
An Approach to Prioritize Classes in a Multi-objective Software

Maintenance Framework

Michael Mohan and Des Greer
Department of Electronics, Electrical Engineering and Computer Science,

Queen’s University Belfast, Northern Ireland, U.K.

Keywords: Search based Software Engineering, Maintenance, Automated Refactoring, Refactoring Tools, Software

Quality, Multi-objective Optimization, Genetic Algorithms.

Abstract: Genetic algorithms have become popular in automating software refactoring and an increasing level of at-

tention is being given to the use of multi-objective approaches. This paper investigated the use of a mul-

ti-objective genetic algorithm to automate software refactoring using a purpose built tool, MultiRefactor.

The tool used a metric function to measure quality in a software system and tested a second objective to

measure the importance of the classes being refactored. This priority objective takes as input a set of classes

to favor and, optionally, a set of classes to disfavor as well. The multi-objective setup refactors the input

program to improve its quality using the quality objective, while also focusing on the classes specified by

the user. An experiment was constructed to measure the multi-objective approach against the alternative

mono-objective approach that does not use an objective to measure priority of classes. The two approaches

were tested on six different open source Java programs. The multi-objective approach was found to give

significantly better priority scores across all inputs in a similar time, while also generating improvements in

the quality scores.

1 INTRODUCTION

Search-Based Software Engineering (SBSE) has

been used to automate various aspects of the soft-

ware development cycle. Used successfully, SBSE

can help to improve decision making throughout the

development process and assist in enhancing re-

sources and reducing cost and time, making the pro-

cess more streamlined and efficient. Search-Based

Software Maintenance (SBSM) is usually directed at

minimizing the effort of maintaining a software

product. An increasing proportion of SBSM research

is making use of multi-objective optimization tech-

niques. Many multi-objective search algorithms are

built using genetic algorithms (GAs), due to their

ability to generate multiple possible solutions. In-

stead of focusing on only one property, the mul-

ti-objective algorithm is concerned with a number of

different objectives. This is handled through a fit-

ness calculation and sorting of the solutions after

they have been modified or added to. The main ap-

proach used to organize solutions in a multi-

objective approach is Pareto. Pareto dominance or-

ganizes the possible solutions into different non-

domination levels and further discerns between them

by finding the objective distances between them in

Euclidean space.

In this paper, a multi-objective approach is cre-

ated to improve software that combines a quality

objective with one that incorporates the priority of

the classes in the solution. There are a few situations

in which this may be useful. Suppose a developer on

a project is part of a team, where each member of

the team is concerned with certain aspects of the

functionality of the program. This will likely involve

looking at a subset of specific classes in the pro-

gram. The developer may only have involvement in

the modification of their selected set of classes. They

may not even be aware of the functionality of the

other classes in the project. Likewise, even if the

person is the sole developer of the project, there may

be certain classes which are more risky or more re-

cent or in some other way more worthy of attention.

Additionally, there may be certain parts of the code

considered less well-structured and therefore most in

need of refactoring. Given this prioritization of some

classes for refactoring, tool support is better em-

Mohan, M. and Greer, D.
An Approach to Prioritize Classes in a Multi-objective Software Maintenance Framework.
DOI: 10.5220/0006631902150222
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 215-222
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

215

ployed with refactoring directed towards those clas-

ses.

Another situation is that there may be some

classes considered less suitable for refactoring.

Suppose a developer has only worked on a subset of

the classes and is unsure about other areas of the

code, they may prefer not to modify that section of

the code. Similarly, older established code might be

considered already very stable, possibly having been

refactored extensively in the past, where refactoring

might be considered an unnecessary risk. Changing

code also necessitates redoing integration and tests

and this could be another reason for leaving parts of

the code as they were. There may also be cases

where “poor quality” has been accepted as a neces-

sary evil. For example, a project may have a class

for logging that is referenced by many other classes.

Generally, highly coupled classes are seen as nega-

tive coding practices, but for the purposes of the

project it may be deemed unavoidable. In cases like

this where the more unorthodox structure of the

class is desired by the developer, these classes can

be specified in order to avoid refactoring them to

appease the software metrics used. However, we do

not want to exclude less favoured classes from the

refactoring process since an overall higher quality

codebase may be achieved if some of those are in-

cluded in the refactorings.

We propose that it would be helpful to classify

classes into a list of “priority” classes and

“non-priority” classes in order to focus on the refac-

toring solutions that have refactored the priority

classes and given less attention to the non-priority

classes. The priority objective proposed takes count

of the classes used in the refactorings of a solution

and uses that measurement to derive how successful

the solution is at focusing on priority classes and

evading non-priority classes. The refactorings them-

selves are not restricted so during the refactoring

process the search is free to apply any refactoring

available, regardless of the class being refactored.

The priority objective measures the solutions after

the refactorings have been applied to aid in choosing

between the options available. This will then allow

the objective to discern between the available refac-

toring solutions. In order to test the effectiveness of

such an objective, an experiment has been con-

structed to test a GA that uses it against one that

does not. In order to judge the outcome of the ex-

periment, the following research questions have

been derived:

RQ1: Does a multi-objective solution using a

priority objective and a quality objective give an

improvement in quality?

RQ2: Does a multi-objective solution using a

priority objective and a quality objective prioritize

classes better than a solution that does not use the

priority objective?

In order to address the research questions, the

experiment will run a set of tasks to compare a de-

fault mono-objective set up to refactor a solution

towards quality with a multi-objective approach that

uses a quality objective and the newly proposed pri-

ority objective. The following hypotheses have been

constructed to measure success in the experiment:

H1: The multi-objective solution gives an im-

provement in the quality objective value.

H10: The multi-objective solution gives no im-

provement in the quality objective value.

H2: The multi-objective solution gives signifi-

cantly higher priority objective values than the cor-

responding mono-objective solution.

H20: The multi-objective solution does not give

significantly higher priority objective values than the

corresponding mono-objective solution.

The remainder of this paper is organized as fol-

lows. Section 2 discusses related work. Section 3

describes the MultiRefactor tool used to conduct the

experimentation. Section 4 explains the setup of the

experiment used to test the priority objective, as well

as the outcome of previous experimentation done to

derive the quality objective and the GA parameters

used. Section 5 discusses the results of the experi-

ment by looking at the objective values and the

times taken to run the tasks, and Section 6 concludes

the paper.

2 RELATED WORK

Several recent studies in SBSM have explored the

use of multi-objective techniques. Ouni, Kessentini,

Sahraoui and Hamdi (Ouni et al. 2012) created an

approach to measure semantics preservation in a

software program when searching for refactoring

options to improve the structure, by using the

NSGA-II search. Ouni, Kessentini, Sahraoui and

Boukadoum (Ouni et al. 2013) expanded upon the

code smells correction approach of Kessentini, Kes-

sentini and Erradi (Kessentini et al. 2011) by re-

placing the GA used with NSGA-II. Wang, Kessen-

tini, Grosky and Meddeb (Wang et al. 2015) also

expanded on the approach of Kessentini, Kessentini

and Erradi by combining the detection and removal

of software defects with an estimation of the number

of future code smells generated in the software by

the refactorings. Mkaouer et al. (Mkaouer et al.

2014; M. W. Mkaouer et al. 2015; W. Mkaouer et al.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

216

2015) used NSGA-III to experiment with automated

maintenance.

3 MultiRefactor

The MultiRefactor approach1 uses the RECODER

framework2 to modify source code in Java programs.

RECODER extracts a model of the code that can be

used to analyze and modify the code before the

changes are applied. MultiRefactor makes available

various different approaches to automated software

maintenance in Java programs. It takes Java source

code as input and will output the modified source

code to a specified folder. The input must be fully

compilable and must be accompanied by any neces-

sary library files as compressed jar files. The nu-

merous searches available in the tool have various

input configurations that can affect the execution of

the search. The refactorings and metrics used can

also be specified. As such, the tool can be config-

ured in a number of different ways to specify the

particular task that you want to run. If desired, mul-

tiple tasks can be set to run one after the other.

A previous study (Mohan et al. 2016) used the

A-CMA (Koc et al. 2012) tool to experiment with

different metric functions but that work was not ex-

tended to produce source code as an output (likewise,

TrueRefactor (Griffith et al. 2011) only modifies

UML and Ouni, Kessentini, Sahraoui and Bouka-

doum’s (Ouni et al. 2013) approach only generates

proposed lists of refactorings). MultiRefactor

(Mohan and Greer 2017) was developed in order to

be a fully-automated search-based refactoring tool

that produces compilable, usable source code. As

well as the Java code artifacts, the tool will produce

an output file that gives information on the execu-

tion of the task including data about the parameters

of the search executed, the metric values at the be-

ginning and end of the search, and details about each

refactoring applied. The metric configurations can

be modified to include different weights and the

direction of improvement of the metrics can be

changed depending on the desired outcome.

MultiRefactor contains seven different search

options for automated maintenance, with three dis-

tinct metaheuristic search techniques available. For

each search type there is a selection of configurable

properties to determine how the search will run. The

refactorings used in the tool are mostly based on

1 https://github.com/mmohan01/MultiRefactor
2 http://sourceforge.net/projects/recoder

Fowler’s list (Fowler 1999), consisting of 26

field-level, method-level and class-level refactorings,

and are listed below.

Field Level Refactorings: Increase/Decrease

Field Visibility, Make Field Final/Non Final, Make

Field Static/Non Static, Move Field Down/Up, Re-

move Field.

Method Level Refactorings: Increase/Decrease

Method Visibility, Make Method Final/Non Final,

Make Method Static/Non Static, Remove Method.

Class Level Refactorings: Make Class Fi-

nal/Non Final, Make Class Abstract/Concrete, Ex-

tract Subclass/Collapse Hierarchy, Remove

Class/Interface.

The refactorings used will be checked for seman-

tic coherence as part of the search, and will be ap-

plied automatically, ensuring the process is fully

automated. A number of the metrics available in the

tool are adapted from the list of metrics in the

QMOOD (Bansiya and Davis 2002) and

CK/MOOSE (Chidamber and Kemerer 1994) met-

rics suites. The 23 metrics currently available in the

tool are listed below.

QMOOD Based: Class Design Size, Number Of

Hierarchies, Average Number Of Ancestors, Data

Access Metric, Direct Class Coupling, Cohesion

Among Methods, Aggregation, Functional Abstrac-

tion, Number Of Polymorphic Methods, Class Inter-

face Size, Number Of Methods.

CK Based: Weighted Methods Per Class, Num-

ber Of Children.

Others: Abstractness, Abstract Ratio, Static Ra-

tio, Final Ratio, Constant Ratio, Inner Class Ratio,

Referenced Methods Ratio, Visibility Ratio, Lines

Of Code, Number Of Files.

In order to implement the priority objective, the

important classes need to be specified in the refac-

toring tool (preferably by the developer(s) to express

the classes they are most concerned about). With the

list of priority classes and, optionally, non-priority

classes and the list of affected classes in each refac-

toring solution, the priority objective score can be

calculated for each solution. To calculate the score,

the list of affected classes for each refactoring is

inspected, and each time a priority class is affected,

the score increases by one. This is done for every

refactoring in the solution. Then, if a list of

non-priority classes is also included, the affected

classes are inspected again. This time, if a

non-priority class is affected, the score decreases by

1. The higher the overall score for a solution, the

more successful it is at refactoring priority classes

and disfavoring non-priority classes. It is important

to note that non-priority classes are not necessarily

An Approach to Prioritize Classes in a Multi-objective Software Maintenance Framework

217

excluded completely but solutions that do not in-

volve those classes will be given priority. In this

way the refactoring solution is still given the ability

to apply structural refactorings that have a larger

effect on quality even if they are in undesirable

classes, whereas the priority objective will favor the

solutions that have applied refactorings to the more

desirable classes.

4 EXPERIMENTAL DESIGN

In order to evaluate the effectiveness of the priority

objective, a set of tasks were created that used the

priority objective to be compared against a set of

tasks that didn’t. The control group is made up of a

mono-objective approach that uses a function to

represent quality in the software. The corresponding

tasks use the multi-objective algorithm and have two

objectives. The first objective is the same function

for software quality as used for the mono-objective

tasks. The second objective is the priority objective.

The metrics used to construct the quality function

and the configuration parameters used in the GAs

are taken from previous experimentation on software

quality. Each metric available in the tool was tested

separately in a GA to deduce which were more suc-

cessful, and the most successful were chosen for the

quality function. The metrics used in the quality

function are given in Table 1. No weighting is ap-

plied for any of the metrics. The configuration pa-

rameters used for the mono-objective and mul-

ti-objective tasks were derived through trial and er-

ror and are outlined in Table 2. The hardware used

to run the experiment is outlined in Table 3.

For the tasks, six different open source programs

are used as inputs to ensure a variety of different

domains are tested. The programs range in size from

relatively small to medium sized. These programs

were chosen as they have all been used in previous

SBSM studies and so comparison of results is possi-

ble. The source code and necessary libraries for all

of the programs are available to download in the

GitHub repository for the MultiRefactor tool. Each

one is run five times for the mono-objective ap-

proach and five times for the multi-objective ap-

proach, resulting in 60 tasks overall. The inputs used

in the experiment as well as the number of classes

and lines of code they contain are given in Table 4.

For the multi-objective tasks used in the experi-

ment, both priority classes and non-priority classes

are specified for the relevant inputs. The number of

classes in the input program is used to identify the

number of priority and non-priority classes to speci-

fy, so that 5% of the overall number of classes in the

input are specified as priority classes and 5% are

specified as non-priority classes. In order to choose

which classes to specify, the number of methods in

each class of the input was found and ranked. The

top 5% of classes that contain the most methods are

the priority classes and the bottom 5% that contain

the least methods are the non-priority classes for that

input. Using the top and bottom 5% of classes means

that the same proportion of classes will be used in

the priority objective for each input program, mini-

mizing the effect of the number of classes chosen in

the experiment. In lieu of a way to determine the

priority of the classes, their complexity as derived

from the number of methods present, is taken to

represent priority. Using this process, the configura-

tions of the priority objective for each input were

constructed and used in the experiment.

Table 1: Metrics used in the software quality objective,

with corresponding directions of improvement for each.

Metrics Direction

Data Access Metric +

Direct Class Coupling -

Cohesion Among Methods +

Aggregation +

Functional Abstraction +

Number Of Polymorphic Methods +

Class Interface Size +

Number Of Methods -

Weighted Methods Per Class -

Abstractness +

Abstract Ratio +

Static Ratio +

Final Ratio +

Constant Ratio +

Inner Class Ratio +

Referenced Methods Ratio +

Visibility Ratio -

Lines Of Code -

Table 2: GA configuration settings.

Configuration Parameter Value

Crossover Probability 0.2

Mutation Probability 0.8

Generations 100

Refactoring Range 50

Population Size 50

The tool has been updated in order to use a heu-

ristic to choose a suitable solution out of the final

population with the multi-objective algorithm to

inspect. The heuristic used is similar to the method

used by Deb and Jain (Deb and Jain 2013) to con-

struct a linear hyper-plane in the NSGA-III algo-

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

218

rithm. Firstly, the solutions in the population from

the top rank are isolated and written to a separate

sub folder. It is from this subset that the best solution

will be chosen from when the task is finished.

Among these solutions, the tool inspects the indi-

vidual objective values, and for each, the best objec-

tive value across the solutions is stored. This set of

objective values is the ideal point z=(z1
max),

(z2
max), …, (zM

max) , where (zi
max) represents the

maximum value for an objective, and an objective i

= 1, 2, ..., M. This is the best possible state that a

solution in the top rank could have. After this is cal-

culated, each objective score is compared with its

corresponding ideal score. The distance of the objec-

tive score from its ideal value is found, i.e.

(zi
max)-f (x)

i

, where f (x)

i

 represents the score for a

single objective. For each solution, the largest objec-

tive distance (i.e. the distance for the objective that

is furthest from its ideal point) is stored, i.e.

fmax(x)=maxi=1
M [(zi

max)-f (x)
i

] . At this point each

solution in the top rank has a value, fmax(x), to

represent the furthest distance among its objectives

from the ideal point. The smallest among these val-

ues, minj=0

N-1
fmax(x) (where N represents the num-

ber of solutions in the top rank), signifies the solu-

tion that is closest to that ideal point, taking all of

the objectives into consideration. This solution is

then considered to be the most suitable solution and

is marked as such when the population is written to

file. On top of this, the results file for the corre-

sponding solution is also updated to mark it as the

most suitable. This is how solutions are chosen

among the final population for the multi-objective

tasks to compare against the top mono-objective

solution.

Table 3: Hardware details for the experimentation.

Operating System Microsoft Windows 7

Enterprise Service Pack 1

System Type 64-bit

RAM 8.00GB

Processor Intel Core i7-3770 CPU @

3.40GHz

Table 4: Java programs used in the experimentation.

Name LOC Classes

Mango 3,470 78

Beaver 0.9.11 6,493 70

Apache XML-RPC 2.0 11,616 79

JHotDraw 5.3 27,824 241

GanttProject 1.11.1 39,527 437

XOM 1.2.1 45,136 224

For the quality function the metric changes are

calculated using a normalization function. This

function causes any greater influence of an individu-

al metric in the objective to be minimized, as the

impact of a change in the metric is influenced by

how far it is from its initial value. The function finds

the amount that a particular metric has changed in

relation to its initial value at the beginning of the

task. These values can then be accumulated depend-

ing on the direction of improvement of the metric

(i.e. whether an increase or a decrease denotes an

improvement in that metric) and the weights given

to provide an overall value for the metric function or

objective. A negative change in the metric will be

reflected by a decrease in the overall func-

tion/objective value. In the case that an increase in

the metric denotes a negative change, the overall

value will still decrease, ensuring that a larger value

represents a better metric value regardless of the

direction of improvement. The directions of im-

provement used for the metrics in the experiment are

given in Table 1. In the case that the initial value of

a metric is 0, the initial value used is changed to 0.01

in order to avoid issues with dividing by 0. This

way, the normalization function can still be used on

the metric and its value still is low at the start. Equa-

tion (1) defines the normalization function, where m

represents the selected metric, Cm is the current met-

ric value and Im
 is the initial metric value. Wm

 is the

applied weighting for the metric (where 1 represents

no weighting) and D is a binary constant (-1 or 1)

that represents the direction of improvement of the

metric. n represents the number of metrics used in

the function. For the priority objective, this normal-

ization function is not needed. The objective score

depends on the number of priority and non-priority

classes addressed in a refactoring solution and will

reflect that.

∑ D.Wm
(

Cm

Im

- 1)

n

m=1

 (1)

5 RESULTS

Figure 1 gives the average quality gain values for

each input program used in the experiment with the

mono-objective and multi-objective approaches. For

most of the inputs, the mono-objective approach

gives a better quality improvement than the mul-

ti-objective approach, although for Mango the mul-

ti-objective approach was better. For the mul-

ti-objective approach all the runs of each input were

An Approach to Prioritize Classes in a Multi-objective Software Maintenance Framework

219

able to give an improvement for the quality objec-

tive as well as look at the priority objective. For both

approaches, the smallest improvement was given

with GanttProject. The inputs with the largest im-

provements were different for each approach. For

the mono-objective approach it was Beaver, whereas

for the multi-objective approach, it was Apache

XML-RPC.

Figure 1: Mean quality gain values for each input.

Figure 2 shows the average priority scores for

each input with the mono-objective and mul-

ti-objective approaches. For all of the inputs, the

multi-objective approach was able to yield better

scores coupled with the priority objective. The val-

ues were compared for significance using a

one-tailed Wilcoxon rank-sum test (for unpaired

data sets) with a 95% confidence level (α = 5%).

The priority scores for the multi-objective approach

were found to be significantly higher than the

mono-objective approach. For two of the inputs,

Beaver and Apache XML-RPC, the mono-objective

approach had priority scores that were less than zero.

With the Beaver input, one of the runs gave a score

of -6 and another gave a score of -10. Likewise, one

run of the Apache XML-RPC input gave a priority

score of -37. This implies that, without the priority

objective to direct them, the mono-objective runs are

less likely to focus on the more important classes

(i.e. the classes with more methods), and may sig-

nificantly alter the classes that should be disfavored

(leading to the minus values for the three

mono-objective runs across the two input programs).

Figure 3 gives the average execution times for

each input with the mono-objective and mul-

ti-objective searches. For most of the input pro-

grams, the multi-objective approach took less time

than the mono-objective but, for GanttProject, the

multi-objective approach took longer. The Wilcoxon

rank-sum test (two-tailed) was used again and the

values were found to not be significantly different.

The times for both approaches understandably in-

crease as the input program sizes get bigger and the

GanttProject input stands out as taking longer than

the rest, although the largest input, XOM, is unex-

pectedly quicker. The execution times for the XOM

input are smaller than both JHotDraw and GanttPro-

ject, despite it having more lines of code. However,

both of these inputs do contain more classes. Con-

sidering the relevance of the list of classes in an in-

put program to the calculation of the priority score,

it makes sense that this would have an effect on the

execution times. Indeed, GanttProject has by far the

largest number of classes, at 437, which is almost

double the amount that XOM contains. Likewise, the

execution times for GanttProject are similarly

around twice as large as those of XOM for the two

approaches. The longest task to run was for the mul-

ti-objective run of the GanttProject input, at over an

hour. The average time taken for those tasks was 53

minutes and 6 seconds.

Figure 2: Mean priority scores for each input.

Figure 3: Mean times taken for each input.

6 CONCLUSIONS

In this paper an experiment was conducted to test a

new fitness objective using the MultiRefactor tool.

The priority objective measures the classes modified

in a refactoring solution and gives an ordinal score

that indicates the number of refactorings that relate

to the important classes in the input program. These

“priority classes” are specified as an extra input in

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

220

order for the program to calculate when the im-

portant classes are inspected. There is also an option

to include a list of “non-priority classes” which, if

refactored, will have a negative effect on the priority

score. This objective helps the search to generate

refactoring solutions that have focused on what a

software developer envisions to be the more im-

portant areas of the software code, and away from

other areas that should be avoided. The priority ob-

jective was tested in conjunction with a quality ob-

jective (derived from previous experimentation) in a

multi-objective setup. To measure the effectiveness

of the priority objective, the multi-objective ap-

proach is compared with a mono-objective approach

using just the quality objective. The quality objec-

tive values are inspected to deduce whether im-

provements in quality can still be derived in this

multi-objective approach and the priority scores are

compared to measure whether the developed priority

function can be successful in improving the focus of

the refactoring approach.

The average quality improvement scores were

compared across six different open source inputs

and, for the most part, the mono-objective approach

gave better improvements. The likely reason for the

better quality score in the mono-objective approach

is due to the opportunity for the mono-objective GA

to focus on that single objective without having to

balance the possibly contrasting aim of favoring

priority classes and disfavoring non-priority classes.

The multi-objective approach was able to yield im-

provements in quality across all the inputs. In one

case, with the Beaver input, the multi-objective was

able to not only yield an improvement in quality, but

also generate a better improvement on average than

the mono-objective approach. This may be due to

the smaller size of the Beaver input, which could

mean a restricted number of potential refactorings in

the mono-objective approach. It could also be influ-

enced by the larger range of results gained the mul-

ti-objective approach for that input. The average

priority scores were compared across the six inputs

and, for the mono-objective approach, were able to

give some improvement. However, in some specific

runs, the priority scores were negative. This would

relate to there being more non-priority classes being

refactored in a solution than priority classes, which,

for the mono-objective approach, is unsurprising.

The average priority scores for the multi-objective

approach were better in each case. It is presumed

that, as the mono-objective approach has no

measures in place to improve the priority score of its

refactorings, the solutions are more likely to contain

non-priority classes and less likely to contain priori-

ty classes than the solutions generated with the mul-

ti-objective approach.

The average execution times for each input were

inspected and compared for each approach. For most

inputs, the multi-objective approach was slightly

quicker than the mono-objective counterpart. The

times for each input program increased depending

on the size of the program and the number of classes

available. The average times ranged from two

minutes for the Mango program, to 53 minutes for

GanttProject. While the increased times to complete

the tasks for larger programs makes sense due to the

larger amount of computation required to inspect

them, XOM took less time than GanttProject and

JHotDraw. Although XOM has more lines of code

than these inputs, the reason more this is likely due

to the number of classes available in each program,

which is more reflective to the time taken to run the

tasks for them. Therefore, it seems to be implied that

the number of classes available in a project will have

a more negative effect on the time taken to execute

the refactoring tasks on that project than the amount

of code. It was expected that, due to the higher com-

plexity of the multi-objective GA in comparison to

the basic GA, the execution times for the mul-

ti-objective tasks would be higher also. Although the

times taken were similar for each approach, and

were more affected by the project used, this wasn’t

the case for all of the inputs. This may have been

due to the stochastic nature of the search. Depending

on the iteration of the task run, there may be any

number of refactorings applied in a solution. If one

solution applied a large number of refactorings, this

could likely have a noticeable effect on the time

taken to run the task. The counterintuitive execution

times between the mono-objective and mul-

ti-objective tasks may be a result of this property of

the GA.

In order to test the aims of the experiment and

derive conclusions from the results a set of research

questions were constructed. Each research question

and their corresponding set of hypotheses looked at

one of two aspects of the experiment. RQ1 was

concerned with the effectiveness of the quality ob-

jective in the multi-objective setup. To address it,

the quality improvement results were inspected to

ensure that each run of the search yielded an im-

provement in quality. In all 30 of the different runs

of the multi-objective approach, there was an im-

provement in the quality objective score, therefore

rejecting the null hypothesis H10 and supporting H1.

RQ2 looked at the effectiveness of the priority ob-

jective in comparison with a setup that did not use a

function to measure priority. To address this, a non-

An Approach to Prioritize Classes in a Multi-objective Software Maintenance Framework

221

parametric statistical test was used to decide whether

the mono-objective and multi-objective data sets

were significantly different. The priority scores were

compared for the multi-objective priority approach

against the basic approach and the multi-objective

priority scores were found to be significantly higher

than the mono-objective scores, supporting the hy-

pothesis H2 and rejecting the null hypothesis H20.

Thus, the research questions addressed in this paper

help to support the validity of the priority objective

in helping to improve the focus of a refactoring so-

lution in the MultiRefactor tool while in conjunction

with another objective.

For future work, further experimentation could

be conducted to test the effectiveness of the priority

objective. The authors also plan to investigate other

properties in order to create a better supported

framework to allow developers to maintain software

based on their preferences and their opinions of what

factors are most important. It would also be useful to

gauge the opinion of developers in industry and find

out their opinion of the effectiveness of the Multi-

Refactor approach, and of the priority objective in an

industrial setting.

ACKNOWLEDGEMENTS

The research for this paper contributes to a PhD

project funded by the EPSRC grant EP/M506400/1.

REFERENCES

Bansiya, J. and Davis, C.G., 2002. A Hierarchical Model

For Object-Oriented Design Quality Assessment.

IEEE Transactions on Software Engineering., 28(1),

pp.4–17. Available at: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=979986.

Chidamber, S.R. and Kemerer, C.F., 1994. A Metrics

Suite For Object Oriented Design. IEEE Transactions

on Software Engineering., 20(6), pp.476–493.

Deb, K. and Jain, H., 2013. An Evolutionary

Many-Objective Optimization Algorithm Using

Reference-Point Based Non-Dominated Sorting

Approach, Part I: Solving Problems With Box

Constraints. IEEE Transactions on Evolutionary

Computation., 18(4), pp.1–23. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6600851%5Cnhttp://ieeexplore.ieee.org/xpl

s/abs_all.jsp?arnumber=6600851.

Fowler, M., 1999. Refactoring: Improving The Design Of

Existing Code,

Griffith, I., Wahl, S. and Izurieta, C., 2011. TrueRefactor:

An Automated Refactoring Tool To Improve Legacy

System And Application Comprehensibility. In 24th

International Conference on Computer Applications in

Industry and Engineering, ISCA 2011.

Kessentini, M., Kessentini, W. and Erradi, A., 2011.

Example-Based Design Defects Detection And

Correction. In 19th International Conference On

Program Comprehension, ICPC 2011. pp. 1–32.

Koc, E. et al., 2012. An Empirical Study About

Search-Based Refactoring Using Alternative Multiple

And Population-Based Search Techniques. In E.

Gelenbe, R. Lent, and G. Sakellari, eds. Computer and

Information Sciences II. London: Springer London,

pp. 59–66. Available at: http://link.springer.com/

10.1007/978-1-4471-2155-8 [Accessed December 3,

2014].

Mkaouer, M.W. et al., 2015. On The Use Of Many Quality

Attributes For Software Refactoring: A

Many-Objective Search-Based Software Engineering

Approach. Empirical Software Engineering.

Mkaouer, W. et al., 2014. High Dimensional Search-Based

Software Engineering: Finding Tradeoffs Among 15

Objectives For Automating Software Refactoring

Using NSGA-III. In Genetic and Evolutionary

Computation Conference, GECCO 2014.

Mkaouer, W. et al., 2015. Many-Objective Software

Remodularization Using NSGA-III. ACM

Transactions on Software Engineering and

Methodology., 24(3).

Mohan, M. and Greer, D., 2017. MultiRefactor:

Automated Refactoring To Improve Software Quality.

In 1st International Workshop on Managing Quality in

Agile and Rapid Software Development Processes,

QuASD 2017. p. in press.

Mohan, M., Greer, D. and McMullan, P., 2016. Technical

Debt Reduction Using Search Based Automated

Refactoring. Journal Of Systems And Software., 120,

pp.183–194. Available at: http://dx.doi.org/10.1016/

j.jss.2016.05.019.

Ouni, A. et al., 2013. Maintainability Defects Detection

And Correction: A Multi-Objective Approach.

Automated Software Engineering., 20(1), pp.47–79.

Ouni, A. et al., 2012. Search-Based Refactoring: Towards

Semantics Preservation. In 28th IEEE International

Conference on Software Maintenance, ICSM 2012. pp.

347–356.

Wang, H. et al., 2015. On The Use Of Time Series And

Search Based Software Engineering For Refactoring

Recommendation. In 7th International Conference on

Management of computational and collective

intElligence in Digital EcoSystems, MEDES 2015. pp.

35–42.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

222

