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Abstract: In this paper, we present a new lock-free tree data structurefor parallel Monte Carlo tree search (MCTS) which
removes synchronization overhead and guarantees the consistency of computation. It is based on the use of
atomic operations and the associated memory ordering guarantees. The proposed parallel algorithm scales
very well to higher numbers of cores when compared to the existing methods.

1 INTRODUCTION

In the last decade, there has been much interest in the
MCTS algorithm. The start was by a new, adaptive,
randomized optimization algorithm (Coulom, 2006;
Kocsis and Szepesvári, 2006). In fields as diverse
as Artificial Intelligence, Combinatorial Optimiza-
tion, and High Energy Physics, research has shown
that MCTS can find approximate answers without
domain-dependent heuristics (Kocsis and Szepesvári,
2006; Kuipers et al., 2013). The strength of the
MCTS algorithm is that it provides answers for any
fixed computational budget with a random amount of
error (Goodfellow et al., 2016). Typically, the amount
of error can be diminished by expanding the com-
putational budget for more running time. In the last
ten years, much effort has been put into the develop-
ment of parallel algorithms for MCTS. The domain
of research contains a broad spectrum of parallel sys-
tems; ranging from small shared-memory multi-core
machines to large distributed-memory clusters. The
goal is to reduce the running time.

One of the approaches for parallelizing MCTS
for shared-memory systems is tree parallelization
(Chaslot et al., 2008a). The method is called so be-
cause a search tree is shared among multiple parallel
threads. Each iteration of the MCTS has four opera-
tions (SELECT, EXPAND, PLAYOUT , and BACKUP).
They are executed on the shared tree simultaneously
(Chaslot et al., 2008b). The MCTS algorithm uses
the tree for storing the states of the domain and guid-
ing the search process. The basic premise of the tree
in MCTS is relatively straight forward: (a) nodes are
added to the tree in the same order as they were ex-
panded and (b) nodes are updated in the tree in the
same order as they were selected. Therefore the fol-

lowing holds, if two parallel threads are performing
the task of adding (EXPAND) or updating (BACKUP)
the same node, there are potentiallyrace conditions.
Thus, one of the main challenges in tree paralleliza-
tion is the prevention ofrace conditions.

In a parallel program a race condition shows a
non-deterministic behavior that is generally consid-
ered to be a programming error (Williams, 2012).
This behavior occurs when parallel threads perform
operations on the same memory location without
propersynchronizationand one of the memory op-
erations is a write. A program with a race condition
may operate correctly sometimes and fail other times.
Therefore, proper synchronization helps to coordinate
threads to obtain the desired runtime order and avoid
a race condition.

There are two lock-based methods to create syn-
chronization in tree parallelization: (1) a coarse-
grained lock (Chaslot et al., 2008a), (2) a fine-grained
lock (Chaslot et al., 2008a).

Both methods are straight forward to design and
to implement. However, locks are notoriously bad for
parallel performance, because other threads have to
wait until the lock is released. This is calledsyn-
chronization overhead. It is shown that the fine-
grained lock has less synchronization overhead than
the coarse-grained lock (Chaslot et al., 2008a). Yet,
even fine-grained locks are often a bottleneck when
many threads try to acquire the same lock. Hence, a
lock-freetree data structure for parallelized MCTS is
desirable and has the potential for maximal concur-
rency. A tree data structure is lock-free when more
than one thread must be able to access its nodes con-
currently. Here, the problem is that the development
of a lock-free tree for parallelized MCTS is shown to
be non-trivial. The difficulty of designing an adequate
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data structure stimulated the researchers in the com-
munity to come up with a spectrum of ideas (Enzen-
berger and Müller, 2010; Baudiš and Gailly, 2011).
As a case in point, Enzenberger et al. compromised
over the correctness of computation. They accepted
faulty results to have a lock-free search tree (Enzen-
berger and Müller, 2010). In Below, we propose
a new lock-free tree data structure without compro-
mises together with the corresponding algorithm that
uses the tree for parallel MCTS.

The remainder of this paper is structured as fol-
lows. Section 2 briefly provides the required back-
ground information. Section 3 discusses related work.
Section 4 presents the proposed lock-free algorithm.
Section 5 shows implementation details. Section 6
gives the experimental setup, and Section 7 provides
the experimental results. Finally, a conclusion is
given in Section 8.

2 BACKGROUND

Below we discuss MCTS in Section 2.1, the UCT al-
gorithm in Section 2.2, and tree parallelization in Sec-
tion 2.3.

2.1 The MCTS Algorithm

The MCTS algorithm iteratively repeats four steps
(also called operations) to construct a search tree un-
til a predefined computational budget (i.e., time or it-
eration constraint) is reached (Chaslot et al., 2008b;
Coulom, 2006). Algorithm 1 shows the general
MCTS algorithm.

At the beginning, the search tree has only a root
(v0) which represents the initial state (s0) in a domain.

Each node in the search tree resembles a state of
the domain. The edges directed to the child nodes
represent actions leading to succeeding states. Figure
1 illustrates one iteration of the MCTS algorithm on
a search tree that already has nine nodes. The non-
terminal and internal nodes are represented by circles.

Algorithm 1: The general MCTS algorithm.

1 Function MCTS(s0)

2 v0 := creat root node with states0;

3 while within search budgetdo
4 < vl ,sl > := SELECT(v0 ,s0);

5 < vl ,sl > := EXPAND(vl ,sl );

6 ∆ := PLAYOUT(vl ,sl );

7 BACKUP(vl ,∆);

8 end
9 return actiona for the best child ofv0

Squares show the terminal nodes.

1. SELECT: A path of nodes inside the search tree is
selected from the root node until a non-terminal
leaf with unvisited children is reached (v6). Each
of the nodes inside the path is selected based on a
predefinedtree selection policy(see Figure 1a).

2. EXPAND: One of the children (v9) of the selected
non-terminal leaf (v6) is generated randomly and
added to the tree and also to the selected path (see
Figure 1b).

3. PLAYOUT : From the given state of the newly
added node, a sequence of randomly simulated
actions is performed until a terminal state in the
domain is reached. The terminal state is evaluated
using a utility function to produce a reward value
∆ (see Figure 1c).

4. BACKUP: For each node in the selected path, the
numberN(v) of times it has been visited is incre-
mented by 1 and its total reward valueQ(v) is up-
dated according to∆ (Browne et al., 2012). These
values are required by the tree selection policy
(see Figure 1d).

As soon as the computational budget is exhausted, the
best child of the root node is returned (e.g., the one
with the maximum number of visits).

2.2 The UCT Algorithm

This section explains the most common algorithm
in the MCTS family, the Upper Confidence Bounds
for Trees (UCT) algorithm. The UCT algorithm ad-
dresses the exploitation-exploration dilemma in the
selection step of the MCTS algorithm using the UCB1
policy (Kocsis and Szepesvári, 2006). A child nodej
is selected to maximize:

UCT( j) = X j +2Cp

√
2ln(N(v))

N(v j)
(1)

Where X j =
Q(vj )

N(vj )
is an approximation of the

game-theoretic value of nodej. Q(v j) is the total re-
ward of all playouts that passed through nodej, N(v j )
is the number of times nodej has been visited,N(v)
is the number of times the parent of nodej has been
visited, andCp ≥ 0 is a constant. The left-hand term is
for exploitation and the right-hand term is for explo-
ration (Kocsis and Szepesvári, 2006). The decrease or
increase in the amount of exploration can be adjusted
by Cp in the exploration term. It has profound effect
on the behavior of the algorithm (see Section 7).
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Figure 1: One iteration of MCTS.

2.3 Tree Parallelization

There are three parallelization methods for MCTS
(i.e.,root parallelization, leaf parallelization, andtree
parallelization) that belong to two main categories:
(A) parallelization with an ensemble of trees, and (B)
parallelization with a single shared tree.

The root parallelization method belongs to cate-
gory (A). It creates an ensemble of search trees (i.e.,
one for each thread). The trees are independent of
each other. When the search is over, they are merged,
and the action of the best child of the root is selected.

The leaf parallelization and tree parallelization
methods belong to category (B). In the leaf par-
allelization, the parallel threads perform multiple
PLAYOUT operations from a non-terminal leaf node
of the shared tree. These PLAYOUT operations are
independent of each other, and therefore there is no
race condition. In tree parallelization, parallel threads
are potentially able to perform different MCTS opera-
tions on a same node of the shared tree (Chaslot et al.,
2008a). These shared accesses are the source of the
potentialrace conditions.

2.4 The Race Conditions

A race condition occurs when concurrent threads per-
form operations on the same memory location with-
out proper synchronization, and one of the memory
operations is a write (McCool et al., 2012). Consider
the example search tree in Figure 2. Three parallel
threads (1, 2, and 3 fromv0 to v3) attempt to perform
MCTS operations on the shared search tree. There are
three race condition scenarios.

• Shared Expansion (SE): Figure 2b shows two
threads (1 and 2) concurrently performing EX-
PAND(v6). In this SE scenario, synchronization
is required. Obviously, a race condition exists if
two parallel threads intend to add nodev9 to v6 si-
multaneously. In such an SE race, the child node
should be created and added to its parent only
once.

• Shared Backup (SB): Figure 2c shows two threads
(1 and 3) concurrently performing BACKUP(v3).

In the SB scenario, synchronization is required
because there are two data race conditions when
parallel threads update the value ofQ(v3) and
N(v3) simultaneously. There are two dangers: (a)
the value of eitherQ(v3) or N(v3) could be cor-
rupted due to concurrently writing them, and (b)
the variableQ(v3) andN(v3) could be in an incon-
sistent state when the writing of their values does
not happen together at the same time (i.e., the state
of one variable is ahead of the other one).

• Shared Backup and Selection (SBS): Figure 2d
shows thread 2 performing BACKUP(v3) and
thread 3 performing SELECT(v3). In the SBS sce-
nario, synchronization is required. Otherwise, a
race condition may occur between (i) thread 3
reading the value ofQ(v3), and (ii) before thread
3 can read the value ofN(v3), thread 2 updates
the value ofQ(v3) andN(v3). Thus what happens
is that when thread 3 reads the value ofN(v3),
the variablesQ(v3) andN(v3) are not in the same
state anymore and therefore thread 3 reads an in-
consistent set of values (Q(v3) andN(v3)).

3 RELATED WORK

In this section, we present the related work for two
categories of synchronization methods for tree paral-
lelization: (1) lock-based methods and (2) lock-free
methods.

3.1 Lock-based Methods

As already mentioned, one of the main challenges in
tree parallelization is to prevent date race conditions
using synchronization. Figure 3 shows the tree paral-
lelization where two threads (1 and 2) simultaneously
perform the EXPAND operation on a node (v6) of the
tree. There are two methods to create synchroniza-
tion in this case for tree parallelization: (1) coarse-
grained lock (Chaslot et al., 2008a), (2) fine-grained
lock (Chaslot et al., 2008a):

1. The coarse-grained lock method uses one lock
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Figure 2: (2a) The initial search tree. The internal and non-terminal leaf nodes are circles. The terminal leaf nodes aresquares.
The curly arrows represent threads. (2b) Thread 1 and 2 are expanding nodev6. (2c) Thread 1 and 2 are updating nodev3.
(2d) Thread 1 is selecting nodev3 while thread 2 is updating this node.
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Figure 3: Tree parallelization with coarse-grained lock.

to protect the entire search tree (Chaslot et al.,
2008a). For example in Figure 3a, both thread
1 and 2 want to expand nodev6, then thread 1
first acquires a lock; subsequently, it performs the
EXPAND operation and finally releases the lock.
During this process thread 2 also wanting to per-
form the EXPAND operation on nodev6 should
wait for the release of the lock (see Figure 3b).
This method is called coarse-grained because the
access to the tree for performing the EXPAND op-
eration will be given to one and only one thread.
Even if multiple threads want to expand different
nodes inside the tree. For example in Figure 3a,
thread 3 also wants to perform the EXPAND oper-
ation but on nodev7. However, the lock is already
acquired by thread 1. Therefore, thread 3 should
wait until the lock is released (see Figure 3b).

2. The fine-grained lock method uses one lock for
each node of the tree to protect a smaller part of
the search tree and to allow a greater level of con-
currency in accesses to the search tree (Chaslot
et al., 2008a). For example in Figure 4a, thread
3 also wants to perform the EXPAND operation
but on nodev7. It can acquire the lock inv7 and
should not wait (see Figure 3b).

Both lock-based methods use locks to protect
shared data. However, these approaches suffer from
synchronization overhead due to thread contentions
and do not scale well (Chaslot et al., 2008a). A lock-
free method can remove these problems.
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Figure 4: Tree parallelization with fine-grained lock.

3.2 Lock-free Methods

A lock-free implementation exists in the FUEGO

package (Enzenberger and Müller, 2010). However,
the method in (Enzenberger and Müller, 2010) does
not guarantee the computational consistency of the
multithreaded program with the single-threaded pro-
gram. To address the SE race condition, Enzenberger
et al. assign to each thread an own memory array for
creating nodes (Enzenberger et al., 2010). Only after
the children are fully created and initialized, they are
linked to the parent node. Of course, this causes mem-
ory overhead. What usually happens is the following.
If several threads expand the same node, only the chil-
dren created by the last thread will be used in future
simulations. It can also happen that some of the chil-
dren that are lost in this way already received some
updates; these updates will also be lost. It means that
Enzenberger et al. ignore the SB and SBS race condi-
tions. They accept the possible faulty updates and the
inconsistency of parallel computation.

In the PACHI package (Baudiš and Gailly, 2011),
the method in (Enzenberger and Müller, 2010) is used
for performing lock-free tree updates. Again, it means
that both SB and SBS race conditions are neglected.
However, to allocate children of a given node, PACHI

does not use a per-thread memory pool as FUEGO

does, but uses instead a pre-allocated global node pool
and a single atomic increment instruction updating the
pointer to the next free node. This solves the memory
overhead problem in FUEGO. However, there are still
two other issues with this method: (1) the number of
required nodes should be known in advance, and (2)
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the children of a node may not be assigned in consec-
utive memory locations which results in poorspatial
locality (i.e., if a particular memory location is refer-
enced at a particular time, then it is likely that nearby
memory locations will be referenced in the near fu-
ture). The spatial locality is specifically important for
the SELECT operation.

4 OUR PROPOSED LOCK-FREE
TREE DATA STRUCTURE AND
ALGORITHM

Algorithm 2 shows our new lock-free tree data struc-
ture of typeNode. The UCT algorithm that uses the
proposed data structure is given in Algorithm 3 (for
the difference, see the end of this section).

Algorithm 2 uses the new multithreading-aware
memory model of the C++11 Standard (Williams,
2012). To avoid the race conditions, the ordering of
memory accesses by the threads has to be enforced
(Williams, 2012). In our lock-free approach, we use
the synchronization properties of theatomic opera-
tions to enforce an ordering between the accesses.
We have used the atomic variants of the built-in types
(i.e., atomic int andatomicbool); they are lock-free
on all most popular platforms. The standard atomic
types have different member functions such asload(),
store(), exchange(), fetchadd(), andfetchsub(). The
differences are subtle. The member functionload()
is a load operation, whereas thestore() is a store op-
eration. Theexchange()member function is special.
It replaces the stored value in the atomic variable by
a new value and automatically retrieves the original
value. Therefore, we use two memory models for the
memory-ordering option for all operations on atomic
types: (1) sequentially consistentordering (mem-
ory order seqcst) and (2) acquirereleaseordering
(memoryorder acquire and memoryorder release).
The default behavior of all atomic operations pro-
vides forsequentially consistentordering. This im-
plies that the behavior of a multithreaded program is
consistent with a single threaded program. In theac-
quire releaseordering model,load() is anacquireop-
eration,store() is a release operation,exchange()or
fetchadd() or fetchsub()are eitheracquire, release
or both (memoryorder acq rel).

In Algorithm 2 each nodev stores nine different
pieces of data: (1)a the action to be taken, (2)p
the current player at nodev, (3) w n (a 64-bit atomic
integer) that stores both the total simulation reward
Q(v) and the visit countN(v), (4) the list of chil-
dren, (5) theis parent flag (an atomic boolean) that

Algorithm 2: The new lock-free tree data
structure.

1 type
2 type a : int;
3 type p : int;
4 type w n : atomic int 64;

5 type children : Node*[];

6 type is parent:= false : atomic bool;
7 type n nonexpandedchildren:= -1 : atomic int;
8 type is expandable:= false : atomic bool;
9 type is f ully expanded:= false : atomic bool;

10 type parent : Node*;

11 Function CREATECHILDREN(actions) :<void>

12 if is parent.exchange(true) is falsethen
13 j := 0;

14 while actions is not emptydo

15 choosea
′ ∈ actions;

16 add a new childv
′

with a
′

as its action

andp
′

as its player to the list of

children;

17 j := j+1;

18 end
19 n nonexpandedchildren.store(j);

20 is expandable.store(

21 true,memoryorder release);

22 end

23 Function ADDCHILD () : <Node*>

24 index:= -1;

25 if is expandable.load(memoryorder acquire) is

true then
26 if (index :=

n nonexpandedchildren.fetchsub(1)) is 0

then
27 is f ully expanded.store(true);

28 end
29 if index< 0 then
30 return current node;

31 else
32 return children[index];

33 end

34 else
35 return current node;

36 end

37 Function ISFULLY EXPANDED() : <bool>

38 return is f ully expanded.load();

39 Function GET() : <int,int>

40 w n
′

:= w n.load();

41 w := high 32 bits ofw n
′
;

42 n := low 32 bits ofw n
′
;

43 return < w,n>;

44 Function SET(int ∆)

45 w n
′

:= 0;;

46 high 32 bits ofw n
′

:= ∆;

47 low 32 bits ofw n
′

:= 1;

48 w n.fetch add(w n
′
);

49 Function UCT(int n) : <float>

50 < w
′
,n

′
> := GET();

51 return w
′

n
′ +2Cp

√
2 ln(n)

n
′

52 Node;
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Algorithm 3: The Lock-free UCT algo-
rithm.

1 Function UCTSEARCH(Node* v0, State s0, budget)

2 while within search budgetdo
3 < vl ,sl > := SELECT(v0 ,s0);

4 < vl ,sl > := EXPAND(vl ,sl );

5 ∆ := PLAYOUT(vl ,sl );

6 BACKUP(vl ,∆);

7 end

8 Function SELECT(Node* v, s) :<Node*,State>

9 while v.ISFULLY EXPANDED() do
10 < w,n> := v.GET();

11 vl := argmax
vj∈children o f v

v j .UCT(n);

12 s := v.p takes actionvl .a from states;

13 v := vl ;

14 end
15 return < v,s>;

16 Function EXPAND(Node* v,State s) :<Node*,State>

17 if s is non-terminalthen
18 actions:= set of untried actions from states;

19 v.CREATECHILDREN(actions);

20 v
′

:= v.ADDCHILD ();

21 if v
′

is not vthen

22 v := v
′
;

23 s := v.p takes actionv.a from states;

24 end

25 end
26 return < v,s>;

27 Function PLAYOUT(State s)

28 while s is non-terminaldo
29 choosea∈ set of untried actions from states

uniformly at random;

30 s := the current playerp takes actiona from states;

31 end
32 ∆(p) := reward for states for each playerp;

33 return ∆

34 Function BACKUP(Node* v,∆) : void

35 while v is notnull do
36 v.SET(∆(v.p));
37 v := v.parent;

38 end

shows whether the list of children is already created,
(6) n nonexpandedchildren the number of children
that are not expanded yet, (7) theis expandableflag
(an atomic boolean) that shows whetherv is ready
to be expanded, (8) theis f ully expandedflag (an
atomic boolean) that shows whether all children ofv
are already expanded and (9)parentthat points to the
parent ofv. By using (a) the atomic variables, (b)
the atomic operations, and (c) the associated memory
models, we can solve all the three above cases of race
conditions (SE, SB, and SBS).

• SE: To solve the SE race condition, the EXPAND

operation in Algorithm 3 consists of two separate

sub-operations: (A) the CREATECHILDREN op-
eration and (B) the ADDCHILD operation. The
first operation has four key steps (A-1, A-2, A-
3, A-4) which are given in Algorithm 2. (A-1):
Exchanging the value ofis parent from f alse to
true prevents the other threads to create the list
of children (Line 12). Thus, the problem that the
list of children is created by two threads at the
same time is solved. (A-2): Creating the list of
children (Line 14-18). (A-3): Set the value of
n nonexpandedchildren to counter j (Line 19),
(A-4): Set the value ofis expandableto true
(Line 20). After a node successfully has become
a parent, one of the non-expanded children in its
list of children can be added using the ADDCHILD

operation. The ADDCHILD operation in Algo-
rithm 2 has three key steps (B-1, B-2, B-3). (B-1):
Read the value ofis expandable(Line 24), if it is
true, try to expand a new child (Line 25-32). Oth-
erwise, return the current node (Line 34). (B-2):
The value ofindex is calculated (Line 25), if it
is zero, then nodev is fully expanded (Line 26).
(B-3): indexshows the next child to be expanded
(Line 31), if indexbecomes negative, the current
node is returned (Line 29).

• SB: To solve the SB race condition, Algorithm 2
uses a single 64-bit atomic integerw n for storing
both variablesQ(v) andN(v). The value ofQ(v)
is stored in the high 32 bits ofw n, while the value
of N(v) is stored in low 32 bits. This compression
technique preserves the correct state of the vari-
ablesQ(v) andN(v) in all threads because they
should always be written together using a SET op-
eration. Therefore, we have no faulty updates and
guarantee consistency of computation.

• SBS: To solve the SBS race condition, Algorithm
3 always readsw n variable by a GET operation
in the SELECT operation. The GET operation al-
ways reads the value ofQ(v) andN(v) together.
If a BACKUP operation wants to update thew n
variable in the same time, it happens through a
SET operation which writes the value ofQ(N) and
N(v) together. Therefore, the value ofQ(v) and
N(v) are always correct, in the same state, and
consistency of computation is guaranteed.

In Algorithm 3, each nodev is also associated with
a states. The states is recalculated as the SELECT

and EXPAND steps descend the tree. The term∆(p)
denotes the reward after simulation for each player.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

594



Algorithm 4: The pseudo-code of GSCPM
algorithm.

1 Function GSCPM(State s0,nPlayouts,nTasks)

2 v0:= create a shared root node with states0;

3 grain size:= nPlayouts/nTasks;

4 t:= 1;

5 for t ≤ nTasksdo
6 st :=s0;

7 fork UCTSEARCH(v0 ,st ,grain size) as taskt;

8 t:=t+1;

9 end
10 wait for all tasks to be completed;

11 return actiona of best child ofv0;

5 IMPLEMENTATION

We have implemented the proposed lock-free data
structure and algorithm in theParallelUCT package
(Mirsoleimani et al., 2015). The implementation is
available online as part of the package. The Paral-
lelUCT package is an open source tool for paralleliza-
tion of the UCT algorithm.1 It usestask-level paral-
lelism to implement different parallelization methods
for MCTS. We have used an algorithm calledgrain-
sized control parallel MCTS(GSCPM) to implement
and measure the performance of the proposed lock-
free UCT algorithm. The pseudo-code for GSCPM is
given in Algorithm 4. The GSCPM is implemented
by multiple methods from different parallel program-
ming libraries such as C++11 STL, thread pool (TP-
FIFO), TBB (taskgroup) (Reinders, 2007), and Cilk
Plus (cilk for andcilk spwan) (Robison, 2013) in the
ParallelUCT package. More details about each of
these methods can be found in (Mirsoleimani et al.,
2015).

6 EXPERIMENTAL SETUP

Section 6.1 discusses our case study, Section 6.2 ex-
plains the performance metrics, and Section 6.3 pro-
vides the details of hardware.

6.1 The Game of Hex

The performance of the lock-free algorithm is mea-
sured by using the game of Hex. Hex is a board game
with a diamond-shaped board of hexagonal cells (Ar-
neson et al., 2010). The game is usually played on a
board of size 11 on a side, for a total of 121 hexagons,
as illustrated in Figure 5 (Weisstein, 2017). Each
player is represented by a color (Black or White).

1https://github.com/mirsoleimani/paralleluct/

Figure 5: A sample board for the game of Hex

Players take turns by placing a stone of their color
on a cell on the board. The goal for each player is
to create a connected chain of stones between the op-
posing sides of the board marked by their colors. The
first player to complete this path wins the game. The
game cannot end in a draw since no path can be com-
pletely blocked except by a complete path of the op-
posite color. Since the first player to move in Hex
has a distinct advantage, the swap rule is generally
implemented for fairness. This rule allows the sec-
ond player to choose whether to switch positions with
the first player after the first player has made the first
move.

In our implementation of Hex, a disjoint-set data
structure is used to determine the connected stones.
Using this data structure the evaluation of the board
position to find the player who won the game becomes
very efficient (Galil and Italiano, 1991).

6.2 Performance Metrics

One important metric related to performance and par-
allelism is speedup. Speedup compares the time for
solving the identical computational problem on one
worker versus that onP workers:

speedup=
T1

TP
. (2)

Where T1 is the time of the program with one
worker andTp is the time of the program withP work-
ers. In our results we report the scalability of our par-
allelization asstrong scalabilitywhich means that the
problem size remains fixed asP varies. The problem
size is the number of playouts (i.e., the search budget)
and theP is the number of tasks. In the literature this
form of speedup is calledplayout-speedup(Chaslot
et al., 2008a).

The second important metric in two-player games,
such as Hex, is the percentage of win for methoda
versus methodb:

win(%) =
Wa

Wa+Wb
∗100. (3)

WhereWa is the number of wins for methoda and
Wb is the number of wins for methodb. If there is a
draw, it will be counted as a win for both players. In
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Hex, there is always a winner. We note that we have
used the swap rule. Each method played half of the
games as Black and the other half as White.

6.3 Hardware

Our experiments were performed on a dual socket In-
tel machine with 2 IntelXeonE5-2596v2 CPUs run-
ning at 2.4 GHz. Each CPU has 12 cores, 24 hyper-
threads, and 30 MB L3 cache. Each physical core has
256KB L2 cache. The peak TurboBoost frequency is
3.2 GHz. The machine has 192GB physical memory.
We compiled the code using the Intel C++ compiler
with a -O3 flag.

7 EXPERIMENTAL RESULTS

In Section 7.1, the scalability is studied and the
achieved playout-speedup is reported. The effect of
differences in values ofCp parameters on the speedup
of the parallel algorithm is measured in Section 7.2.
The performance of the proposed lock-free algorithm
for tree parallelization when playing against root par-
allelization is reported in Section 7.3.

7.1 Playout-speedup

As mentioned before, we are interested in strong
scalability. Therefore, the search budget is fixed to
1,048,576 playouts as the number of tasks are increas-
ing. Figure 6 shows the scalability of the algorithm
for different parallel programming libraries when the
first move on the empty board is made. Each data
point is the average of 21 games. Figure 6a illustrates
the scalability when a coarse-grained lock is used
(The graph is taken from (Mirsoleimani et al., 2015))
and Figure 6b demonstrates the scalability when the
proposed lock-free method is used. There are three
main improvements when the lock-free tree is used:
(1) the maximum speedup increased from 18 to 23.
(2) the scalability of all methods is improved (It shows
the notoriously bad effect of locks on the scalability
for Cilk Plus, TBB, and C++11). (3) 32 tasks are suf-
ficient to reach near 17 times speedup, while for the
lock-based method at least 64 tasks are required.

7.2 The Effect of Cp on Playout-speedup

Table 1 shows the execution time of the sequential
UCT algorithm for three differentCp values. It is
observed that the execution time is decreasing as the
value ofCp is increasing. There is an obvious ex-
planation for this behavior. When the algorithm uses
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Figure 6: The scalability of tree parallelization for different
parallel programming libraries whenCp = 1. 6a Coarse-
grained lock. 6b Lock-free.

high exploitation (i.e., low value forCp), it constructs
a search tree that is deeper and more asymmetric. In
Figure 7b, the depth of the tree is 56 when the num-
ber of tasks is 1 andCp = 0. When the shape of the
tree is more asymmetric, each iteration of the algo-
rithm must traverse a deeper path of nodes inside the
tree using the SELECT operation until it can perform
a PLAYOUT operation. The SELECT operation con-
sist of awhile loopwhich for a tree with the depth of
56 has to perform 56 iterations in the worst case (see
Algorithm 3). The BACKUP operation also consists
of a while loop which for a deeper tree has more iter-
ations. These two operations are also memory inten-
sive ones (i.e., accessing the nodes of the tree which
reside in memory). The results are that the execution
time of the sequential algorithm becomes higher for
high exploitation. Increasing the value ofCp means
more exploration and thus a more symmetric tree with
a lower depth. In Figure 7b, the depth of the tree is 5
when the number of tasks is 1 andCp = 1. In this
case, the while loop in the SELECT operation has to
perform only 5 iterations in the worst case.

We have measured the scalability of the proposed
lock-free algorithm for differentCp values (see Fig-
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Figure 7: 7a The scalability of the algorithm for different
Cp values. 7b The changes in the depth of tree when the
number of tasks are increasing.

ure 7a). The sequential time for eachCp in Table 1
is used as the baseline. The maximum speedup for
Cp = 0 is around 34. It is much higher than 23 times,
the speedup whenCp = 1. There is a possible expla-
nation for the higher speedup. The parallel algorithm
may be more efficient than the equivalent serial al-
gorithm, since the parallel algorithm may be able to
avoid work that in every serialization would be forced
to be performed (McCool et al., 2012). For exam-
ple, Figure 7b shows the changes in the depth of the
constructed tree with regards to the number of tasks
for three differentCp. Increasing the number of tasks
reduces the depth of the tree from 56, when the se-
rial execution is exploitative (i.e.,Cp = 0), to around
25. It means that, in parallel execution (a) threads ex-
plore different branches of the tree and (b) the tree
is more symmetric compared to the serial execution.
Hence, the number of iterations in both SELECT and
BACKUP operations reduces in parallel execution and
therefore causes a higher speedup. When the serial
execution has high exploration (i.e.,Cp = 1), increas-
ing the number of tasks does not change the depth of
the tree.

Table 1: Sequential execution time in seconds.

Cp Time (s) Depth of Tree (Avg.)

0 59.97±10.93 56.66±12.16

0.1 26.66±0.81 11.52±0.98

1 20.7±0.3 5
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Figure 8: The playing results for lock-free tree paralleliza-
tion versus root parallelization. The first value forCp is
used for tree parallelization and the second value is used for
root parallelization.

7.3 Playing vs. Root Parallelization

In this section, the result of playing Hex between
the proposed lock-free tree parallelization against root
parallelization is presented. Root parallelization is
also a parallelization method that does not use locks
because it uses an ensemble of independent search
trees. Therefore, it is interesting to see the perfor-
mance of the proposed lock-free algorithm versus root
parallelization. Figure 8 reports the percentage of
win for lock-free tree parallelization for five differ-
ent combinations ofCp. Both methods use a same
number of tasks. For each data point, 100 games are
played.

WhenCp = 0 for both algorithms, tree paralleliza-
tion cannot win against root parallelization. It shows
that the high speedup forCp = 0 (see Figure 7a) is
not useful. However, when the value ofCp is selected
to be more exploratory, the lock-free tree paralleliza-
tion is superior to root parallelization, specifically for
a higher number of tasks.

8 CONCLUSION

Monte Carlo Tree Search (MCTS) is a randomized
algorithm that is successful in a wide range of opti-
mization problems. The main loop in MCTS consists
of individual iterations for constructing a search tree,
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suggesting that the algorithm is well suited for paral-
lelization. The existing tree parallelization for MCTS
uses a shared search tree and runs the iterations in par-
allel. However, the shared search tree has potential
race conditions. In this paper, we have presented a
new lock-free algorithm that has no race conditions. It
showed better scalability and playout-speedup when
compared to other synchronization methods. Cur-
rently, we have used the default sequential consis-
tency memory ordering for all atomic operations be-
cause that is the most convenient way to explain the
intricacies. For future work, we will look at reduc-
ing a selected set of the ordering constraints to the
relaxed-memory ordering.
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