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Abstract: In this paper, we consider the queueing systems with finite buffer and service interruptions. The effects of

service interruptions and the variability of service time to measure of departure process such as the asymptotic

mean and variance of the number of departures are investigated numerically. We find numerically so called

interruption paradox or failure paradox that the departure rate of the system with service interruptions under

preemptive-repeat-different policy can be greater than that of the system with reliable server and it increases

as the interruption rate increases for the case of large variability of service time. The results give an insight for

the effects of the system and may be helpful to design and control the more complex systems.

1 INTRODUCTION

Queueing networks that consist of nodes with finite

buffer and service interruptions have been widely

used for modeling and analysis of the system ari-

sing from many practical situations such as computer

systems, telecommunications and manufacturing sy-

stems. The network topology and the characteristics

of each node such as buffer size, service time and the

interactions between interruptions and service affect

not only the performances of each node but also the

the performance of whole network.

The mean number of customers, blocking proba-

bility of arriving customers and the idle probability

of the server are important performance measures of

each node. Besides on the internal measures of each

node, the measures related with departure process of

each node are also important to understand and ana-

lyze the whole network performance. In particular,

the amount of production in the manufacturing sy-

stem is presented by the number of departures from

a terminal node of a network. The long run average

of departures, called departure rate or throughput is

an important measure of performance in manufactu-

ring system. The first order measures can be used to

get information about the capabilities of a system in

the long run. However, there may be tremendous va-

riability of the departures from a time period to pe-

riod even in a simple queueing network (Gershwin,

Section 3.2, 1994). Thus the second order measures

such as the variance of the number of departures in a

given time period, called variance rate are also very

useful to design and control the systems in a more

effective way. For a review of recent studies on the

variance of the departures for production systems, re-

fer to the paper Tan (2013) and Lagershausen and Tan

(2015). Recently, Shin and Moon (2016,2017) pre-

sent an algorithmic method for asymptotic variance

rate of departure process of the system with two-node-

one buffer system using the Markovian arrival pro-

cess.

Interruptions in queueing systems are the ele-

ments that prevent the continuous service of custo-

mers. Queueing models with service interruptions

have been used to model the situations where a ser-

vice facility is shared by multiple queues, or where

the facility is subject to failure. Such interruptions

may be caused by breakdowns of the servers, arrival

of customers of a higher-priority class or scheduled

off-periods by extra jobs. Queueing models with ser-

vice interruptions and their connection with priority

models or machine breakdowns have been studied ex-

tensively in the literature, e.g. see White and Chris-

tie (1958), Gaver (1962), Nicola (1986), Fiems etc.

(2008), Sahba et al. (2015) and refer to the survey

paper Krishnamoorthy et al. (2014) for more details.

The M/G/1 queue with a single type of Poisson inter-

ruptions was dealt with extensively by Gaver (1962)
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for a variety of service-interruption interactions. The

analysis was based on the definition of the comple-

tion time. He derived the Laplace Stieltjes transform

(LST) of the completion time that is the time interval

between the instant at which the customer’s service

begins and the instants at which the service of the next

customer (if any exists) may begin and used the met-

hod of imbedded Markov chain to obtain the genera-

ting function of the distribution of the number of cus-

tomers in the system. Nicola (1986) derives the LST

of completion time for the case with the simultaneous

presence of different types of interruptions. The lite-

rature cited above deal with the infinite buffer queue

and focus on analyzing the stationary distribution of

the number of customers in the system, waiting time

distribution and related performance measures such

as the mean number of customers in the system and

blocking probability.

However, the articles reviewed above do not inves-

tigate the effects of interactions between interruptions

and variability of service time to the system perfor-

mances. In this paper, we consider the queueing sy-

stems with finite buffer and service interruptions and

investigate numerically the effects of service interrup-

tions and the variability of service time to measure of

departure process such as the asymptotic mean and

variance of the number of departures. Numerical re-

sults give an insight for the effects of the system and

play an important role to prepare the analysis of the

extended system of that considered in this present.

This paper is organized as follows. In Section 2,

types of interruptions and preliminary results for com-

pletion time given by Gaver (1962) are presented. The

effects of interruptions and variability of service time

to the departure rate and variance rate in the saturated

system and M/PH/1/K queue are investigated nume-

rically in In Sections 3 and 4. Concluding remarks are

given in Section 5.

2 ASSUMPTIONS AND

PRELIMINARY RESULTS

Consider the single server system with service inter-

ruptions. In this section, some assumptions and preli-

minary results to be used later are described.

Service time. Service times of successive cu-

stomers are independently and identically distribu-

ted with arbitrary distribution. Denote the generic

random variable of service time by B and B(x) =
P(B ≤ x) and B∗(s) = E[e−sB], s ≥ 0. Let E[Bk] = bk,

k = 1,2 and denote the squared coefficient of variation

(SCV) of B by c2
b = Var[B]/b2

1.

Interruption. Interruptions appear according to a

Poisson process with rate ν and each interruption re-

quires random time to clear the effects of this particu-

lar interruption to the server. Successive durations are

independent random variables, identically distributed

with arbitrary distribution function and denote the ge-

neric random variable of the duration of interruption

by R. Let R(x) = P(R ≤ x) and R∗(s) = E[e−sR], s ≥ 0

and E[Rk] = rk, r = 1,2. We assume that the inter-

ruption process is independent of the arrival process

of customers and the number of customers waiting in

line, and the elapsed time since the initial instant.

The interruption occurs only when the server is

actually working and it does not occurs during the pe-

riod while the server is idle or it is in state of inter-

rupted (durations of interruption). This type of inter-

ruption is called active interruption (AI) or operation

dependent interruption (ODI). The AI can be classi-

fied into two categories, say postponable interrupti-

ons (PI) and preemptive interruption (PR). When a PI

appears during a service time, it does not take effect

until the end of the service time. All of the interrup-

tions accumulated during that service time must then

be cleared before service of next customer maybegin.

Under the PR policy, customer’s service is preempted

immediately upon the arrival of interruption. In this

presentation, we consider only the PR.

Completion Time. A completion time is the time

period between the instant at which the customer’s

service begins and the instants at which the service of

the next customer (if any exists) may begin. This pe-

riod is the sum of the customer’s service time and the

durations of the interruptions occurring in that time.

Let C be the completion time, and denote by C(x) and

C∗(s) the distribution function of C and its LST, re-

spectively.

The completion time may depend on the ways

of occurrence and clearance of interruptions. Gaver

(1962) proposed various types of interruptions and

derive the LST’s, the first and second moments of

completion time in each case. Here, some of the re-

sults are summarized in the following for later use.

Let

E =
1/ν

1/ν+E[R]
=

1

1+νr1
.

The quantity E is sometimes called an efficiency of

the server in a manufacturing system, e.g. see Gers-

hawin (1994).

(i) Preemptive-resume (PRS) Interruptions. In a

PRS policy, when an interruption is cleared, service is

continued from the point at which it was interrupted.

The LST and the mean and variance of completion
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time are given by

C∗(s) = B∗(s+ν−νR∗(s)),

E[C] =
b1

E
,

Var[C] =
Var[B]

E2
+νb1r2.

(ii) Preemptive-repeat-different (PRT-D) Interrup-

tions. In this case, when an interruption is cleared,

service begins again from scratch, but each time anot-

her interruption is cleared a new independent (poten-

tial) service time whose distribution function is B(x)
begins. Service is completed when, for the first time,

such a service time elapses without interruption.

C∗(s) =
B∗(s+ν)

1−R∗(s) ν
s+ν (1−B∗(s+ν))

,

E[C] =
1

νE

1−B∗(ν)
B∗(ν)

,

Var[C] = (E[C])2 +

(
νEr2 +

2

ν

)
E[C]

− 2

νE

E[Be−νB]

(B∗(ν))2
.

(iii) Preemptive-repeat-identical (PRT-I) Inter-

ruptions. In this case, when the interruption is cle-

ared, a service period of the same duration as the one

interrupted begins again from scratch. Service is com-

pleted (completion time terminates) when, for the first

time, a (repeated) service period elapses without in-

terruption. The LST and the mean and variance of

completion time are given by

C∗(s) =

∫ ∞

0

e−(s+ν)x

1−R∗(s) ν
s+ν (1− e−(s+ν)x)

dB(x),

E[C] =
1

νE
(E[eνB]− 1),

Var[C] =
1

ν2E2

(
Var
[
eνB − 1

]
+E

[
(eνB − 1)2

])

+

(
νEr2 +

2

ν

)
E[C]− 2

νE
E[BeνB],

where the expectations may not exist.

3 ASYMPTOTIC RATE FOR THE

NUMBER OF DEPARTURES IN

A SATURATED SYSTEM

Consider a single server system that is saturated and

never blocked. That is, the server always works unless

it is down state and the customer leaves the system

immediately after the service without blocking.

Let N(t) be the number of service completions du-

ring an interval (0, t]. Then NNN = {N(t), t ≥ 0} is a re-

newal process whose inter-renewal distribution is the

same as the completion time C. It follows from the

well known results of the renewal theory (e.g. see

Cox (page 58, 1962)) that the long run average num-

ber of departures and the variance rate of NNN are given

by

µ = lim
t→∞

E[N(t)]

t
=

1

E[C]
,

V = lim
t→∞

Var[N(t)]

t
=

Var[C]

(E[C])3
.

Indeed, the distribution of N(t) is asymptotically nor-

mal with mean µt and variance Vt, i = 1,2.

Now, we investigate the effects of the interactions

between interruptions and service time, interruption

rate ν and the variability of service time to the depar-

ture rate µ and variance rate V . The PH-distributiion

(PH) and lognormal distribution (LN) of service ti-

mes and exponential distribution of duration R of an

interruption with rate η are considered. The mean ser-

vice time and the efficiency of the server is fixed by

b1 = 1.0 and E = 0.85 and the repair rate is deter-

mined by η = νE
1−E

= 17
3

ν for interruption rate ν > 0.

For PH-distribution, we use the Erlang distribution of

order k (Ek) for C2
b = 1

k
< 1, exponential distribution

(Exp) for C2
b = 1 and hyperexponential distribution

of order 2 with balanced mean for C2
b > 1 denoted by

H2(p1,λ1,λ2) whose probability density function is

f (t) = p1λ1e−λ1t + p2λ2e−λ2t , t ≥ 0,

with λ1 = 2p1µ, λ2 = 2p2µ and

p1 =
1

2

(
1+

√
c2

b − 1

c2
b + 1

)
, p2 = 1− p1.

Preemptive-resume versus preemptive-repeat-

different. The departure rate µ as a function of c2
b for

the various interruption rate ν are depicted in Figure

1. The figures show that the departure rates of the

systems with reliable server (ν = 0.0) and the server

with PRS policy (denoted by Type 1) do not depend

on the SCV of service time. However, the departure

rate µ2 of the system with PRT-D policy increases

as c2
b increases for each ν and it can be greater than

the service rate µ = 1.0 of reliable server (ν = 0.0).
Furthermore, the departure rate increases as the

interruption rate increases for large c2
b. These seems

surprising and we shall phrase it the interruption

paradox or failure paradox. We have found that these

results holds for Weibul distribution and gamma

distribution of service time although the results are

not presented in this paper.
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Figure 1: Departure rate as a function of SCV C2
s .

The reason of failure paradox can be explained

as follows. The parameters of hyperexponential dis-

tribution H2(p1,λ1,λ2) with mean 1.0 are listed in

Table 1.

Table 1: Parameters for H2(p1,λ1,λ2)

C2
s p1 p2 λ1 λ2

1.0 0.5000 0.5000 1.0000 1.0000
2.0 0.7887 0.2113 1.5774 0.4227
4.0 0.8873 0.1127 1.7746 0.2254
8.0 0.9410 0.0590 1.8819 0.1181

16.0 0.9697 0.0303 1.9393 0.0607

It can be seen from Table 1 that p1 approach to

1.0, and λ1 increases and is greater than the service

rate 1.0 and λ2 decreases as SCV increases. When a

service time of a customer is assigned to long service

time corresponding to the rate λ2, the service time can

be interrupted by a failure and the server starts a new

service with short service time corresponding to λ1

with high probability p1. Thus a failure can make the

service time be shorter than that of the system with

reliable server.

The ratios
V1
V0

between the variance rate V0 of the

noninterrupted system and V1 of the system with PRS

policy and the variance rate V2 of the system with

PRT-D policy for the system with PH-service time

are depicted in Figure 2. The ratios V1/V0 tends to

E = 0.85 as C2
b increases which can be expected from

the formula V1/V0. The variance rate V2 of the sy-

stem with PRT-D policy increases as SCV c2
b of ser-

vice time increases, but V2 is less than V of the reliable

system for C2
b > 1. The ratio

V2
V1

are depicted in Figure

3. It can be seen from the figures 3 that the variance

rate V2 depends severely on the distribution of service

time. We have seen from extensive numerical expe-

riments that the variance rate V2 depends severely on

the distribution of service time. The variance ratio V2
V1

decreases and becomes less than 1.0 for the system

with H2 and Weibul distribution of service time, ho-

wever, it increases and becomes greater than 1.0 for

the system with gamma distribution of service time

as CSV of the service time increases.

Figure 2: The ratios V1

V0
for the system with PH service time.

Preemptive-repeat-identical versus preemptive-

repeat-different. In case of preemptive-repeat-

identical policy, the expectation E[eνB] for E[C] exists

if 1−B(x) = o(e−cx) with t → ∞ for 0 < ν < c. For

example, if the distribution of service time is gamma

distribution, then the expectations exist for ν < 1

b1c2
b

.

If the distribution of B is Weibul, the the expectation

exists only for c2
b < 1. If B has lognormal distribution,

then the expectation does not exist. Let E[CI ] and

E[CD] denote the expectations of C for the cases of

PRT-I and PRT-D, respectively. It can be easily seen

from the formulae E[CI] and E[CD] that E[CI ]>E[CD]
is equivalent to

B∗(ν)B∗(−ν)> 1. (1)
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Figure 3: The ratio V2

V1
.

It can be seen from the formula B∗(s) = (1 −
b1c2

bs)−1/c2
b of LST that gamma distribution and the

condition of existence of E[CI ] < ∞ that gamma dis-

tribution satisfies (1). We showed numerically that

the Weibul distribution with c2
b < 1 satisfies (1) for

any ν > 0, but we omit the details here.

4 M/PH/1/K QUEUE WITH

SERVICE INTERRUPTIONS

4.1 Model

We consider a M/PH/1/K queue with service inter-

ruption and a buffer of finite capacity K in which cu-

stomers arrive according to a Poisson process with

rate λ. Interruptions occurs only while the server is

working. The inter occurrence time of interruption

is assumed to be exponential distribution with rate ν.

The service time and duration of interruption are as-

sumed to be of phase type distributions PH(ααα,S) and

PH(γγγ,G), respectively. Let s0 = −Se and g0 = −Ge.

Let w and r be the number of phases of the distri-

butions of service time and duration of interruption,

respectively.

Let X(t) be the number of customers in the system

at time t. The state space of X(t) is {0,1, · · · ,K}. By

Jw(t) and Jr(t)) denote the phases of PH(ααα,S) and

PH(γγγ,G), respectively at time t. The state M(t) of the

server M at time t is

M(t)=

{
Jw(t), the server is up at time t

(Jw(t),Jr(t)), the server is down at time t

Let [D0]i j ([D
∗
0]i j) be the rate that a transition of M(t)

occurs from i to j and no service is completed given

X(t) ≥ 1 (X(t) = 0, respectively) and [D1]i j ([D
∗
1]i j)

be the rate that a transition of M(t) occurs from i to

j and a service is completed given X(t) ≥ 2 (X(t) =
1, respectively). Let M (M ∗) be the state space of

M(t) for X(t)≥ 1 (X(t) = 0, respectively) and m and

m∗ be the number of elements of M and M ∗, re-

spectively. Let P1 be the m∗×m matrix whose (i, j)-
component [P1]i j is the probability that the phase of

M is j immediately after an arrival occurs given that

X(t) = 0 and M(t) = i. The matrices D0 and D1 de-

pends on the service initiation policies after clearance

of interruption.

We consider the following three policies of initia-

tion of service when an interruption is cleared.

S1 policy. When an interruption is cleared, service

resume at the last phase in which a failure occurs. In

this case, m = w(r+ 1) and m∗ = 1 and

D0 =

(
−νIw + S νIw ⊗γγγ
Iw ⊗ g0 Iw ⊗G

)
,

D1 =

(
s0ααα O

O Owr×wr

)
, D∗

1 =

(
s0

Owr×1

)

and D∗
0 = 0, P1 = (ααα O1×wr), where Ok×n is the zero

matrix of size k × n and In is the identity matrix of

size n.

S2 policy. When an interruption is cleared, new

service starts anew according to a PH-distribution

PH(ααα,S). In this case, m = w+ r and m∗
1 = 1 and

D0 =

(
−νIw + S νewγγγ

g0ααα G

)
,

D1 =

(
s0ααα O

O Or×r

)
, D∗

1 =

(
s0

Or×1

)
,

and D∗
0 = 0, P1 = (ααα O1×r).

S3 policy. When an interruption occurs, the cu-

stomer being served is scrapped, and the server be-

gins new service of length whose distribution is of
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PH(ααα,S) after clearance of interruption. In this case,

m = w+ r and m∗
1 = r+ 1 and

D0 =

(
−νIw + S Ow×r

g0ααα G

)
, D∗

0 =

(
0 O

g0 G

)
,

D1 =

(
s0ααα νewγγγ
O Or×r

)
, D∗

1 =

(
s0 νewγγγ
O Or×r

)
,

P1 =

(
ααα O

O Ir

)
.

Let Z(t) = (X(t),M(t)). The stochastic process

ZZZ = {Z(t), t ≥ 0} forms a Markov chain with genera-

tor of the form

Q =




B0 A0

C1 B1 A1

. . .
. . .

. . .

CK−1 BK−1 AK−1

CK BK



,

Then the block matrix components are as follows:

B0 =−λIm∗ +D∗
0, BK = D0, A0 = λP1, C1 = D∗

1,

Bn =−λIm +D0, An = λIm, 1 ≤ n ≤ K − 1,

Cn = D1, 2 ≤ n ≤ K.

4.2 Departure Process

Let N(t) be the number of service completions in

the system. Then NNN = {N(t), t ≥ 0} is a Mar-

kovian arrival process (MAP) with representation

MAP(D0,D1), where the matrices D0 and D1 are as

follows:

(1) S1 and S2 policies.

D0 =




B0 A0

B1 A1

. . .
. . .

BK−1 AK−1

BK



,

D1 =




O

C1 O

C2 O

. . .
. . .

CK O




and O is the zero matrix of appropriate size.

(2) S3 policy. For the system with scrapping,

D0 =




B0 A0

C1,0 B1 A1

. . .
. . .

. . .

CK−1,0 BK−1 AK−1

CK,0 BK



,

D1 =




O

C1,1 O

C2,1 O

. . .
. . .

CK,1 O




where

C1, j = D∗
1, j, Cn, j = D1, j, 2 ≤ n ≤ K, j = 0,1,

and

D1,0 =

(
Ow×w νewγγγ

O Or×r

)
,

D1,1 =

(
s0ααα O

O Or×r

)

D∗
1,0 =

(
Ow×1 νewγγγ

O Or×r

)
,

D∗
1,1 =

(
s0 O

O Or×r

)
.

A Markovian arrival process (MAP) with repre-

sentation MAP(D0,D1) is a counting process whose

inter event time distribution is of the form

F(t) =

∫ t

0
exp(D0u)duD1, t ≥ 0.

For details of MAP, see Lucantoni (1991) or Artalejo

et al. (2010).

Let πππ = (π(x),x ∈ S) be the stationary distribution

of D = D0 +D1 and

c = πππD1(eπππ−D)−1, d = (eπππ−D)−1D1e.

It is known that (e.g. Neuts,Theorem 5.4.1, 5.4.2,

1989; Artalejo et al., 2010) in stationary state, the

mean and the variance of N(t) are given as follows:

E[N(t)] = µt,

Var[N(t)] = Vt + 2(µ2− cd)+ o(1).

where µ = πππD1e and

V = µ− 2µ2+ 2cD1e.

One can refer to Shin and Moon (2016, 2017) for an

algorithm for computing µ and V , the mean and vari-

ance of inter departure time, and the covariance bet-

ween inter departure times.
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4.3 Numerical Results

In this subsection, we investigate the effects of the in-

teractions between the interruptions and service time

and the variability of service time to the departure rate

and variance rate of departure process in M/PH/1/5

queue with arrival rate λ = 1.0, mean service time

b1 = 1.0 and E1 = 0.85. We use the Erlang distri-

bution of order k (Ek) for c2
b = 1

k
< 1, exponential

distribution (Exp) for c2
b = 1 and hyperexponential

distribution of order 2 with balanced mean for c2
b > 1.

The comparisons of departure rates for the ser-

vice policies S1, S2, S3 and interruption free system

(ν = 0.0) are presented in Figure 4. It can be seen

from the figure that the departure rate for the system

with S2 policy increases and can be greater than the

isolated efficiency while the departure rate decreases

in the system with S1 policy and reliable system as

SCV c2
b of service time increases. It can be also seen

from the figure that the departure rate of the system

with scrap can be greater than that of reliable system

as SCV of service time increases.

Denote the variance rates for Si by Vi, i = 1,2,3
and let V0 be the variance rate for interruption free

system (ν = 0). Here, the variance rates V1 and V2

are depicted in Figure 5. We can see from the figure

that the variance rates increase in both types of service

initiation policies as c2
b increases. It also can be seen

that V1 > V0 > V2 for c2
b sufficiently greater than 1.

Furthermore, V2 decreases as ν increases for c2
b > 1.

We also can see from the figure that the behaviors V3

are similar to those of V2.

5 CONCLUSIONS

In this study, the effects of structural parameters such

as the variabilities of service and the interactions bet-

ween interruptions and service time to the departure

rates and variance rates have been investigated nu-

merically. We have observed from numerical experi-

ments that the variance rate of departures increases as

the SCV of the service time increases. However, the

departure rate in the system with interruptions can be

greater than that of the interruption free system and it

can increase as the interruption rate increase for large

SCV of service time. This result is different from the

case of the system with reliable servers in which the

departure rate decreases as SCV’s of service times in-

crease. We have coined this surprising results the in-

terruption paradox or failure paradox. The effects of

interruption rate to the departure rate and variance rate

are dependent of the SCV’s of service time.

Figure 4: Departure rate as a function of SCV c2
b.

It remains to analyze the more complicated sy-

stem such as the queueing system with more gene-

ral arrival and/or service time and queueing networks

with interruptions as further research area. Numeri-

cal results give some insights for the more complica-

ted systems. So, our experiments may be helpful to

design and control the system with interruptions and

may play a useful role to prepare the analysis of the

extended systems.

Impact of Service Interruptions and the Variability of Service Time in Queueing Systems: Numerical Investigations

285



Figure 5: Variance rate as a function of c2
b.
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