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Abstract: This paper presents a contribution to the fields of Big Data Analytics and Software Architecture, namely an 
emerging and unifying architectural pattern for big data processing in the cloud from a cloud consumer’s 
perspective. PaaS-BDP (Platform-as-a-Service for Big Data) is an architectural pattern based on resource 
pooling and the use of a unified programming model for building big data processing pipelines capable of 
processing both batch and stream data. It uses container cluster technology on a PaaS service model to 
overcome common shortfalls of current big data solutions offered by major cloud providers such as low 
portability, lack of interoperability and the risk of vendor lock-in. 

1 INTRODUCTION 

Big data is an area of technological research which 
has been receiving increased attention in recent years. 
As the Internet of Things (IoT) expands to different 
spheres of human life, a large volume of structured, 
semi-structured and unstructured data is generated at 
very high velocity. To derive value from big data, 
businesses and organisations need to detect patterns 
and trends in historical data. They also need to 
receive, process and analyse streaming data in real-
time, or close to real-time, a challenge which current 
technologies and traditional system architectures find 
difficult to meet. 

Cloud computing has also been attracting growing 
interest lately. With different service models 
available such as infrastructure as-a-service (IaaS), 
platform as-a-service (PaaS) and software as-a-
service (SaaS), it is no longer essential that companies 
host their IT infrastructure on-premises. 
Consequently, an increasing number of small and 
medium-sized enterprises (SME) has ventured into 
big data analytics utilising powerful computing 
resources, previously unavailable to them, without 
having to procure their own hardware or maintain an 
in-house team of highly skilled IT professionals. The 
popularisation of cloud computing is not without its 
challenges, particularly when it comes to 
guaranteeing the portability and interoperability of 

components developed, thus preventing the risk of 
vendor lock-in. The solution presented in this paper is 
an answer to these challenges. 

2 MOTIVATION 

The plethora of technologies currently being used for 
Big Data processing, and the lack of a systematic, 
unified approach to processing big data in the cloud 
is a motivation for this research.  There is no single 
accepted solution to cater for all types of big data, so 
various technologies tend to be used in combination. 
Consequently, the learning curve for a developer 
working with big data is steep, and the processing 
logic developed within one system is generally 
incompatible with other systems, leading to code 
duplication and low maintainability. 

The aim of this research is to produce a 
systematic and unified approach to developing 
portable and interoperable Big Data processing 
services on a multi-cloud PaaS service model. PaaS-
BDP is based on a programming model applicable to 
both stream and batch data, thus eliminating the need 
for the Lambda Architecture where multiple 
technologies are used in combination.  
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3 RELATED WORK 

This research proposes a solution to the vendor lock-
in aspects of low portability and lack of 
interoperability affecting existing big data processing 
offerings in the cloud. Solutions to the vendor lock-in 
issue encountered in the literature can be categorised 
as follows:  

3.1 Standardisation 

Standardisation of cloud resource offerings is a way 
of dealing with the vendor lock-in issue. However, no 
universal set of standards has yet been identified 
which would successfully solve the issues of 
portability and interoperability between different 
cloud providers (Martino, 2014), and the standards 
that do exist have not been widely adopted by the 
industry (Guillén et al., 2013). 

3.2 Cloud Federations 

Another alternative solution to the vendor lock-in 
issue is the establishment of cloud federations 
(Kogias et al., 2016). In a cloud federation, providers 
voluntarily agree to participate and are bound by rules 
and regulations. This however places the focus on the 
cloud provider, rather than on the consumer of cloud 
services. As this research approaches the vendor lock-
in issue from the cloud consumer’s perspective, cloud 
federations are excluded from its scope. 

3.3 Middleware 

The introduction of a layer of abstraction to enable 
distribution and interoperability between different 
cloud providers has also been proposed as a possible 
solution to the cloud lock-in problem (Guillén et al., 
2013), (Silva et al., 2013). One such model, called 
Neo-Metropolis, was proposed by H. Chen et al. 
(Chen et al., 2016). This model is based on a kernel, 
which provides the platform’s basic functionality, a 
periphery, composed of various service providers 
hosted on different clouds, and an edge, representing 
customers who utilise services and provide 
requirements (Chen et al., 2016). Whilst the kernel 
would be fairly stable and backwards compatible, 
with stable releases, the periphery would be in 
constant development, or perpetual beta, and would 
be based on open-source code (Chen et al., 2016). 

One criticism to this type of approach, however, 
is that the lock-in problem is not resolved, it is simply 
shifted to the enabling middleware layer (Guillén et 
al., 2013). 

3.4 Unified Models 

A model-driven approach to development, combined 
with a unifying framework for modelling cloud 
artefacts, has been suggested as a possible solution to 
the vendor lock-in problem. In fact, the “model once, 
generate everywhere” precept of MDA (Model 
Driven Architecture) suggests that software can be 
cloud platform-agnostic, provided that the necessary 
code generating engines are in place (Martino, 2014). 
In reality, however, it is difficult to find concrete 
examples of perfectly accurate code generation 
engines capable of producing all of the source code 
exclusively from the models (Guillén et al., 2013). 

MULTICLAPP is an architectural framework that 
separates the application design from cloud provider-
specific deployment configuration. Application 
modelling is done using an extended UML profile. 
The models are then processed by a Model 
Transformation Engine, responsible for inserting 
cloud provider-specific configuration and generating 
class skeletons (Guillén et al., 2013). Although this 
approach ensures the perpetuation of the models in 
case of cloud provider migration, application 
implementation code would still need to be re-
written. 

3.5 Virtualisation 

The use of containers or hypervisor technology 
(virtual machine managers) to deploy software in the 
cloud is a pattern which minimises the effects of 
vendor lock-in, as the environment configuration and 
requirements are packaged together with the 
deployed application.  

3.5.1 Virtual Machines 

The use of VMs to deploy applications is generally 
associated with the IaaS cloud service model. 
Together with the code for the developed application, 
a VM also contains an entire operating system 
configured to run that code. Since containers are 
lighter and easier to deploy and maintain than VMs, 
this research advocates the use of container 
technology in its proposed architecture. 

3.5.2 Containers 

Containers are a lighter alternative to VMs 
(Bernstein, 2014). They have gained increased 
popularity recently, following the open-sourcing of 
the most widely-accepted technology, Docker, in 
March 2013 (Miell & Sayers, 2015).  
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The benefits of using containers become more 
apparent when it comes to implementing distributed 
architectures (Bernstein, 2014), as their small size and 
relative ease of deployment allow for better elasticity 
across different clouds. Docker is based on the Linux 
operating system, which is a good fit for the cloud as 
it is reliable, has a wide user base, and allows 
containers to scale up without incurring additional 
licensing costs (Celesti et al., 2016). 

This research embraces the emerging trend 
towards containerisation as it recognises the benefits 
of using a multi-cloud environment for the 
deployment of distributed big data processing 
frameworks. 

4 PROPOSED SOLUTION 

The proposed solution is an architectural pattern for 
big data processing using frameworks and containers 
on a PaaS service model.  

4.1 Conceptual Elements 

4.1.1 Framework 

The framework takes care of parallelising the data 
processing, scheduling work between the processing 
units and ensuring fault tolerance. In traditional, on-
premises implementations, the framework code is 
generally downloaded and unpacked in each 
participating machine. A number of setup steps are 
then completed to integrate each machine into the 
cluster as a worker. As this process is executed within 
each participating machine, usually by entering 
commands on a terminal, it is prone to failure due to 
differences between environments or human error. 
The architectural pattern proposed in this section 
presents a solution to this problem. 

4.1.2 Image 

An image specifies how to build/get an application, 
its runtime environment and dependencies and 
execute it in a container. It is abstract, whereas a 
container is concrete. Many identical containers can 
be created from a single image, which makes them a 
good choice of technology for exploring the elasticity 
of the cloud when building distributed systems. In a 
similar way in which a class is used to instantiate an 
object in object-oriented programming, an image is 
used to instantiate containers in container-based 
implementations. 

Images are stored in a registry, which can be 
private or public, and downloaded when needed. 
Registries enable version control and promote code 
sharing and reuse. 

4.1.3 Container 

Containers are lightweight runtime environments 
deployed to virtual or physical machines. Each 
machine can have several containers running in it. 
They share the same operating system, but are 
otherwise separate deployment environments. 

4.1.4 Machine 

A bare-metal or virtual machine can have a number 
of containers running on it. They can be based on-
premises or in the cloud, with the latter generally 
exhibiting greater elasticity. AWS, for example, 
allows vertical scaling of their virtual machines 
through re-sizing, which involves selecting a more 
powerful configuration from the offers available 
(Resizing Your Instance - Amazon Elastic Compute 
Cloud, 2017). 

4.2 Resource Sharing 

The new architectural pattern proposed in this 
research decouples the physical deployment 
environment, i.e. machines, from the artifacts that are 
deployed to them and ultimately the frameworks that 
own the artifacts. Instead of having dedicated 
machines for Hadoop, Spark, etc, these frameworks 
share a pool of resources and take or drop them as 
needed. Increased utilisation and improved access to 
data sharing have been highlighted in the literature as 
advantages associated with pooling resources 
between big data frameworks (Hindman et al., 2011). 
In fact, these factors are particularly relevant in the 
context of cloud-based architectures, where costs are 
transparent and changes are immediately visible. If 
we take, for example, a multi-cloud setup where 
resources are fluid and vendor lock-in is negligible, it 
is possible to scale up using whichever provider is 
most suitable at the time, or even replace providers 
without detrimentally affecting the system. 

The existence of mixed big data packages, such as 
the Hadoop Ecosystem, suggests that there is no de-
facto big data technology to cater for all different 
needs and scenarios. Instead, organisations tend to 
utilise more than one framework concurrently. This is 
another strong argument for choosing an architecture 
which allows resources to be pooled and shared 
between frameworks. 
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Fig.1 illustrates how the proposed architectural 
pattern decouples frameworks from machines by 
introducing a new abstraction: containers. From a 
machine’s perspective, it runs containers. A machine 
is unaware of which frameworks, if any, are 
associated with the containers running on it. Specific 
environment configuration is defined at container 
level, leaving the machine itself generic and agnostic. 
The framework, on the other hand, knows nothing 
about the specific machines on which their workers 
and managers run. It does know which containerised 
workers and managers are part of the cluster at a given 
time, and their corresponding states, but it has no 
knowledge of machines and their configurations. 

 

Figure 1: Container-Based Big Data Processing 
Deployment. 

Fig.2 illustrates how the proposed architecture 
scales up. Different big data frameworks are 
maintained concurrently, as are different sets of 
machines hosted in different locations. More 
machines can be added to the cluster to scale the 
system vertically. Likewise, more containers can be 
created from a worker image and deployed to the 
cluster if a particular job executed by a framework 
needs to be scaled horizontally. 

 

Figure 2: Container-Based Big Data Processing 
Deployment on a PaaS Service Model. 

4.3 Programming the Big Data 
Processing Pipeline 

This section decouples the big data processing 
pipeline code from the framework under which it 
ultimately runs. When the concept of a processing 

pipeline is abstracted as a series of operations, defined 
by business needs, performed on units of data, we find 
no reason to believe it could not be written in a 
framework-agnostic way. This avoids duplication 
when different frameworks are used and enables the 
portability of the developed artifact between 
frameworks.  

4.3.1 Different Programming Models 

Many big data frameworks claim that any 
programming language can be used to define their 
processing pipelines, e.g. (Apache Storm - Project 
Information, n.d.), (MapReduce Tutorial, 2013). This 
section shall demonstrate that the main issue affecting 
the portability and interoperability of artifacts 
produced for a given framework is not to do with the 
programming language, but with the abstractions and 
programming model to which a developer must 
adhere. These tend to be specific to each framework 
and not easily translatable between them. A simple 
visual example of a classifier and counter 
implementation is used to illustrate this point. 

Imagine a scenario where there are various green 
and yellow circles, and a business need to count how 
many circles there are of each colour. This section 
compares two different approaches to implementing 
a solution: one using MapReduce, a popular 
algorithm for distributed parallel processing of batch 
files, and another using a topology of spouts and 
bolts, abstractions provided by the Storm framework. 
Fig.3 presents a MapReduce-based solution. A 
mapping function is first applied to each element of 
each data set. It accepts coloured circles and outputs 
numbered coloured circles which, in code, would be 
represented as key/value pairs where the key is the 
colour and the value is the number. The reduce 
function then takes a set of values (all the circles 
where the colour is yellow, or all the circles where the  
 

 

Figure 3: The Map-Reduce Algorithm. 
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colour is green) and performs a reduction operation, 
i.e. transforms them into a smaller set of values. In 
this case, it outputs one element, a circle where the 
number is the sum of all the other numbers in the set. 
The result could also be represented as a key/value 
pair where the key is the colour or the circle and the 
value is the number it displays. 

Storm, a framework mainly designed for stream 
processing, uses a different type of abstraction from 
those used by MapReduce, namely spouts and bolts. 
Spouts represent sources of streaming data, whilst 
bolts represent transformations applied to them. 
Because streaming data is infinite, a similar exercise 
of counting circles by colour only makes sense if time 
is taken into consideration, not only in the visual 
representation, but also in the code implementation of 
a possible solution. Fig. 4 represents a stream-based 
approach to the circle count exercise. Using spouts 
and bolts, it processes each element it sees in real-
time and updates a counter. Because the source of 
data is infinite, the processing of the data is also 
infinite, and the results are never final. 

 

Figure 4: Spouts and Bolts Representing Stream Data 
Processing. 

Having examined two very simple examples 
where the same problem is solved using different 
frameworks and different approaches to big data 
processing, it becomes apparent that the lack of 
portability or interoperability between artifacts 
produced for different frameworks is a complex issue 
that goes beyond the simple translation of one library 
into another. The abstractions upon which these 
frameworks are built are fundamentally diverse, one 
of the reasons why they generally provide their own 
libraries. 

In this section, a simple example of a counter for 
different coloured circles was used to obtain an 
insight into how big data frameworks use different 
abstractions and a different programming model to 
implement solutions to the same problem. In 
particular, batch and stream architectures appear to 
differ fundamentally due to the limited or unlimited 
nature of the data source. The Lambda Architecture, 

developed as an answer to this predicament, never did 
circumvent the inconvenience of developers having 
to maintain different pieces of code, containing the 
same business logic, in different places, only because 
the incoming data is, in some cases, limited and, in 
others, unlimited. Section 4.3.3 looks at how this 
dichotomy has been broken and explores the benefits 
associated with using a unified programming model 
with different big data frameworks. Before that, 
however, the following section takes a closer look at 
the traditional scenario of software development 
using different frameworks and different 
programming models. 

4.3.2 Framework-Specific Programming 

Framework-specific programming is hereby defined 
as writing software code which is intended to be 
executed from within a given framework. In a 
scenario where multiple frameworks are used, 
artifacts produced for each framework exist 
independently and are maintained independently 
throughout their existences. If a business case arises 
to duplicate the functionality developed within one 
framework onto a different framework, it is usually 
the case that new code will need to be written, as the 
conceptual model and abstractions used in the 
implementation will be incompatible. Fig. 5 
illustrates the process of programming for specific 
frameworks. 

 
Figure 5: Framework-Specific Programming. 

4.3.3 Framework-Agnostic Programming 

As seen in the previous section, in framework-
specific programming, developers use specialised 
libraries provided by each framework. The processing 
code written is therefore only compatible with a 
particular framework, as are the artifacts produced. 
The necessary conditions to enable framework-
agnostic programming can be understood by once 
again referring to the process in Fig. 6. If, instead of 
using a framework-provided library, developers used 
a common library compatible with the main big data 
frameworks, they would be able to write processing 
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code in a framework-agnostic way, and to produce 
artifacts compatible with multiple frameworks. The 
Apache Beam SDK (Apache Beam, 2017) comes 
very close to being such a library. The issue of 
fundamental differences between programming 
models for batch and stream is resolved by treating all 
data as if it were streaming. Streaming data, due to its 
unbounded nature, is divided into bounded subsets 
called windows, which are finite and can be processed 
one at a time. The same approach is used for the 
processing of batch data: even though the data is 
finite, it could be so large that, for processing 
purposes, it makes sense to treat it as infinite. Large 
sources of batch data would therefore be divided into 
windows and processed one subset at a time, as if they 
were streaming. Fig. 6 and 7 illustrate the windowing 
of batch data so the same programming model is 
applied for both batch and stream data. 

 
Figure 6: Batch Processing using a Stream-Based 
Programming Model. 

 
Figure 7: Stream Processing using a Stream-Based 
Programming Model. 

The benefits of decoupling the programming 
model from specific big data frameworks include less 
code duplication, increased reusability and 
maintainability of artifacts produced, and a shallower 
learning curve for developers wanting to work with 
big data. Fig. 8 illustrates the framework-agnostic 
programming model. Note how the developer only 
produces one artifact, which is then uploaded to 
different frameworks, to be processed using their 
respective resources.  

 
Figure 8: Framework-Agnostic Programming. 

4.3.4 Framework-Agnostic Programming 
with Pooled Resources 

This section aims to amalgamate the framework 
agnostic programming model described in the 
previous section with the container-based 
architectural pattern proposed earlier. It demonstrates 
how decoupling artifacts from frameworks and from 
the machines that run them leads to less duplication, 
higher maintainability of code, as well as easier, 
simpler and more effective management of machine 
clusters. 

Fig. 9 illustrates the framework-agnostic model 
with pooled resources. Big data processing pipelines 
are developed once per business case, instead of one 
per framework. Once the artifact is ready to be 
released into production, it can be uploaded to and 
executed by any compatible big data framework. 
Because the programming model used is stream-
based, the big data framework must be able to execute 
stream pipelines. This is one of the limitations of the 
model. However, should users of major batch 
processing frameworks such as Hadoop wish to adopt 
the proposed unified model, they could do so with 
minimal impact and without the need for migration 
by adopting a parallel transition strategy over a long 
period of time (Okrent & Vokurka, 2004). Since 
HDFS files can be used as data sources in the 
proposed model, new processing pipelines can be 
developed using the unified model and run by a 
stream engine without affecting the existing code 
developed to run in Hadoop. 

 

Figure 9: Framework-Agnostic Programming with Pooled 
Resources. 

The second decoupling line in Fig. 10 shows how 
resources can be pooled and shared by different 
frameworks. Frameworks have a number of runners 
or workers responsible for the parallel execution of 
data processing pipelines. These workers are typically 
deployed to clusters of machines on a one cluster per 
framework basis, as shown in Fig. 8. This represents 
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a potential waste of resources, magnified in a cloud 
scenario where machines are charged on a per-minute 
base. The chance of charges being incurred for 
machines which are idle is higher, since a machine 
commissioned for a given framework’s cluster cannot 
be immediately utilised by a different framework. 
The proposed model solves this issue by allowing 
different frameworks to share the same cluster. 
Runners belonging to different frameworks are 
deployed to machines as containers. Because 
machines only execute containers and know nothing 
about which framework, if any, the containers belong 
to, they become framework-independent and can be 
shared between several of them. 

This section presented the full proposed model for 
big data processing in the cloud. It discussed the 
advantages of utilising a unified programming model 
and a container-based architecture with pooled 
resources for cases where different big data 
frameworks are used simultaneously.  

5 EVALUATION 

The current section presents preliminary results for an 
initial experiment which consisted of setting up and 
configuring a multi-cloud containerised environment 
on a PaaS service model. A total of 12 virtual 
machines were commissioned from Microsoft Azure, 
Google Cloud and the Open Science Data Cloud 
(OSDC), as illustrated in Table 1. Although every 
attempt was made to commission identical machines 
to operate as workers, lack of standardisation 
amongst cloud providers led to our nodes being 
slightly, although not significantly different.  

Docker was used for containerisation, and Docker 
Swarm for orchestration. The nodes were networked 
across clouds using the Weave Net Docker plugin 
(Weave Net, 2017). The Apache Beam SDK was used 
to program the big data processing pipeline, since it 
provides a unifying programming model for both 
batch and stream data. Apache Flink was selected as 
a runner since, at the time of writing, it provided the 
widest range of capabilities from the open-source 
technologies supported by Apache Beam (Apache 
Beam Capability Matrix, n.d.).  

At this initial stage, we successfully verified that 
the proposed architecture is feasible and that the job 
of processing incoming streaming data is seamlessly 
parallelisable across different clouds. We also 
verified that the proposed architecture is horizontally 
and vertically scalable by increasing the number of 
containers running data processing jobs, and by 
adding nodes dynamically to the pool of resources. 

Table 1: Multi-Cloud Virtual Machine Specification. 

Cloud Resource 
Commissioned 

RAM CPU Disk Purpose 

Azure Standard DS2 v2 
Promo 

7GB 2vCP
U 

30G
B 

Orchestratio
n 

Azure Standard DS2 v2 
Promo 

7GB 2vCP
U 

30G
B 

Work 
Parallelisati
on 

Azure Standard DS2 v2 
Promo 

7GB 2vCP
U 

30G
B 

Worker 

Azure Standard DS2 v2 
Promo 

7GB 2vCP
U 

30G
B 

Worker 

Azure Standard DS2 v2 
Promo 

7GB 2vCP
U 

30G
B 

Worker 

Googl
e 

n1-standard-2 7.5G
B 

2vCP
U 

10G
B 

Worker 

Googl
e 

n1-standard-2 7.5G
B 

2vCP
U 

10G
B 

Worker 

OSDC m3.medium 6GB 2vCP
U 

10G
B 

Worker 

OSDC m3.medium 6GB 2vCP
U 

10G
B 

Worker 

OSDC m3.medium 6GB 2vCP
U 

10G
B 

Worker 

OSDC m3.medium 6GB 2vCP
U 

10G
B 

Worker 

OSDC ram8.disk10.eph64.co
re4 

8GB 4vCP
U 

10G
B 

Messaging 

We are currently working on a Case Study which 
involves developing a real-time Energy Efficiency 
Analysis service using the multi-cloud big data 
architecture proposed. This Case Study shall provide 
us with a solid evaluation of our contribution in a real-
world scenario.  

6 CONCLUSIONS AND FUTURE 
WORK 

This paper presented a contribution to the fields of 
Big Data Analytics and Cloud Software Architecture 
of an emerging and unifying architectural pattern for 
big data processing in the cloud. This pattern is based 
on the use of big data frameworks, containers and 
container orchestration technology for the 
deployment of big data processing pipelines capable 
of processing both batch and stream data. We 
discussed how the issues of low portability and lack 
of interoperability, identified as common 
shortcomings of current cloud-based solutions, are 
overcome by our proposed solution. We expect to 
complete our Case Study evaluation of the proposed 
architecture in the coming months. 

Furthermore, we envision additional development 
of the initial proposal to collect metrics related to 
processing time from a data flow perspective. The 
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aim is to develop a monitoring service to inform cloud 
consumers of delays in the processing of windows of 
data, thus highlighting the need to increase processing 
capacity by scaling the system vertically (i.e. adding 
more virtual machines to the pool).  Correspondingly, 
the monitoring service would gather information on 
whether data is waiting too long to be processed, thus 
suggesting the need to scale the system horizontally 
(i.e. increase the number of containers running the 
framework’s workers). This monitoring service from 
a unique data flow perspective is also a contribution 
to the field, and will be used to gather performance 
metrics to further evaluate the architectural pattern 
proposed in this paper. 
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