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Abstract: The process of resolving names of spatial entities like postal addresses or administrative areas into their where-
abouts is called geocoding. It is an error-prone process for multiple reasons: Names of postal address elements
like cities, streets, or districts are often reused for historical reasons; structures of postal addresses are only
coherent within countries or regions - around the globe addresses are not structured in a canonical way; human
users might not adhere even to locally common format for specifying addresses; also, humans often introduce
spelling mistakes when referring to a location.
In this paper, a log of address searches from human users is used to model user behavior with regards to spel-
ling mistakes. This model is used to generate spelling variants of address tokens which are indexed in addition
to the proper spelling. Experiments show that augmenting the index of a geocoder with spelling variants is
a valuable approach to handling queries with misspelled tokens. It enables the system to serve more such
queries correctly as compared to a geocoding system supporting edit distances: While this way the recall of
such a system is improved, its precision remains on par at the same time.

1 INTRODUCTION

Nowadays digital maps and digital processing of lo-
cation information are popularly used. Besides va-
rious applications for automated processing of loca-
tion data, like (Can et al., 2005), (Sengar et al., 2007),
(Borkar et al., 2000), or (Srihari, 1993), users rely on
computers to navigate through an unknown area or to
store, retrieve, and display location information. Wit-
hal, internally, computers reference locations through
a coordinate system such as WGS84 latitude and lon-
gitude coordinates (National Imagery and Mapping
Agency, 2004). Human users, on the other hand, re-
fer to locations by addresses or common names. The
process of mapping such names or addresses to their
location on a coordinate system is called geocoding.

There are two aspects to this error-prone process
(Fitzke and Atkinson, 2006), (Ge et al., 2005), (Gold-
berg et al., 2007), (Drummond, 1995): First, the geo-
coding system needs to parse the user query and de-
rive the query intent, i.e., the system needs to under-
stand which address entity the query refers to. Then,
the system needs to look up the coordinates of the en-
tity the query was referring to and return it as a result.
Already the first step is a non-trivial task, especially
when considering the human factor: Some address
elements are often misspelled or abbreviated by users
in a non-standard way. Also, while postal addresses

seem structured and like they adhere to a well-defined
format, (Clemens, 2013) shows that each format only
holds within a specific region. Considering addresses
from all over the world, address formats often con-
tradict to each other, so that there is no pattern that all
queries would fit in. In addition to that, like with spel-
ling errors, human users may not adhere to a format,
leaving names of address elements out or specifying
them in an unexpected order. Such incomplete or mis-
sorted queries are often ambiguous, as the same na-
mes are reused for different and often times unrelated
address elements. Various algorithms are employed to
mitigate these issues. Even with the best algorithms
at hand, however, a geocoding service can only be as
good as the data it builds upon, as understanding the
query intent is not leading to a good geocoding result
if, e.g., there is no data to return.

Many on-line geocoding services like those of-
fered by Google (Google, 2017), Yandex (Yandex,
2017), Yahoo! (Yahoo!, 2017), HERE (HERE,
2017), or OpenStreetMap (OpenStreetMap Founda-
tion, 2017b) are easily accessible by the end user.
Because most of these systems are proprietary solu-
tions, they neither reveal the data nor the algorithms
used. This makes it hard to compare distinct aspects
of such services. An exception to that is OpenStreet-
Map: The crowd-sourced data is publicly available
for everyone. Open-source projects like Nominatim
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(OpenStreetMap Foundation, 2017a) provide geoco-
ding services on top of that. In this paper, data from
OpenStreetMap is used to create a geocoding service
that is capable of deriving the user intent from a query,
even if it contains spelling errors or is stated in a non-
standard format. Nominatim - the reference geoco-
der for OpenStreetMap data - is used as one of the
baselines to compare with. Thereby, the recall of a
geocoding system is the ratio of successful responses
containing the result queried for, while as the preci-
sion describes the ratio of responses not containing
different and therefore wrong results. For ambigu-
ous queries most geocoding systems return respon-
ses with multiple results. Obviously, at most one re-
sult can be the one queried for, while all other results
can only be wrong. Therefore, such responses can be
regarded as either successfully served and increasing
the recall, or as failures reducing precision. Because
this paper aims at increasing the recall by reducing
the ambiguity of queries, each response with more
than one result is counted as non-successful, affecting
the precision metric of the respective geocoder nega-
tively.

In this paper a novel approach is suggested to in-
crease the recall of a geocoder. The idea is to make
the system capable of supporting specific, most com-
monly made spelling errors. Usually, this is achie-
ved by allowing edit distances between tokens of the
query and the address. That, however, inherently in-
creases the ambiguity of queries and leads to a lower
precision of the system: More responses contain re-
sults that queries did not refer to. The suggested ap-
proach aims to avoid that by only allowing specific
spelling variants that are made often, while avoiding
spelling variants that are not made at all - edit distan-
ces lack this differentiation.

For that, from a log of real user queries the most
common spelling mistakes users make are derived.
These spelling variants are indexed in addition to the
correctly spelled address tokens. Variants of geoco-
ding systems created this way are evaluated with re-
gard to their precision and recall metrics, and com-
pared to a similar system supporting edit distances,
as well as Nominatim. In (Clemens, 2015a) and
(Clemens, 2015b), similar measurements have shown
that TF/IDF (Salton and Yang, 1973) (Salton et al.,
1975) or BM25f (Robertson et al., 2004) based docu-
ment search engines like Elasticsearch (Elastic, 2017)
handle incomplete or shuffled queries much better
than Nominatim. This paper is a continuation of that
work. It adds to both the indexing mechanism pro-
posed in (Clemens, 2015a) and (Clemens, 2015b) as
well as the way the system performance is measured.

Work on comparing geocoding services has been
undertaken in, e.g., (Yang et al., 2004), (Davis
and Fonseca, 2007), (Roongpiboonsopit and Karimi,
2010), or (Duncan et al., 2011). Mostly, such works
focus on the recall aspect of a geocoder: Only how
often a system can find the right result is compared.
Also, other evaluations of geocoding systems treat
every system as a black box. Thus, a system can be
algorithmically strong, but perform poorly in a mea-
surement because it is lacking data. Vice versa, a sy-
stem can look better than others just because of great
data coverage, despite being algorithmically poor. In
this paper, the algorithmic aspect is evaluated in iso-
lation, as all systems are set up with the same data.
Also, a different way of measuring the geocoders per-
formance is proposed: Based on real user queries a
statistical model is created which is used to generate
erroneous, user-like queries out of any given valid ad-
dress. This approach allows to measure a system on a
much greater number of addresses.

Another approach to the geocoding problem is to
find an address schema that is easy to use and stan-
dardized in a non-contradicting way. While current
schemata of postal addresses are maintained by the
UPU (Universal Postal Union, 2017), approaches like
(what3words, 2017), (Coetzee et al., 2008), (Mayrho-
fer and Spanring, 2010), (Fang et al., 2010), or (geo
poet, 2017) are suggesting standardized or entirely al-
ternative address schemata. (Clemens, 2016) shows
that such address schemata are beneficial in some sce-
narios, though they are far from being adopted into
everyday use.

In the next section, the steps to set up such geoco-
ding systems are described. Afterwards, in Section 3
the undertaken measurements are described in detail.
Next, in Section 4, the observed results are discus-
sed and interpreted. Finally, in the last section, the
conclusions are summarized and further work is dis-
cussed.

2 SETTING UP A GEOCODER

The experiment is conducted on the OpenStreetMap
data set for Europe. This data set is not collected
with a specific application in mind. For many use ca-
ses, it needs to be preprocessed from its raw format
before it can be consumed. As in (Clemens, 2015a)
and (Clemens, 2015b), the process for preprocessing
OpenStreetMap data built into Nominatim has been
used. Though a long-lasting task, reusing this pro-
cess ensures all systems are set up with exactly the
same data, thereby enabling the comparability of the
algorithmic part of those systems. Thus, first, Nomi-
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Figure 1: Example of a document indexed in the geocoding
system.

natim has been set up with OpenStreetMap data for
Europe as the baseline geocoding system. Internally
Nominatim uses a PostGIS (PostGIS, 2017) enabled
PostgreSQL (PostgreSQL, 2017) database. After the
preprocessing, this database contains assembled ad-
dresses along with their parent-child relationships: A
house number level address is the child of a street le-
vel address, which in turn is the child of a district level
address, etc. This database is used to extract address
documents that are indexed in Elasticsearch, as defi-
ned in (Clemens, 2015a) and (Clemens, 2015b). Note
that in this paper, the geocoding of only house number
level addresses is evaluated. Therefore, though Open-
StreetMap data also contains points of interests with
house number level addresses, only their addresses
but not their names have been indexed. Similarly, no
parent level address elements, such as streets, postal
code areas, cities, or districts have been indexed into
Elasticsearch. All house number addresses with the
same parent have been consolidated into one single
document. Every house number have thereby been
used as a key to specify the respective house number
level address. Figure 1 shows an example document
containing two house numbers 7 and 9, along with
their WGS84 latitude and longitude coordinates and
spelled-out addresses. The TEXT field of the docu-
ment is the only one indexed; the TEXT fields map-
ped by the house numbers are only used to assemble
a human-readable result.

Because Elasticsearch retrieves full documents,
and because the indexed documents contain multiple
house number addresses, a thin layer around Elasti-
csearch is needed to make sure only results with house
numbers specified in queries are returned. That is
a non-trivial task, as given a query, it is not known
upfront which of the tokens is specifying the house
number. Therefore, this layer has been implemen-
ted as follows: First, the query is split into tokens.
Next, one token is assumed to be the house number; a
query for documents is executed containing all the ot-
her tokens. This is repeated for each token, trying out
every token as a house number. Because each time
only one token is picked to specify the house number,
this approach fails to support house numbers that are

Figure 2: Average number of tokens per document for vari-
ous amounts of spelling variants.

specified in multiple tokens. Nevertheless, it is good
enough for the vast majority of cases. For every result
document returned by Elasticsearch the house num-
ber map is checked. If the token assumed to be the
house number happens to be a key in that map, the
value of that map is considered a match and the house
number address is added to the result set. Finally, the
result set is returned. As edit distances are specified in
the query to Elasticsearch, this layer allows enabling
edit distances easily: A parameter passed to the layer
is forwarded to Elasticsearch, which then also returns
documents with fuzzily matching tokens. Also note,
that as house numbers are used as keys in the do-
cuments, neither edit distances nor spelling variants
are supported on house numbers. That, however, is
a natural limitation: If a query specifies a different
house number than the one intended, especially if it
is a house number that exists in the data, there is no
way for a geocoding system to still match to the right
house number value.

Having the baseline systems Nominatim and Elas-
ticsearch supporting edit distances set up, the next
step is to create a similar system that indexes spel-
ling variants. For that, the spelling variants to be
indexed need to be defined first. HERE Technolo-
gies, the company behind the HERE geocoding sy-
stem (HERE, 2017), provided logs of real user que-
ries issued against the various consumer offerings of
the company, like their website or the applications for
Symbian, Windows Phone, Android and iOS mobile
phones. The log contained data from a whole year
and included queries users have issued along with re-
sults users chose to click on. For this paper, a user
click is considered the selection criterion of a result,
linking input queries to their intent, i.e. the addresses
users were querying for. Given such query and result
pairs, first both were tokenized and the Levenshtein
distance (Levenshtein, 1966) from every query token
to every result token was computed. With edit dis-
tances at hand, the Hungarian method (Kuhn, 1955)
was used to align every query token to a result token.
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From these computations, several observations were
extracted:

1. Some query tokens are superfluous as they do not
match (close enough) to any result token. Such
tokens are ignored.

2. As the result is a fully qualified address, result to-
kens have an address element type, such as city,
street, house number, or country. Thus, for each
query, the query format, i.e., which address ele-
ments were spelled out in what order, is known.

3. Some query tokens matched to result tokens are
misspelled. Thus, for each spelling variant of a to-
ken, the specific spelling mistake made is known.
For this paper, the following classes of spelling
variants were considered:

• inserts: Characters are appended after a tailing
character, prepended before a leading charac-
ter, or inserted between two characters, e.g., s
is often inserted between the characters s and e,
as apparently the double-s in sse sounds like a
correct spelling for many users.

• deletes: Characters are removed after a charac-
ter that is left as the tailing one, before a cha-
racter that is left as the leading one, or between
two characters that are left next to each other,
e.g., oa between the characters r and d are of-
ten deleted, as users often abbreviate road as
rd.

• replacements: One character is replaced by a
different character, e.g., ß is often replaced by
an s in user queries so that Straße becomes
Strase instead.

• swaps: Two consecutive characters are swap-
ped with each other, e.g., ie is often times swap-
ped into ei, as, to users, both sounds may seem
similar.

Thus from each query and result pair, the query
format used as well as the set of spelling variations
can be deduced. Doing so for all queries while coun-
ting the occurrences of each query format and each
spelling variation results in a statistical model capa-
ble of two things: For a given token the model can
determine the possible spelling variations, each with
their observed count or relative probability. Also, out
of a set of available address elements, the model can
select and order elements such that the resulting choi-
ces correspond to formats human users use, each with
their observed count or relative probability too. Be-
cause the spelling mistakes made as well as the query
formats used are Pareto distributed (Arnold, 2015),
the model contained a long tail of mistakes and for-
mats used only very few times. To reduce the noise,

the model was cleansed by stripping off the 25% of all
observations from the long tail of rare spelling mista-
kes and query formats. In addition to that, all query
formats that did not contain a house number were re-
moved too, as the goal was to generate queries for
addresses with house numbers. Because the log used
is, unfortunately, proprietary, neither the log nor the
trained model can be released with this publication.
However, having a similar log of queries from anot-
her source enables the creation of a similar model.

Having the user model at hand, the spelling va-
riants for indexing were derived as follows: Given a
document to be indexed, its TEXT field was tokenized
first. Next, for each token N most common spelling
variants were fetched from the model and appended to
the field. Thus, the field contained both the properly
spelled tokens as well as N spelling variants for each
token. Every house number level address from No-
minatim was extracted from the database, augmented
with spelling variants and indexed in Elasticsearch.
For N the values 5, 10, 20, 40, 80, 160, 320, and 640
were chosen. Note that given a model, especially for
short tokens, the number of applicable spelling vari-
ations is limited. In most extreme cases for a given
token no spelling variant can be derived from the mo-
del at all. Figure 2 shows the resulting token counts
of the TEXT field for every N. There is only a minor
increase between indexing 320 and 640 spelling vari-
ants, as with 320 spelling variants almost all observed
variants have already been generated.

An interesting aspect of the described approach
is that, besides lowercasing, no normalization me-
chanisms have been exploited. While users often
choose to abbreviate common tokens like street ty-
pes, or avoid choosing the proper diacritics, the idea is
that the model would observe common replacements
of Avenue with Av., or Straße with Strasse and ge-
nerate according spelling variants for indexing. Like
with the index without spelling variants, house num-
bers are not modified in any way here.

In total, three geocoding systems were set up with
exactly the same address data indexed: Nominatim
as the reference geocoder for OpenStreetMap data,
Elasticsearch with documents containing aggregated
house numbers and a layer to support edit distan-
ces, and Elasticsearch with indexed spelling variants.
While the edit distance was specified at query time by
specifying a parameter to the layer wrapping Elasti-
csearch, for the various numbers of indexed spelling
variants distinct Elasticsearch indices have been set
up. As the same layer has been used for all Elasti-
csearch based indices, the setup supported the possi-
bility to query an index with spelling variants indexed
while allowing an edit distance at the same time, the-
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reby evaluating the effect of the combination of the
two approaches.

3 MEASURING THE
PERFORMANCE

To evaluate the geocoding systems for precision - the
ratio of responses not containing results not queried
for, and recall - the ratio of responses containing only
the right result, 50000 addresses have been sampled
from the data used in these systems. Using the ge-
nerative user model, for each address a query format
has been chosen so that the distribution of the query
formats corresponded to the observed distribution of
the query formats preferred by users. Next, for each
query one to five query tokens have been chosen to be
replaced with a spelling variant. Again, spelling vari-
ants picked were distributed in the same way the spel-
ling variants of human users were distributed. Thus
common query formats, and frequent spelling mista-
kes were often present in the test set, while rare query
formats and rare spelling variants were selected ra-
rely. This way six query sets with 50000 queries each
have been generated. One contained all tokens in their
original form, while the others had between one and
five query tokens replaced with a spelling variant re-
spectively. Note that not always a query had the de-
sired number of spelling variants: The token to be re-
placed with a spelling variant was chosen at random.
For some tokens, as discussed, no spelling variant
can be generated by the model. These tokens were
left unchanged, making the query contain fewer spel-
ling variants than anticipated. Also, sometimes the
house number token was chosen to be replaced. Gi-
ven the set up of the documents in the indices, where
house numbers are used as keys in a map, such que-
ries had no chance of being served properly. This,
however, does not pollute measurement results, as it
equally applies to all systems evaluated. Because ge-
nerated queries and indexed addresses originate from
the same Nominatim database, both share the same
unique identifier. Therefore, inspecting the result set
of a response for the result a query has been generated
from is a simple task.

Each test set was issued against indices with 5, 10,
20, 40, 80, 160, 320, and 640 indexed spelling vari-
ants, against the index with no spelling variants that
allowed edit distances of 1 and 2, and against the two
baselines: An index with neither spelling variants in-
dexed nor edit distances allowed, as well as Nomina-
tim. Additionally, each query set was issued against
the combination of the two approaches: Indices with
spelling variants indexed were queried so that edit dis-

tances were allowed. For every query set, respon-
ses were categorized into three classes: (i) Respon-
ses that yielded no result, (ii) responses that yielded
only the correct result the query was generated from,
and (iii) responses containing at least one wrong re-
sult that - as the query was not generated from that
- was not the query intent. As the classes cover all
possible cases and do not overlap, it is sufficient to
consider two of the three metrics: While the ratio of
cases in (ii) exactly is the recall of a geocoding sy-
stem, the ratio of responses with wrong results in (iii)
allows computing precision with ease.

The fact is that knowing the distributions of spel-
ling variants, it is possible to calculate how many re-
sponses will include the expected result without any
measurement: The portion of spelling variants in-
dexed is exactly the portion of spelling variants in
queries that an index will be able to serve. There is,
however, no simple way to calculate the precision, as
it heavily depends on the data and how ambiguous
queries with spelling variants become. This, in turn,
makes it impossible to compute the recall as it is de-
fined for this experiment. These measurements allow
observing the development of both metrics while the
number of indexed spelling variants or the number of
supported edit distances are increased.

4 RESULTS

Figure 3 shows an overview of the recall and inver-
sed precision of some select systems tested. The blue
chart denotes the performance of Nominatim, while
the green chart denotes the performance of Elasticse-
arch with neither spelling variants indexed nor edit
distances allowed. On the left-hand side, for recall,
Nominatim performs slightly better for queries with
no or one spelling mistake. That is most likely due
to the normalization mechanisms that are built into
Nominatim, but missing in Elasticsearch: Likely, a
chunk of commonly made spelling variants can be
handled through normalization. For no spelling mis-
take, both charts show higher recall compared to the
red and yellow charts plotting the recall of the index
with 320 spelling variants per token indexed, and the
recall of enabling the edit distance of one, respecti-
vely. These two systems gain a slightly lower re-
call, due to their slightly lower precision visible on
the right-hand side. As discussed, more queries be-
come ambiguous when spelling variants are indexed,
or edit distances allowed, leading to more responses
containing results that the respective query was not
generated from. As expected, the more spelling va-
riants there are present in queries, the more recall
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Figure 3: Recall (left, more is better) and inversed precision (right, less is better) of select systems.

Figure 4: Detailed overview on the performance of indexing spelling variants and allowing edit distance.

drops. Without exception, the index with 320 spel-
ling variants per token indexed outperforms the index
allowing an edit distance of one. For zero or one spel-
ling variant Nominatim has the lowest precision, re-
turning most of the responses with results the query
did not query for, while, as expected, the most strict
system with neither spelling variants index nor edit
distances allowed performs the best. The other two
systems - one allowing an edit distance of one, the
other indexing 320 spelling variants for each token -
perform very similarly. Thereby, for no spelling vari-
ants the system allowing an edit distance of one per-
forms slightly worse, while for any number of spel-
ling variants in the queries, it performs slightly better.
However, the margin of difference between the two
systems with regards to precision is minor, compared
to the margin of difference for the same two systems
for recall. Generally, both the ratio of replies with the

correct result as well as the ratio of replies containing
wrong results drop more, the more spelling variants
are present in the query. That is due to the number of
replies with no result growing, as neither system can
process queries containing too many spelling mista-
kes.

The detailed experiment results are denoted in Fi-
gure 4. Each line in the charts represents the deve-
lopment of recall or inversed precision on a specific
test set. The legend specifies the allowed number of
spelling errors in the queries of a test set. The top
two charts show the recall and the inversed precision
of the six test sets depending on how many spelling
variants per token were indexed. Unsurprisingly, the
more spelling errors a query contains, the less respon-
ses with only correct results are retrieved. At the
same time, however, the ratios of responses contai-
ning wrong results decrease. Thus, the more errors a
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user makes, the less results are discovered by the sy-
stem overall. This behavior is also observable on the
bottom two charts showing the performance on the six
test sets depending on what edit distance was allowed.
Interestingly, increasing the allowed edit distance to
be greater than one does not improve the recall on
any test set. At the same point, it worsens the pre-
cision, as with an allowed edit distance of two more
candidates fit to the queries, resulting in more respon-
ses containing wrong results. That symptom is not
observable when indexing spelling variants. As dis-
cussed, indexing 640 spelling variants for every token
of the document almost maxed out the total number
of tokens generated. The observation is that for every
test set indexing more spelling variants leads to a clear
improvement of recall. This pattern is also observable
when enabling an edit distance of one, though to a les-
ser extent. Overall, on every test set, both the recall of
the index containing spelling variants is greater com-
pared to the index allowing edit distances, while their
precision is of similar size. The blue chart showing
the test set containing zero spelling variants visuali-
zes the impact of allowing edit distances or indexing
spelling variants on the left-hand side best: Indexing
spelling variants or allowing an edit distance both re-
duce the recall by a similar degree, though the recall
of the geocoder indexing 640 spelling variants is slig-
htly greater compared to enabling an edit distance of
one.

Table 1: Configurations yielding best recall.

variants in query 0 1 2 3 4 5
variants indexed 0 640 320 160 320 640

edit distance 0 0 0 1 1 1
only correct result 61% 43% 26% 13% 6% 3%
also wrong result 21% 16% 9% 7% 7% 6%

In Table 1 the combinations of indexed spelling
variants and allowed edit distances that led to best re-
sults with regards to recall for the various test sets
are listed. Interestingly, the number of spelling va-
riants in the index varies between 160 and 640. That
is an artifact of the random generation of queries. The
numbers also show that for one or two spelling errors
in queries, allowing edit distances on top of indexed
spelling variants does not lead to any improvement of
recall. Only if three or more query tokens are misspel-
led, a combination of indexed spelling variants and
edit distance are yielding a better performance.

5 CONCLUSION

As already observed in previous papers, here too,
Nominatim does not handle spelling mistakes well.

Using a statistical model to derive and index common
spelling variants, however, has proven to be a viable
approach to serve queries with spelling errors.

Compared to allowing edit distances, it yields
more responses containing only the right result, while
only marginally increasing the number of respon-
ses with wrong results. Interestingly, this approach
implicitly incorporates any standardization logic that
would be of help: Exactly those abbreviations or mis-
spelled diacritics are indexed as spelling variants that
are commonly made. The experiment also suggests to
index all possible spelling variants a cleansed model
can generate: No number of indexed spelling variants
smaller than that turned out to be the optimum beyond
which performance of the index would degrade. Also,
while indexed spelling variants outperform edit dis-
tances on all query sets, a combination of the two
showed slightly better results for queries with many
typos.

Going forward, it is worth investigating how spel-
ling variants can be indexed without obtaining a sta-
tistical user model first. In this paper user clicks were
used to learn how often and which typos are made.
Users, however, can only click on results they receive.
Thus, a query token may be spelled so significantly
different, that the system will not present the proper
result to the user. Even if that spelling variant would
be common, without a result to click on, no model
could learn that spelling variant so that it can be in-
dexed. Further, the set of supported spelling variants
might be defined more precisely. The model could le-
arn more circumstances of an edit, like, e.g., four or
more characters that surround an observed edit, as op-
posed to two characters only. Pursuing this idea to its
full extent, a model could learn specific spelling va-
riants for specific tokens instead of edits that can be
applied in different scenarios, though doing so would
probably require to utilize normalization mechanisms
independent of the model. Another interesting study
would be to measure how much such a model degra-
des over time. Assuming that user behavior changes,
it is likely that the kind of spelling errors common
at one point in time will no longer be common some
time later. Thus, if a geocoder only relies on indexed
spelling variants, its performance would be reduced
over time.
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