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Abstract: The problem of finding a synchronizing sequence for an automaton is an interesting problem studied widely 

in the literature. Finding a shortest synchronizing sequence is an NP-Hard problem. Therefore, there are 

heuristics to find short synchronizing sequences. Some heuristics work fast but produce long synchronizing 

sequences, whereas some heuristics work slow but produce relatively shorter synchronizing sequences. In 

this paper we propose a method for using these heuristics by considering the connectedness of automata. 

Applying the proposed approach of using these heuristics make the heuristics work faster than their original 

versions, without sacrificing the quality of the synchronizing sequences. 

1 INTRODUCTION 

A synchronizing sequence w for an automaton A is a 

sequence of inputs such that without knowing the 

current state of A, when w is applied to A, A reaches 

to a particular final state, regardless of its initial 

state. If an automaton A has a synchronizing 

sequence, A is called as synchronizing automaton.  

Synchronizing automata and synchronizing 

sequences have various applications. One example 

area of application is the model-based testing, in 

particular Finite State Machine (FSM) based testing. 

When the abstract behavior of an interactive system 

is modeled by using an FSM, there are various 

methods to derive test sequences with high fault 

coverage (Chow, 1978; Lee and Yannakakis, 1996; 

Hierons and Ural, 2006). These methods construct a 

test sequence to be applied when the implementation 

under test is at a certain state. Therefore, it is 

required to bring the implementation under test to 

this particular state, regardless of the initial state of 

the implementation, which can be accomplished by 

using a synchronizing sequence. Even when the 

implementation has a reset input for this purpose, 

there are cases where using a synchronizing 

sequence is preferred (Jourdan et al., 2015). For 

more examples of application areas of synchronizing 

sequences and for an overview of the theoretical 

results related to synchronizing sequences please see 

(Volkov, 2008).   

For practical purposes, e.g. the use of a 

synchronizing sequence in model-based testing, one 

is interested in finding synchronizing sequences as 

short as possible. However, finding a shortest 

synchronizing sequence is known to be a NP-hard 

problem (Eppstein, 1990). Therefore, heuristic 

algorithms, known as synchronizing heuristics, are 

used to find short synchronizing sequences. Among 

such heuristics are Greedy (Eppstein, 1990), Cycle 

(Trahtman, 2004), SynchroP (Roman, 2009), and 

SynchroPL (Kudlacik et al., 2012). In this paper, we 

consider using the structure of an automaton while 

applying a synchronizing heuristic to speed up the 

execution of these heuristics. Namely, we consider 

the connectedness of automata. 

An automaton A is called strongly connected if 

every state is reachable from every other state by 

using at least one sequence of inputs. Otherwise, A is 

called non-strongly connected and in this case A can 

be represented as a set of strongly connected 

automata.  These automata are called as strongly 

connected components (SCCs) of A.  

In this paper, given a non-strongly connected 

automaton A, we suggest a method to build a 

synchronizing sequence for A by using the 

synchronizing sequences of the SCCs of A. We 

considered the application of Greedy and SynchroP 

algorithms directly to an automaton, and to SCCs of 

the automaton. We observe that, the suggested 

methods improve the running time greatly, without 
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extending the length of the synchronizing sequences 

much.  

The remaining part of the paper is organized as 

follows. In Section 2, we introduce the notation and 

briefly give the required background. In Section 3, 

we introduce our approach. In Section 4, we talk 

about the synchronizing heuristics that we have 

worked on and their integration to our approach. In 

Section 5, we compare the proposed approach with 

the traditional one that performs synchronization 

heuristics on full automata. In Section 6, we 

conclude the paper and provide some future 

directions for our work. 

2 BACKGROUND AND 

NOTATION 

A (deterministic) automaton is defined by a tuple A 

= (S, Σ, D, δ) where S is a finite set of n states, Σ is a 

finite alphabet consisting of p input letters (or 

simply letters). D ⊆ S × Σ is the called the domain 

and δ: D → S is a transition function. When D = S × 

Σ, then A is called complete, otherwise A is called 

partial. Below, we consider only complete automata, 

unless otherwise stated. 

An element of the set Σ* is called a sequence. For 

a sequence w ∈ Σ*, |w| denotes the length of w, and ε 

is the empty sequence of length 0. For a complete 

automaton, we extend the transition function δ to a 

set of states and to a sequence in the usual way. For 

a state s  S, we have δ(s, ε) = s, and for a sequence 

w ∈ Σ* and a letter x ∈ Σ, we have δ(s, xw) = δ(δ(s, 

x), w). For a set of states C ⊆ S, we have δ(C, w) = 

{δ(s, w)|s ∈ C}. 

For a set of states C ⊆ S, let C2 = {{s, s'}| s, 

s'∈C} be the set of all multisets with cardinality 2 

with elements from C, i.e. C2 is the set of all subsets 

of C with cardinality 2, where repetition is allowed. 

An element {s, s'} ∈ C2 is called a pair. 

Furthermore, it is called a singleton pair (or an s–

pair, or simply a singleton) if s = s', otherwise it is 

called a different pair (or a d–pair). The set of s–

pairs and d–pairs in C2 are denoted by C2
s and C2

d 

respectively. A sequence w is said to be a merging 

sequence for a pair {s, s'} ∈ S2 if δ({s,s'},w) is 

singleton. Note that, for an s-pair {s,s}, every 

sequence (including ε) is a merging sequence. A 

sequence w is called an S'-synchronizing sequence 

for an automaton A = (S, Σ, S×Σ, δ) and a subset of 

states S' ⊆ S if δ(S', w) is singleton. When S' = S, w 

is simply called a synchronizing sequence for A. An 

automaton A is called S'-synchronizing if there exists 

an S'-synchronizing sequence for A.  An automaton 

A is simply called synchronizing if there exists a 

synchronizing sequence for A. 

In this paper, we only consider synchronizing 

automata. As shown by Eppstein (1990), deciding if 

an automaton is synchronizing can be performed in 

time O(pn2) by checking if there exists a merging 

sequence for {s,s'}, for all {s,s'} ∈ S2. 

We write δ−1(s, x) to denote the set of states with 

a transition to state s with letter x, i.e. δ−1(s, x) = {s' 

∈ S | δ(s',x) = s}. We also define δ−1({s,s'}, x) = 

{{p,p'} | p ∈ δ−1(s, x) ∧ p' ∈ δ−1(s', x)}. 

Given a partial automaton, we consider the 

completion of this automaton by introducing a new 

state, and adding the missing transitions of states to 

this new state. Formally for a partial automaton 

A=(S, Σ, D, δ) such that D  S×Σ, we define the 

completion of A as A' = (S ∪{*}, Σ,  S×Σ, δ'), where 

(i) the star state * is a new state which does not exist 

in S, (ii) ∀ (s, x) ∈ D, δ'(s, x) = δ(s, x), (iii) ∀ (s, x) ∉ 

D, δ'(s, x) = *,  (iv) ∀ x ∈ Σ, δ'(*, x) = *. 

An automaton A = (S, Σ, S×Σ, δ) is said to be 

strongly connected if for every pair of states s, s' ∈ 

S, there exists a sequence w ∈ Σ* such that δ(s, w)= 

s'. Given an automaton A= (S, Σ, S×Σ, δ) and another 

automaton B = (S', Σ, D, δ)́, B is said to be a sub-

automaton of A if (i) S' ⊆ S, (ii) D = {(s,x)∈S' ×Σ | 

Ǝs' ∈ S' s.t. δ(s,x)= s' }, (iii)  ∀(s,x) ∈ D, δ(́s,x) = 

δ(s,x). Intuitively, the states of B consist of a subset 

of states of A. Every transition in A from a state in B 

to a state in B is preserved, and all the other 

transitions are deleted.  

A strongly connected component (SCC) of a 

given automaton A = (S, Σ, S×Σ, δ), is a sub-

automaton B = (S,́ Σ, D, δ)́ of A such that, B is 

strongly connected, and there does not exist another 

strongly connected sub-automaton C of A, where B 

is a sub-automaton of C. When one considers an 

automaton A as a graph (by representing the states of 

A as the nodes, and the transition between the states 

as the edges of the graph), B simply corresponds to a 

strongly connected component of the graph of A. 

For a set of SCCs {A1, A2, …, Ak}, where Ai= (Si, 

Σ, Di, δi), 1 ≤ i ≤ k, we have Si ∩ Sj = ∅ when i  j, 

and S1 ∪ S2 ∪ … ∪ Sk = S. Please note here that k = 1 

if and only if A is strongly connected. 

An SCC Ai= (Si, Σ, Di, δi) is called a sink 

component if Di = Si×Σ. In other words, for a sink 

component, all the transitions of the states in Si in A 

are preserved in Ai. Therefore, if Ai= (Si, Σ, Di, δi) is 

not a sink component, then some transitions of some 

states will be missing. For this reason, Ai is a 

complete automaton if and only if Ai is a sink 

component. 
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Figure 1: An automaton with 10 States, 2 inputs and 3 

SCC's. 

 

Figure 2: SCC1(A1) with additional star state. 

3 SYNCHRONIZING 

SEQUENCES FOR 

NON-STRONGLY  

CONNECTED  

AUTOMATA 

Consider an automaton A= (S, Σ, S×Σ, δ) and its 

SCC decomposition {A1, A2, …, Ak}. 

Lemma 1: A is synchronizing iff there exists only 

one sink component in Ai in {A1, A2, …, Ak} and Ai 

is synchronizing. 

Proof: If there are two distinct sink components Ai 

and Aj of A,  a state si in Ai and a state sj in Aj can 

never be merged. If Ai is the only sink component of 

A and Ai is not synchronizing, A is not synchronizing 

as well. 

 Let A = (S, Σ, S×Σ, δ) be an automaton and {A1, 

A2, …, Ak} be the SCCs of A.  We consider the SCCs 

of A (topologically) sorted as 〈 A1, A2, … , Ak〉  such 

that for any 1 ≤ i < j ≤ k, there do not exist si ∈ Si, sj 

∈ Sj, w ∈ Σ* where δ(sj, w) = si. Note that in this case 

Ak must be a sink component and we have the 

following result. 

Lemma 2: Let 〈 A1, A2, …, Ak〉  be a topologically 

sorted SCCs of an automaton A=(S, Σ, S×Σ, δ), 

where Ai = (Si, Σ, Di, δi), 1  i  k. For any sequence 

w ∈ Σ* and for a state s  Si, 1  i  k, we have δ(s, 

w)  (Si  Si+1  …  Sk).  

Proof: Since the components are topologically 

sorted, states in Ai can only move to a state in Ai, or 

to a state in Ai+1, Ai+2, …, Ak. 

Lemma 3: Let Ai be an SCC of an automaton. If Ai 

is a partial automaton, then the completion A'i of Ai 

is a synchronizing automaton. 

Proof: Since Ai is an SCC, all states can be reached 

from other states in Ai. Also, we know that star state 

is a state that can reach to only itself. When we 

complete Ai with a star state, every state can reach 

the star state and star state can't reach to other state 

then itself so that means other states should unite in 

star state eventually and makes A'i a synchronizing 

automaton.   

3.1 An Initial Approach to Use SCCs  

We now explain an initial idea to form a 

synchronizing sequence for an automaton A by using 

synchronizing sequences of the SCCs of A. Let A= 

(S, Σ, S×Σ, δ) be an automaton and 〈 A1, A2, …, Ak〉  

be the topologically sorted SCCs of A, where Ai= (Si, 

Σ, Di, δi). For 1 ≤ i < k, let βi be a synchronizing 

sequence for the completion A'i of Ai = (Si, Σ, Di, δi).  

Note that based on Lemma 2 one can always find a 

synchronizing sequence for Ai, 1  i < k. Let βk be a 

synchronizing sequence for Ak. Lemma 1 suggests 

that Ak always has a synchronizing sequence if A is 

synchronizing.  

We first claim that the sequence β1β2…βk is a 

synchronizing sequence for A. In order to see this, it 

is sufficient to observe the following. 

Lemma 4: For any 0  i < k we have  

δ(S, β1β2…βi)  (Si+1  S i+2 …  Sk) 

Proof: By induction, where the base case i = 0 holds 

trivially. Assume that the claim holds for i-1, i.e. 

δ(S, β1β2…βi-1)  (Si  S i+1  …  Sk). For a state s 

 δ(S, β1β2…βi-1) such that s  (Si+1  S i+2 …  

Sk), then δ(s,βi) will also belong to (Si+1  S i+2 … 

 Sk) based on Lemma 2. Hence it remains to show 

that for any state s  δ(S, β1β2…βi-1) such that s  Si,  
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δ(s,βi) is not in Si. The sequence βi is a synchronizing 

sequence for the completion A'i of SCC Ai. Since the 

star state of A'i is the only state in which the states of 

A'i can be synched, we must have δ'i(Si, βi) = {*}. 

Note that the star state in A'i represents the states S\Si 

for Ai. Hence the sequence βi is in fact a sequence 

that pushes all the states in Si to the states in the 

other components, i.e. δ(Si, βi) = . This implies that 

for a state s  δ(S, β1β2…βi-1) such that s  Si,  δ(s,βi)  
 

is not in Si. Finally, we can state the following result. 

Theorem 5: Let 〈 A1, A2, …, Ak〉  be a topologically 

sorted SCCs of an automaton A = (S, Σ, D, δ), where 

Ai = (Si, Σ, Di, δi), 1  i  k. Let βi be a synchronizing 

sequence for the completion A'i of Ai, 1  i < k , and 

let βk be a synchronizing sequence for Ak.  

The sequence β1β2…βk is a synchronizing sequence 

for A. 

Proof: δ(S, β1β2…βk-1)  Sk using Lemma 4. Since 

βk is a synchronizing sequence for Ak, δ(Sk, βk) is  

singleton. Combining these two results, we have 

δ(δ(S, β1β2…βk-1), βk) = δ(S, β1β2…βk-1βk) as 

singleton as well. 

3.2 An Improvement on the Initial 
Approach  

Theorem 5 shows an easy way for constructing a 

synchronizing sequence for an automaton A based 

on its SCCs. As one may notice, though, the length 

of the sequence to be constructed can be reduced 

based on the following observation. Consider a 

sequence βi, for some 1<i k, used in the sequence 

β1β2…βk-1βk. The sequence βi is constructed to push 

all the states in Ai out of the component Ai. 

However, the sequence β1β2…βi-1 applied before βi 

can already push some states in Ai out of Ai. On the 

other hand, the sequence β1β2…βi-1 can also move 

some of the states in the components A1, A2, …, Ai-1 

to a state in Ai. Therefore, a more careful approach 

can be taken considering which states in Ai must 

really be moved out of Ai when constructing the 

sequence to handle the component Ai.  

To take this into account, we define the 

following sequences recursively. For the bases cases 

we define α0 = ε and σ0 = ε. For 1 ≤ i < k, let S'i = Si 

∩ δ(S, σi-1) and let αi  be a S'i-synchronizing 

sequence for A'i. For 1 ≤ i < k, let σi = σi-1 αi. 

Theorem 6: Let S'k = Sk ∩ δ(S, σk-1) and αk  be a S'k-

synchronizing sequence for Ak. Then σk-1αk is a 

synchronizing sequence for A. 

Proof: σk-1 is a synchronizing sequence for A1 ∪ A2 ∪ 

A3 ∪ ... ∪ Ak-1 and we know that they are 

synchronized in the star state of Ak-1 which  

represents the states that are outside of Ak-1. These 

states belong to Ak because Ak is ahead of Ak-1 in 

topological sort and it is the only SCC left so we can 

say that δ(S, σk-1) ⊆  Sk. In other words, σk-1 leaves us 

with active states S'k ⊆ Sk. Since αk synchronizes all 

the states of S'k, σk-1αk is a synchronizing sequence 

for A. 

Based on Theorem 6, the algorithm given in 

Figure 3 can be used to construct a synchronizing 

sequence for an automaton A. 

Input:  An automaton A = (S,Σ,D,δ) 

Output: A synchronizing sequence for A  

 

C = S; // All states are 

       // active initially 

Г = ε ; // Г: synch. sequence to  

  // be constructed, initially 

  // empty 

 

<A1, A2,…, Ak> = find/sort SCCs of A  

 

foreach i in {1, 2, …, k} do 

 // Consider Ai = (Si,Σ,Di,δi) 

 S’i = C ∩ Si;  

  // find active states 

  // of Ai 

 Гi = Heuristic(A’i,S’i); 

  // find S’i sync. sequence  

  // of completion A’i of Ai 

 Г = Г Гi; 

  // append Гi to sync. seq. 

C = δ(C,Гi); // Update active  

 // states 

return Г; 

Figure 3: SCC algorithm to compute synchronizing 

sequences. 

Note that in the algorithm given in Figure 3, any 

synchronizing heuristic can be used to compute Гi. 

In the next section, we explain two different 

algorithms from the literature that we used in our 

experiments.  

4 SYNCHRONIZING 

HEURISTICS 

As noted in Section 1, there are various 

synchronizing heuristics. In this paper, we 

considered and experimented with two of these 

heuristics, Greedy and SynchroP. Both Greedy and 

SynchroP heuristics have two phases. Phase 1 is 
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common in these heuristics and given as Algorithm 

1 below. In Phase 1, a shortest merging sequence 

τ(i,j) for each {i, j} ∈ S2 is computed by using a 

breadth first search. Note that τ(i,j) is not unique. 

Input:  An automaton A = (S,Σ,D,δ) 

Output: A merging sequence for all  

     {i,j} ∈ S2 

 

let Q be an initially empty queue  

  // Q: BFS frontier 

 

P = Ø  // P: keeps the set of nodes  

      // in the BFS forest  

   // constructed so far 

 

foreach {i,j} ∈ S2s do  
 push {i,j} onto Q 

 insert {i,j} into P 

 set τ(i,j) = ɛ; 

 

while P ≠ S2 do  

 {i,j}= pop next item from Q; 

  foreach x ∈ Σ do 

  foreach {k,l} ∈ δ-1({i,j},x) do 
    if {k,l} ∉ P then 
    τ(k,l)= x τ(i,j); 

    push {k,l} onto Q; 

    P = P ∪ {{k,l}}; 

Figure 4: Phase 1 of Greedy and SynchroP. 

 Algorithm 1 performs a breadth first search 

(BFS), and therefore constructs a BFS forest, rooted 

at s–pairs {i, i} ∈ S2
s, where these s–pairs are the 

nodes at level 0 of the forest. A d–pair {i, j} appears 

at level k of the BFS forest if |τ{i,j}| = k. 

Algorithm 1 requires Ω(n2) time since each {i, j} 

∈ S2 is pushed to Q exactly once.   

4.1 The Greedy Heuristic 

Greedy’s Phase 2 (given as Algorithm 2 below) 

constructs a synchronizing sequence by using the 

information from Phase 1. Its main loop can iterate 

at most n − 1 times, since in each iteration |C| is 

reduced by at least one. The min operation at line 4 

requires O(n2) time and line 5 takes constant time. 

Line 6 can normally be handled in O(n3) time, but 

using the information precomputed by the 

intermediate stage between Phase 1 and Phase 2, line 

6 can be handled in O(n) time. Therefore, Phase 2 of 

Greedy requires O(n3) time. Note that Algorithm 2 

finds an S-synchronizing sequence for a given 

complete automaton A = (S, Σ, S×Σ, δ). However, 

for our purposes we need to find an S'-synchronizing 

sequence for a given subset S' ⊆ S of states.  

Input:  An automaton A = (S,Σ,D,δ),  

   τ(i,j) for all {i,j} ∈ S2s, 
   S’ to be synchronized 

Output: An S’-synch. sequence Г for A 

 

C = S’ // C: current state set 

Г = ε  // Г: synch. sequence to  

  // be constructed, initially 

  // empty 

 
while |C| > 1 do  // still not a  

        // singleton 

 {i,j} = arg min<k,l>∈C2d |τ(k,l)|; 
  // decide the d-pair to be  

  // merged 

 Г = Г τ(i,j); // append τ(i,j) 

      // to the 

      // synchronizing  

      // sequence  

 C = δ(C,τ(i,j)); //update current 

        // state set  

         // with τ(i,j) 

Figure 5: Phase 2 of Greedy. 

4.2 The SynchroP Heuristic 

Similar to the second phase of Greedy, the second 

phase of SynchroP also constructs a synchronizing 

sequence iteratively. The algorithms keep track of 

the current set C of states, which is initially the 

entire set of states S. In each iteration, the cardinality 

of C is reduced at least by one. This is accomplished 

by picking a d-pair {i, j} ∈ C2
d in each iteration, and 

considering δ(C, τ(i,j)) as the current set in the next 

iteration. Since τ(i,j) is a merging sequence for the 

states i and j, the cardinality of δ(C,τ(i,j)) is 

guaranteed to be smaller than that of C. 

For a set of states C ⊆ S, let the cost φ(C) of C be 

defined as  

   𝜑(𝐶) = ∑ |𝜏(𝑖, 𝑗)|
i,j ∈ C

 

φ(C) is a heuristic indication of how hard it is to 

bring the set C to a singleton. The intuition here is 

that, the larger the cost φ(C) is, the longer a 

synchronizing sequence would be required to bring 

C to a singleton set. 

During the iterations of SynchroP, the selection 

of {i, j} ∈ C2d that will be used is performed by 

considering the cost of the set δ(C,τ(i,j)). Based on 

this cost function, the second phase of SynchroP is 

given in Algorithm 2. Like in Greedy with SCC 

Method, we also use a slightly modified version of 

the second phase of SynchroP algorithm to find S'-

synchronizing sequence.  
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Input:  An atomaton A = (S,Σ,D,δ),  

   τ(i,j) for all {i,j} ∈ S2s, 
   S’ to be synchronized 

Output: An S’-synch. sequence Г for A 

 

C = S’ // C: current state set 

Г = ε  // Г: synchronizing sequence to  

  // be constructed, initially 

  // empty 

 
while |C| > 1 do  // still not a  

        // singleton 

 minCost = ∞ 

 foreach d-pair {i,j} ∈ C2d do 
 thisPairCost = ɸ(δ(C,τ(i,j))) 
 if thisPairCost < minCost then 

  minCost = thisPairCost 

  τ’ = τ(i,j) 

 
 Г = Г τ’; // append τ’ to the 

     // synch. sequence  

 C = δ(C,τ’); // update current 

        // state set  

        // with τ’ 

Figure 6: Phase 2 of SynchroP. 

5 EXPERIMENTAL RESULTS 

The experiments were performed on a machine with 

Intel Xeon E5-1650 CPU and 16GB of memory, 

using Ubuntu 16.04.2. The code was written in 

C/C++ and compiled using gcc with -o3 option 

enabled. 

 In order to evaluate the performance of the 

method suggested in this paper, we generated 

random automata with n  {256, 512, 1024} states, 

p  {2, 4, 8} inputs, k  {2, 4, 8} SCCs in the 

following way. To construct a random automaton A 

with a given number of states n, number of inputs p, 

and number of SSCs k, we first construct k different 

automata A1, A2, …, Ak, where each Ai is strongly 

connected, has n/k states and p inputs. To construct 

Ai, we consider each state s in Ai and each input x, 

and assign (s,x) to be one of the states in Ai 

randomly. If Ai is not strongly connected after the 

initial random assignment, we reassign (s,x) for 

some of the states and inputs randomly again, and 

keep repeating this process until Ai becomes strongly 

connected. Once we get Ai strongly connected, we 

identify those state s and input x pairs in Ai (except 

for the last SCC Ak) such that Ai stays strongly 

connected even without using the transition of the 

state s and with the input x. For these state/input 

pairs in Ai, we again assign (s,x) to be one of the 

states in an automaton  Ai+1, Ai+2, …, Ak. For each n-

p-k combination we created 50 random automata. 

The results given later in this section are the average 

of these 50 automata. 

 For an automaton A= (S, Σ, S×Σ, δ) with n states, 

p inputs and k SCCs 〈A1, A2, …, Ak〉 where Ai = (Si, 

Σ, Di, δi), 1  i  k, we find a synchronizing (i.e. S-

synchronizing) sequence for A by using Greedy and 

SynchroP algorithms given in Figure 5 and Figure 6, 

respectively. We also find a synchronizing sequence 

for A by using the SCC Algorithm given in Figure 3, 

where for each Ai = (Si, Σ, Di, δi) we use Greedy and 

SynchroP algorithms to find S'i-synchronizing 

sequence as explained in Section 3. 

 Table 1 gives the running time and the 

synchronizing sequence length for the direct 

application of Greedy and SynchroP compared to the 

SCC method suggested in this paper. 

 As expected, the running time is improved in all 

the cases. The speed-up values (i.e. the time required 

for the direct application of Greedy/SynchroP 

divided by the time required for the application of 

SCC method using Greedy/SynchroP) do not change 

much based on the number of inputs of the 

automata. However, the number of states and the 

number of SCCs of the automata are very important 

factors for the speed-up values. Figure 7 and Figure 

8 display the speed-up values obtained in a more 

explicit way. For the time performance, the SCC 

method becomes more effective as the size of the 

automaton and the number of SCCs increase.  

 For the length of the synchronizing sequences 

found, the SCC method finds even shorter sequences 

(5% shorter on the average) compared to the direct 

application of Greedy. Although the direct 

application of SynchroP yields shorter synchronizing 

sequences in general, the increase in the length is not 

large (3% longer on the average). 

6 CONCLUSIONS 

The SCC-based method suggested in this paper is a 

method that can be used with any synchronizing 

heuristic to make it run faster on non-strongly 

connected automata. In case of Greedy, it can also 

find shorter reset sequences in shorter time 

compared to the application of Greedy directly. 

SynchroP is a method which typically to finds 

shorter reset sequences compared to Greedy but it 

takes more time. With our method, we can use 

SynchroP to find shorter reset sequences and also 

SCC method will not take more time than the direct 

application of Greedy. 
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Table 1: Experimental results for Greedy and SynchroP. 

Number of 
Greedy with 

 SCC Method 
Greedy 

SynchroP with SCC 

Method 
SynchroP 

States SCCs Inputs Time(ms) Length Time(ms) Length Time(ms) Length Time(ms) Length 

256 

2 

2 3,12 35,84 5,71 38,08 60,39 32,18 388,23 31,92 

4 4,06 20,66 7,66 22,22 46,88 17,94 373,22 17,9 

8 6,72 29,64 12,72 29,94 53,68 24,54 495,94 23,74 

4 

2 2,02 31,96 6,617 36,47 5,26 30,6 380,11 29,38 

4 2,38 22,26 8,66 23,72 5,78 19,2 405,3 18,58 

8 3,1 23,9 11,82 23,76 7,92 19,86 487,72 19 

8 

2 1,21 30,15 6,71 36,40 1,44 28,52 405,35 27,71 

4 1,62 19,4 10,08 21,64 1,76 17,9 422,72 16,6 

8 2,7 19,82 17,58 20,5 2,42 17,48 477,72 15,7 

512 

2 

2 13,8 44,88 23,52 46,18 472,28 38,7 4632,88 39,98 

4 19,96 30,5 35,24 31,1 405,64 25,58 4968,16 25,56 

8 27,88 45,36 48,66 46,2 485,92 37,04 6796,58 36,96 

4 

2 6,69 40,35 23,54 42,88 64,38 35,88 4704,10 34,67 

4 8,46 23,7 33,08 24,74 50,36 20,3 4893,22 19,92 

8 14,48 34,42 55,7 34,18 67 27,9 6023,2 26,98 

8 

2 3,79 35,542 24,48 41,83 7,98 33,94 4817,31 32,38 

4 4,6 23,7 35 25,68 8,04 20,92 4920,16 20,42 

8 7,56 25,8 59,34 26,58 11,16 22,02 5742,86 20,82 

1024 

2 

2 48,88 47,22 73,86 46,78 6638,76 41,14 72047,02 41,32 

4 65,16 32,36 101,26 32,8 5045,8 26,62 72164,72 26,42 

8 96,94 62,7 141,84 62,46 6106,24 50,38 101063,7 49,94 

4 

2 26,08 46,74 81,56 49,18 510,16 41,92 69239,92 41,74 

4 31,32 32,3 109,04 33,94 405,28 27,3 71939,54 26,86 

8 46,96 46,08 160,54 47,2 467,24 38,62 85730 36,78 

8 

2 13,94 43,33 86,22 48,51 73,08 39,65 68696,92 39,31 

4 15,88 24,42 115,74 26,72 62,94 22,08 72070,06 21,36 

8 23,64 34,28 172,18 35,12 71,38 29,04 81185,02 28 

 

The time improvements we obtain by using the 

SCC method are expected. Greedy requires O(n3) 

and SynchroP requires O(n5) time where n is the 

number of states. Therefore, if one can divide the 

automaton into pieces (components) in one way or 

the other, and construct a synchronizing sequence 

from the synchronizing sequences obtained for these 

pieces, this approach would result in considerable 

time savings. In this paper, we suggest that these 

“pieces” can be the strongly  connected  components  
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Figure 7: SynchroP/SCC Method Time Ratio (Speedup) 

Results of Automata’s with 256,512,1024 States and 2,4,8 

SCC’s. 

 

Figure 8: Greedy/SCC Method Time Ratio (Speedup) 

Results of Automata’s with 256,512,1024 States and 2,4,8 

SCC’s. 

of the automaton. Because of the reasons above, 

SCC method can make every heuristic faster as 

shown in this paper. If there are k strongly connected 

components with equal sizes, complexity of Greedy 

and SynchroP becomes O(𝑘(
𝑛

𝑘
)3) O(𝑘 (

𝑛

𝑘
)5), 

respectively. Obviously, these are much faster 

running times compared to original heuristics. In 

practice, the running times differ as expected.  

For future work, one direction is to improve our 

synchronizing sequence lengths for the SCC method 

when used with SynchroP. The direct application of 

SynchroP algorithm performs a global analysis 

compared to the local analysis performed when each 

strongly connected component is analyzed 

separately by our SCC method. Another direction of 

research is to use the SCC method with other 

synchronizing heuristics and to extend the 

experiments to study the effects of aspects like 

states, inputs, number of SCCs, and also the relative 

size of SCCs, a factor which we did not take into 

account in the experiments performed in this paper. 

ACKNOWLEDGMENTS 

This work was supported by The Scientific and 

Technological Research Council of Turkey 

(TUBITAK) [grant number 114E569]. 

REFERENCES 

Chow, T.S., 1978. Testing software design modelled by 

finite state machines. IEEE Transactions on Software 

Engineering, 4:178-187. 

Eppstein, D., 1990. Reset sequences for monotonic 

automata. SIAM J. Comput. 19 (3), 500 - 510. 

Hierons, R.M., Ural, H. 2006. Optimizing the length of 

checking sequences. IEEE Transactions on 

Computers. 55(5): 618-629. 

Jourdan, G.V., Ural, H., Yenigün, H., 2015. Reduced 

checking sequences using unreliable reset, Information 

Processing Letters, 115(5), pp. 532-535.  

Kudlacik, R., Roman, A., Wagner, H., 2012. Effective 

synchronizing algorithms. Expert Systems with 

Applications 39 (14), 11746-11757. 

Lee, D., Yannakakis, M., 1996. Principles and methods of 

testing finite state machines-a survey. Proceedings of 

The IEEE, 84(8), 1090-1123. 

Trahtman, A. N., 2004. Some results of implemented 

algorithms of synchronization. In: 10th Journees 

Montoises d'Inform. 

Volkov, M.V., 2008. Synchronizing automata and the 

Cerny conjecture. In Proceedings of the 3rd 

International Conference on Language and Automata 

Theory and Applications, LATA’ 08, 11–27, 2008. 

Using Structure of Automata for Faster Synchronizing Heuristics

551


