
PaaS-BDP
A Multi-Cloud Architectural Pattern for Big Data Processing

 on a Platform-as-a-Service Model

Thalita Vergilio and Muthu Ramachandran
School of Computing, Creative Technologies and Engineering, Leeds Beckett University, Leeds, U.K.

Keywords: Big Data, Containers, Resource Pooling, Docker Swarm, Orchestration, Multi-Cloud, PaaS.

Abstract: This paper presents a contribution to the fields of Big Data Analytics and Software Architecture, namely an
emerging and unifying architectural pattern for big data processing in the cloud from a cloud consumer’s
perspective. PaaS-BDP (Platform-as-a-Service for Big Data) is an architectural pattern based on resource
pooling and the use of a unified programming model for building big data processing pipelines capable of
processing both batch and stream data. It uses container cluster technology on a PaaS service model to
overcome common shortfalls of current big data solutions offered by major cloud providers such as low
portability, lack of interoperability and the risk of vendor lock-in.

1 INTRODUCTION

Big data is an area of technological research which
has been receiving increased attention in recent years.
As the Internet of Things (IoT) expands to different
spheres of human life, a large volume of structured,
semi-structured and unstructured data is generated at
very high velocity. To derive value from big data,
businesses and organisations need to detect patterns
and trends in historical data. They also need to
receive, process and analyse streaming data in real-
time, or close to real-time, a challenge which current
technologies and traditional system architectures find
difficult to meet.

Cloud computing has also been attracting growing
interest lately. With different service models
available such as infrastructure as-a-service (IaaS),
platform as-a-service (PaaS) and software as-a-
service (SaaS), it is no longer essential that companies
host their IT infrastructure on-premises.
Consequently, an increasing number of small and
medium-sized enterprises (SME) has ventured into
big data analytics utilising powerful computing
resources, previously unavailable to them, without
having to procure their own hardware or maintain an
in-house team of highly skilled IT professionals. The
popularisation of cloud computing is not without its
challenges, particularly when it comes to
guaranteeing the portability and interoperability of

components developed, thus preventing the risk of
vendor lock-in. The solution presented in this paper is
an answer to these challenges.

2 MOTIVATION

The plethora of technologies currently being used for
Big Data processing, and the lack of a systematic,
unified approach to processing big data in the cloud
is a motivation for this research. There is no single
accepted solution to cater for all types of big data, so
various technologies tend to be used in combination.
Consequently, the learning curve for a developer
working with big data is steep, and the processing
logic developed within one system is generally
incompatible with other systems, leading to code
duplication and low maintainability.

The aim of this research is to produce a
systematic and unified approach to developing
portable and interoperable Big Data processing
services on a multi-cloud PaaS service model. PaaS-
BDP is based on a programming model applicable to
both stream and batch data, thus eliminating the need
for the Lambda Architecture where multiple
technologies are used in combination.

Vergilio, T. and Ramachandran, M.
PaaS-BDP.
DOI: 10.5220/0006632400450052
In Proceedings of the 3rd International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2018), pages 45-52
ISBN: 978-989-758-297-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

45

3 RELATED WORK

This research proposes a solution to the vendor lock-
in aspects of low portability and lack of
interoperability affecting existing big data processing
offerings in the cloud. Solutions to the vendor lock-in
issue encountered in the literature can be categorised
as follows:

3.1 Standardisation

Standardisation of cloud resource offerings is a way
of dealing with the vendor lock-in issue. However, no
universal set of standards has yet been identified
which would successfully solve the issues of
portability and interoperability between different
cloud providers (Martino, 2014), and the standards
that do exist have not been widely adopted by the
industry (Guillén et al., 2013).

3.2 Cloud Federations

Another alternative solution to the vendor lock-in
issue is the establishment of cloud federations
(Kogias et al., 2016). In a cloud federation, providers
voluntarily agree to participate and are bound by rules
and regulations. This however places the focus on the
cloud provider, rather than on the consumer of cloud
services. As this research approaches the vendor lock-
in issue from the cloud consumer’s perspective, cloud
federations are excluded from its scope.

3.3 Middleware

The introduction of a layer of abstraction to enable
distribution and interoperability between different
cloud providers has also been proposed as a possible
solution to the cloud lock-in problem (Guillén et al.,
2013), (Silva et al., 2013). One such model, called
Neo-Metropolis, was proposed by H. Chen et al.
(Chen et al., 2016). This model is based on a kernel,
which provides the platform’s basic functionality, a
periphery, composed of various service providers
hosted on different clouds, and an edge, representing
customers who utilise services and provide
requirements (Chen et al., 2016). Whilst the kernel
would be fairly stable and backwards compatible,
with stable releases, the periphery would be in
constant development, or perpetual beta, and would
be based on open-source code (Chen et al., 2016).

One criticism to this type of approach, however,
is that the lock-in problem is not resolved, it is simply
shifted to the enabling middleware layer (Guillén et
al., 2013).

3.4 Unified Models

A model-driven approach to development, combined
with a unifying framework for modelling cloud
artefacts, has been suggested as a possible solution to
the vendor lock-in problem. In fact, the “model once,
generate everywhere” precept of MDA (Model
Driven Architecture) suggests that software can be
cloud platform-agnostic, provided that the necessary
code generating engines are in place (Martino, 2014).
In reality, however, it is difficult to find concrete
examples of perfectly accurate code generation
engines capable of producing all of the source code
exclusively from the models (Guillén et al., 2013).

MULTICLAPP is an architectural framework that
separates the application design from cloud provider-
specific deployment configuration. Application
modelling is done using an extended UML profile.
The models are then processed by a Model
Transformation Engine, responsible for inserting
cloud provider-specific configuration and generating
class skeletons (Guillén et al., 2013). Although this
approach ensures the perpetuation of the models in
case of cloud provider migration, application
implementation code would still need to be re-
written.

3.5 Virtualisation

The use of containers or hypervisor technology
(virtual machine managers) to deploy software in the
cloud is a pattern which minimises the effects of
vendor lock-in, as the environment configuration and
requirements are packaged together with the
deployed application.

3.5.1 Virtual Machines

The use of VMs to deploy applications is generally
associated with the IaaS cloud service model.
Together with the code for the developed application,
a VM also contains an entire operating system
configured to run that code. Since containers are
lighter and easier to deploy and maintain than VMs,
this research advocates the use of container
technology in its proposed architecture.

3.5.2 Containers

Containers are a lighter alternative to VMs
(Bernstein, 2014). They have gained increased
popularity recently, following the open-sourcing of
the most widely-accepted technology, Docker, in
March 2013 (Miell & Sayers, 2015).

COMPLEXIS 2018 - 3rd International Conference on Complexity, Future Information Systems and Risk

46

The benefits of using containers become more
apparent when it comes to implementing distributed
architectures (Bernstein, 2014), as their small size and
relative ease of deployment allow for better elasticity
across different clouds. Docker is based on the Linux
operating system, which is a good fit for the cloud as
it is reliable, has a wide user base, and allows
containers to scale up without incurring additional
licensing costs (Celesti et al., 2016).

This research embraces the emerging trend
towards containerisation as it recognises the benefits
of using a multi-cloud environment for the
deployment of distributed big data processing
frameworks.

4 PROPOSED SOLUTION

The proposed solution is an architectural pattern for
big data processing using frameworks and containers
on a PaaS service model.

4.1 Conceptual Elements

4.1.1 Framework

The framework takes care of parallelising the data
processing, scheduling work between the processing
units and ensuring fault tolerance. In traditional, on-
premises implementations, the framework code is
generally downloaded and unpacked in each
participating machine. A number of setup steps are
then completed to integrate each machine into the
cluster as a worker. As this process is executed within
each participating machine, usually by entering
commands on a terminal, it is prone to failure due to
differences between environments or human error.
The architectural pattern proposed in this section
presents a solution to this problem.

4.1.2 Image

An image specifies how to build/get an application,
its runtime environment and dependencies and
execute it in a container. It is abstract, whereas a
container is concrete. Many identical containers can
be created from a single image, which makes them a
good choice of technology for exploring the elasticity
of the cloud when building distributed systems. In a
similar way in which a class is used to instantiate an
object in object-oriented programming, an image is
used to instantiate containers in container-based
implementations.

Images are stored in a registry, which can be
private or public, and downloaded when needed.
Registries enable version control and promote code
sharing and reuse.

4.1.3 Container

Containers are lightweight runtime environments
deployed to virtual or physical machines. Each
machine can have several containers running in it.
They share the same operating system, but are
otherwise separate deployment environments.

4.1.4 Machine

A bare-metal or virtual machine can have a number
of containers running on it. They can be based on-
premises or in the cloud, with the latter generally
exhibiting greater elasticity. AWS, for example,
allows vertical scaling of their virtual machines
through re-sizing, which involves selecting a more
powerful configuration from the offers available
(Resizing Your Instance - Amazon Elastic Compute
Cloud, 2017).

4.2 Resource Sharing

The new architectural pattern proposed in this
research decouples the physical deployment
environment, i.e. machines, from the artifacts that are
deployed to them and ultimately the frameworks that
own the artifacts. Instead of having dedicated
machines for Hadoop, Spark, etc, these frameworks
share a pool of resources and take or drop them as
needed. Increased utilisation and improved access to
data sharing have been highlighted in the literature as
advantages associated with pooling resources
between big data frameworks (Hindman et al., 2011).
In fact, these factors are particularly relevant in the
context of cloud-based architectures, where costs are
transparent and changes are immediately visible. If
we take, for example, a multi-cloud setup where
resources are fluid and vendor lock-in is negligible, it
is possible to scale up using whichever provider is
most suitable at the time, or even replace providers
without detrimentally affecting the system.

The existence of mixed big data packages, such as
the Hadoop Ecosystem, suggests that there is no de-
facto big data technology to cater for all different
needs and scenarios. Instead, organisations tend to
utilise more than one framework concurrently. This is
another strong argument for choosing an architecture
which allows resources to be pooled and shared
between frameworks.

PaaS-BDP

47

Fig.1 illustrates how the proposed architectural
pattern decouples frameworks from machines by
introducing a new abstraction: containers. From a
machine’s perspective, it runs containers. A machine
is unaware of which frameworks, if any, are
associated with the containers running on it. Specific
environment configuration is defined at container
level, leaving the machine itself generic and agnostic.
The framework, on the other hand, knows nothing
about the specific machines on which their workers
and managers run. It does know which containerised
workers and managers are part of the cluster at a given
time, and their corresponding states, but it has no
knowledge of machines and their configurations.

Figure 1: Container-Based Big Data Processing
Deployment.

Fig.2 illustrates how the proposed architecture
scales up. Different big data frameworks are
maintained concurrently, as are different sets of
machines hosted in different locations. More
machines can be added to the cluster to scale the
system vertically. Likewise, more containers can be
created from a worker image and deployed to the
cluster if a particular job executed by a framework
needs to be scaled horizontally.

Figure 2: Container-Based Big Data Processing
Deployment on a PaaS Service Model.

4.3 Programming the Big Data
Processing Pipeline

This section decouples the big data processing
pipeline code from the framework under which it
ultimately runs. When the concept of a processing

pipeline is abstracted as a series of operations, defined
by business needs, performed on units of data, we find
no reason to believe it could not be written in a
framework-agnostic way. This avoids duplication
when different frameworks are used and enables the
portability of the developed artifact between
frameworks.

4.3.1 Different Programming Models

Many big data frameworks claim that any
programming language can be used to define their
processing pipelines, e.g. (Apache Storm - Project
Information, n.d.), (MapReduce Tutorial, 2013). This
section shall demonstrate that the main issue affecting
the portability and interoperability of artifacts
produced for a given framework is not to do with the
programming language, but with the abstractions and
programming model to which a developer must
adhere. These tend to be specific to each framework
and not easily translatable between them. A simple
visual example of a classifier and counter
implementation is used to illustrate this point.

Imagine a scenario where there are various green
and yellow circles, and a business need to count how
many circles there are of each colour. This section
compares two different approaches to implementing
a solution: one using MapReduce, a popular
algorithm for distributed parallel processing of batch
files, and another using a topology of spouts and
bolts, abstractions provided by the Storm framework.
Fig.3 presents a MapReduce-based solution. A
mapping function is first applied to each element of
each data set. It accepts coloured circles and outputs
numbered coloured circles which, in code, would be
represented as key/value pairs where the key is the
colour and the value is the number. The reduce
function then takes a set of values (all the circles
where the colour is yellow, or all the circles where the

Figure 3: The Map-Reduce Algorithm.

COMPLEXIS 2018 - 3rd International Conference on Complexity, Future Information Systems and Risk

48

colour is green) and performs a reduction operation,
i.e. transforms them into a smaller set of values. In
this case, it outputs one element, a circle where the
number is the sum of all the other numbers in the set.
The result could also be represented as a key/value
pair where the key is the colour or the circle and the
value is the number it displays.

Storm, a framework mainly designed for stream
processing, uses a different type of abstraction from
those used by MapReduce, namely spouts and bolts.
Spouts represent sources of streaming data, whilst
bolts represent transformations applied to them.
Because streaming data is infinite, a similar exercise
of counting circles by colour only makes sense if time
is taken into consideration, not only in the visual
representation, but also in the code implementation of
a possible solution. Fig. 4 represents a stream-based
approach to the circle count exercise. Using spouts
and bolts, it processes each element it sees in real-
time and updates a counter. Because the source of
data is infinite, the processing of the data is also
infinite, and the results are never final.

Figure 4: Spouts and Bolts Representing Stream Data
Processing.

Having examined two very simple examples
where the same problem is solved using different
frameworks and different approaches to big data
processing, it becomes apparent that the lack of
portability or interoperability between artifacts
produced for different frameworks is a complex issue
that goes beyond the simple translation of one library
into another. The abstractions upon which these
frameworks are built are fundamentally diverse, one
of the reasons why they generally provide their own
libraries.

In this section, a simple example of a counter for
different coloured circles was used to obtain an
insight into how big data frameworks use different
abstractions and a different programming model to
implement solutions to the same problem. In
particular, batch and stream architectures appear to
differ fundamentally due to the limited or unlimited
nature of the data source. The Lambda Architecture,

developed as an answer to this predicament, never did
circumvent the inconvenience of developers having
to maintain different pieces of code, containing the
same business logic, in different places, only because
the incoming data is, in some cases, limited and, in
others, unlimited. Section 4.3.3 looks at how this
dichotomy has been broken and explores the benefits
associated with using a unified programming model
with different big data frameworks. Before that,
however, the following section takes a closer look at
the traditional scenario of software development
using different frameworks and different
programming models.

4.3.2 Framework-Specific Programming

Framework-specific programming is hereby defined
as writing software code which is intended to be
executed from within a given framework. In a
scenario where multiple frameworks are used,
artifacts produced for each framework exist
independently and are maintained independently
throughout their existences. If a business case arises
to duplicate the functionality developed within one
framework onto a different framework, it is usually
the case that new code will need to be written, as the
conceptual model and abstractions used in the
implementation will be incompatible. Fig. 5
illustrates the process of programming for specific
frameworks.

Figure 5: Framework-Specific Programming.

4.3.3 Framework-Agnostic Programming

As seen in the previous section, in framework-
specific programming, developers use specialised
libraries provided by each framework. The processing
code written is therefore only compatible with a
particular framework, as are the artifacts produced.
The necessary conditions to enable framework-
agnostic programming can be understood by once
again referring to the process in Fig. 6. If, instead of
using a framework-provided library, developers used
a common library compatible with the main big data
frameworks, they would be able to write processing

PaaS-BDP

49

code in a framework-agnostic way, and to produce
artifacts compatible with multiple frameworks. The
Apache Beam SDK (Apache Beam, 2017) comes
very close to being such a library. The issue of
fundamental differences between programming
models for batch and stream is resolved by treating all
data as if it were streaming. Streaming data, due to its
unbounded nature, is divided into bounded subsets
called windows, which are finite and can be processed
one at a time. The same approach is used for the
processing of batch data: even though the data is
finite, it could be so large that, for processing
purposes, it makes sense to treat it as infinite. Large
sources of batch data would therefore be divided into
windows and processed one subset at a time, as if they
were streaming. Fig. 6 and 7 illustrate the windowing
of batch data so the same programming model is
applied for both batch and stream data.

Figure 6: Batch Processing using a Stream-Based
Programming Model.

Figure 7: Stream Processing using a Stream-Based
Programming Model.

The benefits of decoupling the programming
model from specific big data frameworks include less
code duplication, increased reusability and
maintainability of artifacts produced, and a shallower
learning curve for developers wanting to work with
big data. Fig. 8 illustrates the framework-agnostic
programming model. Note how the developer only
produces one artifact, which is then uploaded to
different frameworks, to be processed using their
respective resources.

Figure 8: Framework-Agnostic Programming.

4.3.4 Framework-Agnostic Programming
with Pooled Resources

This section aims to amalgamate the framework
agnostic programming model described in the
previous section with the container-based
architectural pattern proposed earlier. It demonstrates
how decoupling artifacts from frameworks and from
the machines that run them leads to less duplication,
higher maintainability of code, as well as easier,
simpler and more effective management of machine
clusters.

Fig. 9 illustrates the framework-agnostic model
with pooled resources. Big data processing pipelines
are developed once per business case, instead of one
per framework. Once the artifact is ready to be
released into production, it can be uploaded to and
executed by any compatible big data framework.
Because the programming model used is stream-
based, the big data framework must be able to execute
stream pipelines. This is one of the limitations of the
model. However, should users of major batch
processing frameworks such as Hadoop wish to adopt
the proposed unified model, they could do so with
minimal impact and without the need for migration
by adopting a parallel transition strategy over a long
period of time (Okrent & Vokurka, 2004). Since
HDFS files can be used as data sources in the
proposed model, new processing pipelines can be
developed using the unified model and run by a
stream engine without affecting the existing code
developed to run in Hadoop.

Figure 9: Framework-Agnostic Programming with Pooled
Resources.

The second decoupling line in Fig. 10 shows how
resources can be pooled and shared by different
frameworks. Frameworks have a number of runners
or workers responsible for the parallel execution of
data processing pipelines. These workers are typically
deployed to clusters of machines on a one cluster per
framework basis, as shown in Fig. 8. This represents

COMPLEXIS 2018 - 3rd International Conference on Complexity, Future Information Systems and Risk

50

a potential waste of resources, magnified in a cloud
scenario where machines are charged on a per-minute
base. The chance of charges being incurred for
machines which are idle is higher, since a machine
commissioned for a given framework’s cluster cannot
be immediately utilised by a different framework.
The proposed model solves this issue by allowing
different frameworks to share the same cluster.
Runners belonging to different frameworks are
deployed to machines as containers. Because
machines only execute containers and know nothing
about which framework, if any, the containers belong
to, they become framework-independent and can be
shared between several of them.

This section presented the full proposed model for
big data processing in the cloud. It discussed the
advantages of utilising a unified programming model
and a container-based architecture with pooled
resources for cases where different big data
frameworks are used simultaneously.

5 EVALUATION

The current section presents preliminary results for an
initial experiment which consisted of setting up and
configuring a multi-cloud containerised environment
on a PaaS service model. A total of 12 virtual
machines were commissioned from Microsoft Azure,
Google Cloud and the Open Science Data Cloud
(OSDC), as illustrated in Table 1. Although every
attempt was made to commission identical machines
to operate as workers, lack of standardisation
amongst cloud providers led to our nodes being
slightly, although not significantly different.

Docker was used for containerisation, and Docker
Swarm for orchestration. The nodes were networked
across clouds using the Weave Net Docker plugin
(Weave Net, 2017). The Apache Beam SDK was used
to program the big data processing pipeline, since it
provides a unifying programming model for both
batch and stream data. Apache Flink was selected as
a runner since, at the time of writing, it provided the
widest range of capabilities from the open-source
technologies supported by Apache Beam (Apache
Beam Capability Matrix, n.d.).

At this initial stage, we successfully verified that
the proposed architecture is feasible and that the job
of processing incoming streaming data is seamlessly
parallelisable across different clouds. We also
verified that the proposed architecture is horizontally
and vertically scalable by increasing the number of
containers running data processing jobs, and by
adding nodes dynamically to the pool of resources.

Table 1: Multi-Cloud Virtual Machine Specification.

Cloud Resource
Commissioned

RAM CPU Disk Purpose

Azure Standard DS2 v2
Promo

7GB 2vCP
U

30G
B

Orchestratio
n

Azure Standard DS2 v2
Promo

7GB 2vCP
U

30G
B

Work
Parallelisati
on

Azure Standard DS2 v2
Promo

7GB 2vCP
U

30G
B

Worker

Azure Standard DS2 v2
Promo

7GB 2vCP
U

30G
B

Worker

Azure Standard DS2 v2
Promo

7GB 2vCP
U

30G
B

Worker

Googl
e

n1-standard-2 7.5G
B

2vCP
U

10G
B

Worker

Googl
e

n1-standard-2 7.5G
B

2vCP
U

10G
B

Worker

OSDC m3.medium 6GB 2vCP
U

10G
B

Worker

OSDC m3.medium 6GB 2vCP
U

10G
B

Worker

OSDC m3.medium 6GB 2vCP
U

10G
B

Worker

OSDC m3.medium 6GB 2vCP
U

10G
B

Worker

OSDC ram8.disk10.eph64.co
re4

8GB 4vCP
U

10G
B

Messaging

We are currently working on a Case Study which
involves developing a real-time Energy Efficiency
Analysis service using the multi-cloud big data
architecture proposed. This Case Study shall provide
us with a solid evaluation of our contribution in a real-
world scenario.

6 CONCLUSIONS AND FUTURE
WORK

This paper presented a contribution to the fields of
Big Data Analytics and Cloud Software Architecture
of an emerging and unifying architectural pattern for
big data processing in the cloud. This pattern is based
on the use of big data frameworks, containers and
container orchestration technology for the
deployment of big data processing pipelines capable
of processing both batch and stream data. We
discussed how the issues of low portability and lack
of interoperability, identified as common
shortcomings of current cloud-based solutions, are
overcome by our proposed solution. We expect to
complete our Case Study evaluation of the proposed
architecture in the coming months.

Furthermore, we envision additional development
of the initial proposal to collect metrics related to
processing time from a data flow perspective. The

PaaS-BDP

51

aim is to develop a monitoring service to inform cloud
consumers of delays in the processing of windows of
data, thus highlighting the need to increase processing
capacity by scaling the system vertically (i.e. adding
more virtual machines to the pool). Correspondingly,
the monitoring service would gather information on
whether data is waiting too long to be processed, thus
suggesting the need to scale the system horizontally
(i.e. increase the number of containers running the
framework’s workers). This monitoring service from
a unique data flow perspective is also a contribution
to the field, and will be used to gather performance
metrics to further evaluate the architectural pattern
proposed in this paper.

ACKNOWLEDGEMENTS

This work made use of the Open Science Data Cloud
(OSDC) which is an Open Commons Consortium
(OCC)-sponsored project.

Cloud computing resources were provided by a
Microsoft Azure for Research award.

REFERENCES

Apache Beam (2017) Apache Beam [Online]. Available
from: <https://beam.apache.org/> [Accessed 28
February 2017].

Apache Beam Capability Matrix (n.d.) Apache Beam
Capability Matrix [Online]. Available from:
<https://beam.apache.org/documentation/runners/capa
bility-matrix/> [Accessed 9 August 2017].

Apache Storm - Project Information (n.d.) Project
Information [Online]. Available from:
<http://storm.apache.org/about/multi-language.html>
[Accessed 7 August 2017].

Bernstein, D. (2014) Containers and Cloud: From LXC to
Docker to Kubernetes. IEEE Cloud Computing, 1 (3)
September, pp. 81–84.

Celesti, A., Mulfari, D., Fazio, M., Villari, M. & Puliafito,
A. (2016) Exploring Container Virtualization in IoT
Clouds. In: 2016 IEEE International Conference on
Smart Computing (SMARTCOMP), May 2016. pp. 1–6.

Chen, H. M., Kazman, R., Haziyev, S., Kropov, V. &
Chtchourov, D. (2016) Big Data as a Service: A Neo-
Metropolis Model Approach for Innovation. In: 2016
49th Hawaii International Conference on System
Sciences (HICSS), January 2016. pp. 5458–5467.

Guillén, J., Miranda, J., Murillo, J. M. & Canal, C. (2013)
A UML Profile for Modeling Multicloud Applications.
In: Lau, K.-K., Lamersdorf, W. & Pimentel, E. ed.,
Service-Oriented and Cloud Computing, September 11,
2013. Springer Berlin Heidelberg, pp. 180–187.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A.,
Joseph, A. D., Katz, R., Shenker, S. & Stoica, I. (2011)
Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center. In: Proceedings of the 8th USENIX
Conference on Networked Systems Design and
Implementation, 2011. Berkeley, CA, USA: USENIX
Association, pp. 295–308.

Kogias, D. G., Xevgenis, M. G. & Patrikakis, C. Z. (2016)
Cloud Federation and the Evolution of Cloud
Computing. Computer, 49 (11) November, pp. 96–99.

MapReduce Tutorial (2013) MapReduce Tutorial [Online].
MapReduce Tutorial. Available from:
<https://hadoop.apache.org/docs/r1.2.1/mapred_tutoria
l.html> [Accessed 7 August 2017].

Martino, B. D. (2014) Applications Portability and Services
Interoperability among Multiple Clouds. IEEE Cloud
Computing, 1 (1) May, pp. 74–77.

Miell, I. & Sayers, A. H. (2015) Docker in Practice. Shelter
Island, NY: Manning Publications.

Okrent, M. D. & Vokurka, R. J. (2004) Process Mapping in
Successful ERP Implementations. Industrial
Management & Data Systems, 104 (8) October, pp.
637–643.

Resizing Your Instance - Amazon Elastic Compute Cloud
(2017) [Online]. Available from:
<http://docs.aws.amazon.com/AWSEC2/latest/UserGu
ide/ec2-instance-resize.html> [Accessed 24 July 2017].

Silva, G. C., Rose, L. M. & Calinescu, R. (2013) A
Systematic Review of Cloud Lock-In Solutions. In:
2013 IEEE 5th International Conference on Cloud
Computing Technology and Science, December 2013.
vol. 2. pp. 363–368.

Weave Net (2017) [Online]. Available from:
<https://store.docker.com/plugins/weave-net-plugin>
[Accessed 20 December 2017].

COMPLEXIS 2018 - 3rd International Conference on Complexity, Future Information Systems and Risk

52

