

Berk Cirisci, Muhammed Kerem Kahraman, Cagri Uluc Yildirimoglu,

Kamer Kaya and Husnu Yenigun
Computer Science and Engineering, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

Keywords: Finite State Automata, Synchronizing Sequences, Strongly Connected Component.

Abstract: The problem of finding a synchronizing sequence for an automaton is an interesting problem studied widely

in the literature. Finding a shortest synchronizing sequence is an NP-Hard problem. Therefore, there are

heuristics to find short synchronizing sequences. Some heuristics work fast but produce long synchronizing

sequences, whereas some heuristics work slow but produce relatively shorter synchronizing sequences. In

this paper we propose a method for using these heuristics by considering the connectedness of automata.

Applying the proposed approach of using these heuristics make the heuristics work faster than their original

versions, without sacrificing the quality of the synchronizing sequences.

1 INTRODUCTION

A synchronizing sequence w for an automaton A is a

sequence of inputs such that without knowing the

current state of A, when w is applied to A, A reaches

to a particular final state, regardless of its initial

state. If an automaton A has a synchronizing

sequence, A is called as synchronizing automaton.

Synchronizing automata and synchronizing

sequences have various applications. One example

area of application is the model-based testing, in

particular Finite State Machine (FSM) based testing.

When the abstract behavior of an interactive system

is modeled by using an FSM, there are various

methods to derive test sequences with high fault

coverage (Chow, 1978; Lee and Yannakakis, 1996;

Hierons and Ural, 2006). These methods construct a

test sequence to be applied when the implementation

under test is at a certain state. Therefore, it is

required to bring the implementation under test to

this particular state, regardless of the initial state of

the implementation, which can be accomplished by

using a synchronizing sequence. Even when the

implementation has a reset input for this purpose,

there are cases where using a synchronizing

sequence is preferred (Jourdan et al., 2015). For

more examples of application areas of synchronizing

sequences and for an overview of the theoretical

results related to synchronizing sequences please see

(Volkov, 2008).

For practical purposes, e.g. the use of a

synchronizing sequence in model-based testing, one

is interested in finding synchronizing sequences as

short as possible. However, finding a shortest

synchronizing sequence is known to be a NP-hard

problem (Eppstein, 1990). Therefore, heuristic

algorithms, known as synchronizing heuristics, are

used to find short synchronizing sequences. Among

such heuristics are Greedy (Eppstein, 1990), Cycle

(Trahtman, 2004), SynchroP (Roman, 2009), and

SynchroPL (Kudlacik et al., 2012). In this paper, we

consider using the structure of an automaton while

applying a synchronizing heuristic to speed up the

execution of these heuristics. Namely, we consider

the connectedness of automata.

An automaton A is called strongly connected if

every state is reachable from every other state by

using at least one sequence of inputs. Otherwise, A is

called non-strongly connected and in this case A can

be represented as a set of strongly connected

automata. These automata are called as strongly

connected components (SCCs) of A.

In this paper, given a non-strongly connected

automaton A, we suggest a method to build a

synchronizing sequence for A by using the

synchronizing sequences of the SCCs of A. We

considered the application of Greedy and SynchroP

algorithms directly to an automaton, and to SCCs of

the automaton. We observe that, the suggested

methods improve the running time greatly, without

544
Cirisci, B., Kahraman, M., Yildirimoglu, C., Kaya, K. and Yenigun, H.
Using Structure of Automata for Faster Synchronizing Heuristics.
DOI: 10.5220/0006660805440551
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 544-551
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

extending the length of the synchronizing sequences

much.

The remaining part of the paper is organized as

follows. In Section 2, we introduce the notation and

briefly give the required background. In Section 3,

we introduce our approach. In Section 4, we talk

about the synchronizing heuristics that we have

worked on and their integration to our approach. In

Section 5, we compare the proposed approach with

the traditional one that performs synchronization

heuristics on full automata. In Section 6, we

conclude the paper and provide some future

directions for our work.

2 BACKGROUND AND

NOTATION

A (deterministic) automaton is defined by a tuple A

= (S, Σ, D, δ) where S is a finite set of n states, Σ is a

finite alphabet consisting of p input letters (or

simply letters). D ⊆ S × Σ is the called the domain

and δ: D → S is a transition function. When D = S ×

Σ, then A is called complete, otherwise A is called

partial. Below, we consider only complete automata,

unless otherwise stated.

An element of the set Σ* is called a sequence. For

a sequence w ∈ Σ*, |w| denotes the length of w, and ε

is the empty sequence of length 0. For a complete

automaton, we extend the transition function δ to a

set of states and to a sequence in the usual way. For

a state s  S, we have δ(s, ε) = s, and for a sequence

w ∈ Σ* and a letter x ∈ Σ, we have δ(s, xw) = δ(δ(s,

x), w). For a set of states C ⊆ S, we have δ(C, w) =

{δ(s, w)|s ∈ C}.

For a set of states C ⊆ S, let C2 = {{s, s'}| s,

s'∈C} be the set of all multisets with cardinality 2

with elements from C, i.e. C2 is the set of all subsets

of C with cardinality 2, where repetition is allowed.

An element {s, s'} ∈ C2 is called a pair.

Furthermore, it is called a singleton pair (or an s–

pair, or simply a singleton) if s = s', otherwise it is

called a different pair (or a d–pair). The set of s–

pairs and d–pairs in C2 are denoted by C2
s and C2

d

respectively. A sequence w is said to be a merging

sequence for a pair {s, s'} ∈ S2 if δ({s,s'},w) is

singleton. Note that, for an s-pair {s,s}, every

sequence (including ε) is a merging sequence. A

sequence w is called an S'-synchronizing sequence

for an automaton A = (S, Σ, S×Σ, δ) and a subset of

states S' ⊆ S if δ(S', w) is singleton. When S' = S, w

is simply called a synchronizing sequence for A. An

automaton A is called S'-synchronizing if there exists

an S'-synchronizing sequence for A. An automaton

A is simply called synchronizing if there exists a

synchronizing sequence for A.

In this paper, we only consider synchronizing

automata. As shown by Eppstein (1990), deciding if

an automaton is synchronizing can be performed in

time O(pn2) by checking if there exists a merging

sequence for {s,s'}, for all {s,s'} ∈ S2.

We write δ−1(s, x) to denote the set of states with

a transition to state s with letter x, i.e. δ−1(s, x) = {s'

∈ S | δ(s',x) = s}. We also define δ−1({s,s'}, x) =

{{p,p'} | p ∈ δ−1(s, x) ∧ p' ∈ δ−1(s', x)}.

Given a partial automaton, we consider the

completion of this automaton by introducing a new

state, and adding the missing transitions of states to

this new state. Formally for a partial automaton

A=(S, Σ, D, δ) such that D  S×Σ, we define the

completion of A as A' = (S ∪{*}, Σ, S×Σ, δ'), where

(i) the star state * is a new state which does not exist

in S, (ii) ∀ (s, x) ∈ D, δ'(s, x) = δ(s, x), (iii) ∀ (s, x) ∉

D, δ'(s, x) = *, (iv) ∀ x ∈ Σ, δ'(*, x) = *.

An automaton A = (S, Σ, S×Σ, δ) is said to be

strongly connected if for every pair of states s, s' ∈

S, there exists a sequence w ∈ Σ* such that δ(s, w)=

s'. Given an automaton A= (S, Σ, S×Σ, δ) and another

automaton B = (S', Σ, D, δ)́, B is said to be a sub-

automaton of A if (i) S' ⊆ S, (ii) D = {(s,x)∈S' ×Σ |

Ǝs' ∈ S' s.t. δ(s,x)= s' }, (iii) ∀(s,x) ∈ D, δ(́s,x) =

δ(s,x). Intuitively, the states of B consist of a subset

of states of A. Every transition in A from a state in B

to a state in B is preserved, and all the other

transitions are deleted.

A strongly connected component (SCC) of a

given automaton A = (S, Σ, S×Σ, δ), is a sub-

automaton B = (S,́ Σ, D, δ)́ of A such that, B is

strongly connected, and there does not exist another

strongly connected sub-automaton C of A, where B

is a sub-automaton of C. When one considers an

automaton A as a graph (by representing the states of

A as the nodes, and the transition between the states

as the edges of the graph), B simply corresponds to a

strongly connected component of the graph of A.

For a set of SCCs {A1, A2, …, Ak}, where Ai= (Si,

Σ, Di, δi), 1 ≤ i ≤ k, we have Si ∩ Sj = ∅ when i  j,

and S1 ∪ S2 ∪ … ∪ Sk = S. Please note here that k = 1

if and only if A is strongly connected.

An SCC Ai= (Si, Σ, Di, δi) is called a sink

component if Di = Si×Σ. In other words, for a sink

component, all the transitions of the states in Si in A

are preserved in Ai. Therefore, if Ai= (Si, Σ, Di, δi) is

not a sink component, then some transitions of some

states will be missing. For this reason, Ai is a

complete automaton if and only if Ai is a sink

component.

Using Structure of Automata for Faster Synchronizing Heuristics

545

Figure 1: An automaton with 10 States, 2 inputs and 3

SCC's.

Figure 2: SCC1(A1) with additional star state.

3 SYNCHRONIZING

SEQUENCES FOR

NON-STRONGLY

CONNECTED

AUTOMATA

Consider an automaton A= (S, Σ, S×Σ, δ) and its

SCC decomposition {A1, A2, …, Ak}.

Lemma 1: A is synchronizing iff there exists only

one sink component in Ai in {A1, A2, …, Ak} and Ai

is synchronizing.

Proof: If there are two distinct sink components Ai

and Aj of A, a state si in Ai and a state sj in Aj can

never be merged. If Ai is the only sink component of

A and Ai is not synchronizing, A is not synchronizing

as well.

 Let A = (S, Σ, S×Σ, δ) be an automaton and {A1,

A2, …, Ak} be the SCCs of A. We consider the SCCs

of A (topologically) sorted as 〈 A1, A2, … , Ak〉 such

that for any 1 ≤ i < j ≤ k, there do not exist si ∈ Si, sj

∈ Sj, w ∈ Σ* where δ(sj, w) = si. Note that in this case

Ak must be a sink component and we have the

following result.

Lemma 2: Let 〈 A1, A2, …, Ak〉 be a topologically

sorted SCCs of an automaton A=(S, Σ, S×Σ, δ),

where Ai = (Si, Σ, Di, δi), 1  i  k. For any sequence

w ∈ Σ* and for a state s  Si, 1  i  k, we have δ(s,

w)  (Si  Si+1  …  Sk).

Proof: Since the components are topologically

sorted, states in Ai can only move to a state in Ai, or

to a state in Ai+1, Ai+2, …, Ak.

Lemma 3: Let Ai be an SCC of an automaton. If Ai

is a partial automaton, then the completion A'i of Ai

is a synchronizing automaton.

Proof: Since Ai is an SCC, all states can be reached

from other states in Ai. Also, we know that star state

is a state that can reach to only itself. When we

complete Ai with a star state, every state can reach

the star state and star state can't reach to other state

then itself so that means other states should unite in

star state eventually and makes A'i a synchronizing

automaton.

3.1 An Initial Approach to Use SCCs

We now explain an initial idea to form a

synchronizing sequence for an automaton A by using

synchronizing sequences of the SCCs of A. Let A=

(S, Σ, S×Σ, δ) be an automaton and 〈 A1, A2, …, Ak〉

be the topologically sorted SCCs of A, where Ai= (Si,

Σ, Di, δi). For 1 ≤ i < k, let βi be a synchronizing

sequence for the completion A'i of Ai = (Si, Σ, Di, δi).

Note that based on Lemma 2 one can always find a

synchronizing sequence for Ai, 1  i < k. Let βk be a

synchronizing sequence for Ak. Lemma 1 suggests

that Ak always has a synchronizing sequence if A is

synchronizing.

We first claim that the sequence β1β2…βk is a

synchronizing sequence for A. In order to see this, it

is sufficient to observe the following.

Lemma 4: For any 0  i < k we have

δ(S, β1β2…βi)  (Si+1  S i+2 …  Sk)

Proof: By induction, where the base case i = 0 holds

trivially. Assume that the claim holds for i-1, i.e.

δ(S, β1β2…βi-1)  (Si  S i+1  …  Sk). For a state s

 δ(S, β1β2…βi-1) such that s  (Si+1  S i+2 … 

Sk), then δ(s,βi) will also belong to (Si+1  S i+2 …

 Sk) based on Lemma 2. Hence it remains to show

that for any state s  δ(S, β1β2…βi-1) such that s  Si,

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

546

δ(s,βi) is not in Si. The sequence βi is a synchronizing

sequence for the completion A'i of SCC Ai. Since the

star state of A'i is the only state in which the states of

A'i can be synched, we must have δ'i(Si, βi) = {*}.

Note that the star state in A'i represents the states S\Si

for Ai. Hence the sequence βi is in fact a sequence

that pushes all the states in Si to the states in the

other components, i.e. δ(Si, βi) = . This implies that

for a state s  δ(S, β1β2…βi-1) such that s  Si, δ(s,βi)

is not in Si. Finally, we can state the following result.

Theorem 5: Let 〈 A1, A2, …, Ak〉 be a topologically

sorted SCCs of an automaton A = (S, Σ, D, δ), where

Ai = (Si, Σ, Di, δi), 1  i  k. Let βi be a synchronizing

sequence for the completion A'i of Ai, 1  i < k , and

let βk be a synchronizing sequence for Ak.

The sequence β1β2…βk is a synchronizing sequence

for A.

Proof: δ(S, β1β2…βk-1)  Sk using Lemma 4. Since

βk is a synchronizing sequence for Ak, δ(Sk, βk) is

singleton. Combining these two results, we have

δ(δ(S, β1β2…βk-1), βk) = δ(S, β1β2…βk-1βk) as

singleton as well.

3.2 An Improvement on the Initial
Approach

Theorem 5 shows an easy way for constructing a

synchronizing sequence for an automaton A based

on its SCCs. As one may notice, though, the length

of the sequence to be constructed can be reduced

based on the following observation. Consider a

sequence βi, for some 1<i k, used in the sequence

β1β2…βk-1βk. The sequence βi is constructed to push

all the states in Ai out of the component Ai.

However, the sequence β1β2…βi-1 applied before βi

can already push some states in Ai out of Ai. On the

other hand, the sequence β1β2…βi-1 can also move

some of the states in the components A1, A2, …, Ai-1

to a state in Ai. Therefore, a more careful approach

can be taken considering which states in Ai must

really be moved out of Ai when constructing the

sequence to handle the component Ai.

To take this into account, we define the

following sequences recursively. For the bases cases

we define α0 = ε and σ0 = ε. For 1 ≤ i < k, let S'i = Si

∩ δ(S, σi-1) and let αi be a S'i-synchronizing

sequence for A'i. For 1 ≤ i < k, let σi = σi-1 αi.

Theorem 6: Let S'k = Sk ∩ δ(S, σk-1) and αk be a S'k-

synchronizing sequence for Ak. Then σk-1αk is a

synchronizing sequence for A.

Proof: σk-1 is a synchronizing sequence for A1 ∪ A2 ∪

A3 ∪ ... ∪ Ak-1 and we know that they are

synchronized in the star state of Ak-1 which

represents the states that are outside of Ak-1. These

states belong to Ak because Ak is ahead of Ak-1 in

topological sort and it is the only SCC left so we can

say that δ(S, σk-1) ⊆ Sk. In other words, σk-1 leaves us

with active states S'k ⊆ Sk. Since αk synchronizes all

the states of S'k, σk-1αk is a synchronizing sequence

for A.

Based on Theorem 6, the algorithm given in

Figure 3 can be used to construct a synchronizing

sequence for an automaton A.

Input: An automaton A = (S,Σ,D,δ)

Output: A synchronizing sequence for A

C = S; // All states are

 // active initially

Г = ε ; // Г: synch. sequence to

 // be constructed, initially

 // empty

<A1, A2,…, Ak> = find/sort SCCs of A

foreach i in {1, 2, …, k} do

 // Consider Ai = (Si,Σ,Di,δi)

 S’i = C ∩ Si;

 // find active states

 // of Ai

 Гi = Heuristic(A’i,S’i);

 // find S’i sync. sequence

 // of completion A’i of Ai

 Г = Г Гi;

 // append Гi to sync. seq.

C = δ(C,Гi); // Update active

 // states

return Г;

Figure 3: SCC algorithm to compute synchronizing

sequences.

Note that in the algorithm given in Figure 3, any

synchronizing heuristic can be used to compute Гi.

In the next section, we explain two different

algorithms from the literature that we used in our

experiments.

4 SYNCHRONIZING

HEURISTICS

As noted in Section 1, there are various

synchronizing heuristics. In this paper, we

considered and experimented with two of these

heuristics, Greedy and SynchroP. Both Greedy and

SynchroP heuristics have two phases. Phase 1 is

Using Structure of Automata for Faster Synchronizing Heuristics

547

common in these heuristics and given as Algorithm

1 below. In Phase 1, a shortest merging sequence

τ(i,j) for each {i, j} ∈ S2 is computed by using a

breadth first search. Note that τ(i,j) is not unique.

Input: An automaton A = (S,Σ,D,δ)

Output: A merging sequence for all

 {i,j} ∈ S2

let Q be an initially empty queue

 // Q: BFS frontier

P = Ø // P: keeps the set of nodes

 // in the BFS forest

 // constructed so far

foreach {i,j} ∈ S2s do
 push {i,j} onto Q

 insert {i,j} into P

 set τ(i,j) = ɛ;

while P ≠ S2 do

 {i,j}= pop next item from Q;

 foreach x ∈ Σ do

 foreach {k,l} ∈ δ-1({i,j},x) do
 if {k,l} ∉ P then
 τ(k,l)= x τ(i,j);

 push {k,l} onto Q;

 P = P ∪ {{k,l}};

Figure 4: Phase 1 of Greedy and SynchroP.

 Algorithm 1 performs a breadth first search

(BFS), and therefore constructs a BFS forest, rooted

at s–pairs {i, i} ∈ S2
s, where these s–pairs are the

nodes at level 0 of the forest. A d–pair {i, j} appears

at level k of the BFS forest if |τ{i,j}| = k.

Algorithm 1 requires Ω(n2) time since each {i, j}

∈ S2 is pushed to Q exactly once.

4.1 The Greedy Heuristic

Greedy’s Phase 2 (given as Algorithm 2 below)

constructs a synchronizing sequence by using the

information from Phase 1. Its main loop can iterate

at most n − 1 times, since in each iteration |C| is

reduced by at least one. The min operation at line 4

requires O(n2) time and line 5 takes constant time.

Line 6 can normally be handled in O(n3) time, but

using the information precomputed by the

intermediate stage between Phase 1 and Phase 2, line

6 can be handled in O(n) time. Therefore, Phase 2 of

Greedy requires O(n3) time. Note that Algorithm 2

finds an S-synchronizing sequence for a given

complete automaton A = (S, Σ, S×Σ, δ). However,

for our purposes we need to find an S'-synchronizing

sequence for a given subset S' ⊆ S of states.

Input: An automaton A = (S,Σ,D,δ),

 τ(i,j) for all {i,j} ∈ S2s,
 S’ to be synchronized

Output: An S’-synch. sequence Г for A

C = S’ // C: current state set

Г = ε // Г: synch. sequence to

 // be constructed, initially

 // empty

while |C| > 1 do // still not a

 // singleton

 {i,j} = arg min<k,l>∈C2d |τ(k,l)|;
 // decide the d-pair to be

 // merged

 Г = Г τ(i,j); // append τ(i,j)

 // to the

 // synchronizing

 // sequence

 C = δ(C,τ(i,j)); //update current

 // state set

 // with τ(i,j)

Figure 5: Phase 2 of Greedy.

4.2 The SynchroP Heuristic

Similar to the second phase of Greedy, the second

phase of SynchroP also constructs a synchronizing

sequence iteratively. The algorithms keep track of

the current set C of states, which is initially the

entire set of states S. In each iteration, the cardinality

of C is reduced at least by one. This is accomplished

by picking a d-pair {i, j} ∈ C2
d in each iteration, and

considering δ(C, τ(i,j)) as the current set in the next

iteration. Since τ(i,j) is a merging sequence for the

states i and j, the cardinality of δ(C,τ(i,j)) is

guaranteed to be smaller than that of C.

For a set of states C ⊆ S, let the cost φ(C) of C be

defined as

 𝜑(𝐶) = ∑ |𝜏(𝑖, 𝑗)|
i,j ∈ C

φ(C) is a heuristic indication of how hard it is to

bring the set C to a singleton. The intuition here is

that, the larger the cost φ(C) is, the longer a

synchronizing sequence would be required to bring

C to a singleton set.

During the iterations of SynchroP, the selection

of {i, j} ∈ C2d that will be used is performed by

considering the cost of the set δ(C,τ(i,j)). Based on

this cost function, the second phase of SynchroP is

given in Algorithm 2. Like in Greedy with SCC

Method, we also use a slightly modified version of

the second phase of SynchroP algorithm to find S'-

synchronizing sequence.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

548

Input: An atomaton A = (S,Σ,D,δ),

 τ(i,j) for all {i,j} ∈ S2s,
 S’ to be synchronized

Output: An S’-synch. sequence Г for A

C = S’ // C: current state set

Г = ε // Г: synchronizing sequence to

 // be constructed, initially

 // empty

while |C| > 1 do // still not a

 // singleton

 minCost = ∞

 foreach d-pair {i,j} ∈ C2d do
 thisPairCost = ɸ(δ(C,τ(i,j)))
 if thisPairCost < minCost then

 minCost = thisPairCost

 τ’ = τ(i,j)

 Г = Г τ’; // append τ’ to the

 // synch. sequence

 C = δ(C,τ’); // update current

 // state set

 // with τ’

Figure 6: Phase 2 of SynchroP.

5 EXPERIMENTAL RESULTS

The experiments were performed on a machine with

Intel Xeon E5-1650 CPU and 16GB of memory,

using Ubuntu 16.04.2. The code was written in

C/C++ and compiled using gcc with -o3 option

enabled.

 In order to evaluate the performance of the

method suggested in this paper, we generated

random automata with n  {256, 512, 1024} states,

p  {2, 4, 8} inputs, k  {2, 4, 8} SCCs in the

following way. To construct a random automaton A

with a given number of states n, number of inputs p,

and number of SSCs k, we first construct k different

automata A1, A2, …, Ak, where each Ai is strongly

connected, has n/k states and p inputs. To construct

Ai, we consider each state s in Ai and each input x,

and assign (s,x) to be one of the states in Ai

randomly. If Ai is not strongly connected after the

initial random assignment, we reassign (s,x) for

some of the states and inputs randomly again, and

keep repeating this process until Ai becomes strongly

connected. Once we get Ai strongly connected, we

identify those state s and input x pairs in Ai (except

for the last SCC Ak) such that Ai stays strongly

connected even without using the transition of the

state s and with the input x. For these state/input

pairs in Ai, we again assign (s,x) to be one of the

states in an automaton Ai+1, Ai+2, …, Ak. For each n-

p-k combination we created 50 random automata.

The results given later in this section are the average

of these 50 automata.

 For an automaton A= (S, Σ, S×Σ, δ) with n states,

p inputs and k SCCs 〈A1, A2, …, Ak〉 where Ai = (Si,

Σ, Di, δi), 1  i  k, we find a synchronizing (i.e. S-

synchronizing) sequence for A by using Greedy and

SynchroP algorithms given in Figure 5 and Figure 6,

respectively. We also find a synchronizing sequence

for A by using the SCC Algorithm given in Figure 3,

where for each Ai = (Si, Σ, Di, δi) we use Greedy and

SynchroP algorithms to find S'i-synchronizing

sequence as explained in Section 3.

 Table 1 gives the running time and the

synchronizing sequence length for the direct

application of Greedy and SynchroP compared to the

SCC method suggested in this paper.

 As expected, the running time is improved in all

the cases. The speed-up values (i.e. the time required

for the direct application of Greedy/SynchroP

divided by the time required for the application of

SCC method using Greedy/SynchroP) do not change

much based on the number of inputs of the

automata. However, the number of states and the

number of SCCs of the automata are very important

factors for the speed-up values. Figure 7 and Figure

8 display the speed-up values obtained in a more

explicit way. For the time performance, the SCC

method becomes more effective as the size of the

automaton and the number of SCCs increase.

 For the length of the synchronizing sequences

found, the SCC method finds even shorter sequences

(5% shorter on the average) compared to the direct

application of Greedy. Although the direct

application of SynchroP yields shorter synchronizing

sequences in general, the increase in the length is not

large (3% longer on the average).

6 CONCLUSIONS

The SCC-based method suggested in this paper is a

method that can be used with any synchronizing

heuristic to make it run faster on non-strongly

connected automata. In case of Greedy, it can also

find shorter reset sequences in shorter time

compared to the application of Greedy directly.

SynchroP is a method which typically to finds

shorter reset sequences compared to Greedy but it

takes more time. With our method, we can use

SynchroP to find shorter reset sequences and also

SCC method will not take more time than the direct

application of Greedy.

Using Structure of Automata for Faster Synchronizing Heuristics

549

Table 1: Experimental results for Greedy and SynchroP.

Number of
Greedy with

 SCC Method
Greedy

SynchroP with SCC

Method
SynchroP

States SCCs Inputs Time(ms) Length Time(ms) Length Time(ms) Length Time(ms) Length

256

2

2 3,12 35,84 5,71 38,08 60,39 32,18 388,23 31,92

4 4,06 20,66 7,66 22,22 46,88 17,94 373,22 17,9

8 6,72 29,64 12,72 29,94 53,68 24,54 495,94 23,74

4

2 2,02 31,96 6,617 36,47 5,26 30,6 380,11 29,38

4 2,38 22,26 8,66 23,72 5,78 19,2 405,3 18,58

8 3,1 23,9 11,82 23,76 7,92 19,86 487,72 19

8

2 1,21 30,15 6,71 36,40 1,44 28,52 405,35 27,71

4 1,62 19,4 10,08 21,64 1,76 17,9 422,72 16,6

8 2,7 19,82 17,58 20,5 2,42 17,48 477,72 15,7

512

2

2 13,8 44,88 23,52 46,18 472,28 38,7 4632,88 39,98

4 19,96 30,5 35,24 31,1 405,64 25,58 4968,16 25,56

8 27,88 45,36 48,66 46,2 485,92 37,04 6796,58 36,96

4

2 6,69 40,35 23,54 42,88 64,38 35,88 4704,10 34,67

4 8,46 23,7 33,08 24,74 50,36 20,3 4893,22 19,92

8 14,48 34,42 55,7 34,18 67 27,9 6023,2 26,98

8

2 3,79 35,542 24,48 41,83 7,98 33,94 4817,31 32,38

4 4,6 23,7 35 25,68 8,04 20,92 4920,16 20,42

8 7,56 25,8 59,34 26,58 11,16 22,02 5742,86 20,82

1024

2

2 48,88 47,22 73,86 46,78 6638,76 41,14 72047,02 41,32

4 65,16 32,36 101,26 32,8 5045,8 26,62 72164,72 26,42

8 96,94 62,7 141,84 62,46 6106,24 50,38 101063,7 49,94

4

2 26,08 46,74 81,56 49,18 510,16 41,92 69239,92 41,74

4 31,32 32,3 109,04 33,94 405,28 27,3 71939,54 26,86

8 46,96 46,08 160,54 47,2 467,24 38,62 85730 36,78

8

2 13,94 43,33 86,22 48,51 73,08 39,65 68696,92 39,31

4 15,88 24,42 115,74 26,72 62,94 22,08 72070,06 21,36

8 23,64 34,28 172,18 35,12 71,38 29,04 81185,02 28

The time improvements we obtain by using the

SCC method are expected. Greedy requires O(n3)

and SynchroP requires O(n5) time where n is the

number of states. Therefore, if one can divide the

automaton into pieces (components) in one way or

the other, and construct a synchronizing sequence

from the synchronizing sequences obtained for these

pieces, this approach would result in considerable

time savings. In this paper, we suggest that these

“pieces” can be the strongly connected components

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

550

Figure 7: SynchroP/SCC Method Time Ratio (Speedup)

Results of Automata’s with 256,512,1024 States and 2,4,8

SCC’s.

Figure 8: Greedy/SCC Method Time Ratio (Speedup)

Results of Automata’s with 256,512,1024 States and 2,4,8

SCC’s.

of the automaton. Because of the reasons above,

SCC method can make every heuristic faster as

shown in this paper. If there are k strongly connected

components with equal sizes, complexity of Greedy

and SynchroP becomes O(𝑘(
𝑛

𝑘
)3) O(𝑘 (

𝑛

𝑘
)5),

respectively. Obviously, these are much faster

running times compared to original heuristics. In

practice, the running times differ as expected.

For future work, one direction is to improve our

synchronizing sequence lengths for the SCC method

when used with SynchroP. The direct application of

SynchroP algorithm performs a global analysis

compared to the local analysis performed when each

strongly connected component is analyzed

separately by our SCC method. Another direction of

research is to use the SCC method with other

synchronizing heuristics and to extend the

experiments to study the effects of aspects like

states, inputs, number of SCCs, and also the relative

size of SCCs, a factor which we did not take into

account in the experiments performed in this paper.

ACKNOWLEDGMENTS

This work was supported by The Scientific and

Technological Research Council of Turkey

(TUBITAK) [grant number 114E569].

REFERENCES

Chow, T.S., 1978. Testing software design modelled by

finite state machines. IEEE Transactions on Software

Engineering, 4:178-187.

Eppstein, D., 1990. Reset sequences for monotonic

automata. SIAM J. Comput. 19 (3), 500 - 510.

Hierons, R.M., Ural, H. 2006. Optimizing the length of

checking sequences. IEEE Transactions on

Computers. 55(5): 618-629.

Jourdan, G.V., Ural, H., Yenigün, H., 2015. Reduced

checking sequences using unreliable reset, Information

Processing Letters, 115(5), pp. 532-535.

Kudlacik, R., Roman, A., Wagner, H., 2012. Effective

synchronizing algorithms. Expert Systems with

Applications 39 (14), 11746-11757.

Lee, D., Yannakakis, M., 1996. Principles and methods of

testing finite state machines-a survey. Proceedings of

The IEEE, 84(8), 1090-1123.

Trahtman, A. N., 2004. Some results of implemented

algorithms of synchronization. In: 10th Journees

Montoises d'Inform.

Volkov, M.V., 2008. Synchronizing automata and the

Cerny conjecture. In Proceedings of the 3rd

International Conference on Language and Automata

Theory and Applications, LATA’ 08, 11–27, 2008.

Using Structure of Automata for Faster Synchronizing Heuristics

551

