
Bee Hive Traffic Monitoring by Tracking Bee Flight Paths
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Abstract: The number of pollinator insect is in decline in Europe and this raises concerns about the supply of pollination
services to agriculture. Thus, countries with a low number of honeybees are more vulnerable to negative shifts
in wild pollinator communities. Consequently, the demand for honeybee pollination is higher than ever but
beekeepers are also very concerned by the strength of their colonies. To measure this factor, a very important
indicator to take into account is the flight activity at the beehive entrance. A quantitative measure of the
activity can be related to the environment and does not only benefit beekeepers but scientists too. In this paper,
we present a complete method of measuring this activity. It is represented by the number of bees going in
or out of the beehive. The developed method is divided in three parts: the first one consists in bee detection
thanks to several image transformations using background subtraction and ellipse approximations. The second
one is about tracking bees, by assuming their future positions in order to determine whether they are going
in or getting out of the beehive. The last one consists in counting the bees. Finally, the experimental results
demonstrate that our system created with limited resources can be used to precisely measure the flight activity
at the beehive entrance.

1 INTRODUCTION

Today, beekeepers are experiencing numerous losses
of colonies during flowering periods or when phyto-
sanitary products are applied, mainly due to the ef-
fects of pesticides. While honey production is the
primary economic contribution of bee farms, polli-
nation by bees is of much greater economic and en-
vironmental importance. Yet in most cases it is a
side effect which is not taken into consideration by
the beekeepers nor recognized by public authorities.
Unfortunately, the effects of pesticides are also com-
bined with the effects of predators (Asian Hornets),
parasites (Varroa Destructor), viruses often propaga-
ted by these parasites and bacterial diseases to en-
danger the honey bee (Apis Mellifera) (Vidau et al.,
2011). We have now entered a critical era for biodi-
versity and many authors believe that the honey bee
is an essential indicator of these environmental issues
(Potts et al., 2010). Beekeepers are important sta-
keholders who can contribute to the conservation of
the species. Some have set up devices for observing
their colonies to better monitor them for reasons lin-
ked to profitability but also for naturalistic observati-
ons. Technology can help beekeepers save and protect
their bees, and scientists are studying the bees beha-

vior by the mean of EBM (Electronic Beehive Mo-
nitoring) (Lebwohl, 2009). Its purpose is to collect
critical information/data on the behavior and pheno-
logy of a colony without invasive beehive inspection
and without disturbing bees in their daily tasks. The
IOT (Internet Of Things (Atzori et al., 2010)) ecosy-
stem provides the beekeeper with the material means
for such observations, giving rise to connected bee-
keeping. This new discipline assists beekeepers in
helping their bees and allows them to observe their
hives remotely. The connected beehive is equipped
with numerous sensors and can be used to measure
the weight, temperature, relative humidity, traffic in-
tensity, and many other parameters. These data are
sent by the means of a GSM or a 6LoWPAN net-
work to the beekeeper’s personal dashboard (Kushal-
nagar et al., 2007). From a computer or a smartp-
hone, the beekeeper’s account can be used to mo-
nitor the bees, including their productivity and he-
alth. Beekeepers receive alerts by e-mails or by phone
(texts) when their intervention is necessary (theft, ho-
ney flow, swarming...), which saves time and elimi-
nates unnecessary visits to the hive. The connected
beehive is also a tool for learning and communication.
By means of its dashboard, non-professional beekee-
pers receive alerts and large companies can share their
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commitment to protecting bees.
The monitoring of bee traffic gives the beekeeper

an accurate indication of the strength of the colony.
Bees which leave and enter the hive collect nectar as
well as pollen and water. The intensity of the comings
and goings shows the number of foragers in the hive
and how active the hive is. Indeed, flight activity is a
key factor of colony strength, health and organizatio-
nal structure. In addition, as part of a procedure for as-
sessing losses of bees due to phytosanitary products,
it is interesting to count the outgoing as well as the
incoming bees so as to evaluate the loss of foragers
at the end of the day. Computer vision can achieve
these tasks accurately and this paper paper presents a
new method for measuring the activity of bee at hive
entrance.

2 RELATED WORK

Quantifying human impact on biodiversity in order
to alert humanity or propose solutions is an impor-
tant line of research for ecology and other disciplines.
Acoustic signals (Diep et al., 2016) or video using
deep learning (Villon et al., 2016) are useful to ob-
serve and study activities of some animal species. In
this context, the issue of bee behavior has been dealt
with by many authors using computer vision. Feld-
man and Balch study bee movements inside the hive,
especially for waggle dance detection (Feldman and
Balch, 2004). The authors of (Khan et al., 2004) use
a particle filter to follow crawling bees inside the hive.
Meanwhile, a method is preposed in (Kulyukin, 2017)
to count bees on the landing pad of the hive, by com-
puting 1D Harr wavelet spikes. Campbell et al. also
propose the use of video sensing to monitor arrivals
and departures at the hive entrance by using elliptical
templates to detect insects followed by a graph ma-
tching in the tracking step (Campbell et al., 2008).
At that time, they faced difficulties linked to resolu-
tion using a 640×480 video, which implies that bees
were approximately represented as 6×14 pixels. A
stereo vision-based system is presented in (Chiron
et al., 2013). They use a detect-before-track appro-
ach that employs two methods: hybrid segmentation
using both intensity and depth images, and tuned 3D
multi-target tracking based on the Kalman filter and
Global Nearest Neighbor. A tracking algorithm based
on Viola-Jones approach (Viola and Jones, 2001) is
developed in (Miranda et al., 2012) to help assess the
quantity and variety of pollinators in a given environ-
ment in the determination of the relationship between
flowers and pollinators. However, the multi-detection
process results in track fragmentations and makes it
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(a) Sketch of the device (b) Real hive
Figure 1: Diagram of the bee path drawing.

difficult to analysis the trajectories of several objects
(Prokaj et al., 2011). Moreover, in aerial videos bees
can have random movements, contrary to cars, which
have generally rectilinear trajectories (Perera et al.,
2006). Babic et al. (Babic et al., 2016) propose a met-
hod on embedded implemented systems co-located
with a hive in order to detect bee that have pollen.
The classification is performed using color variance
and a nearest mean classifier. The Signal-to-Noise
Ratio (SNR) between a reference image and a current
image is utilized in (Tashakkori and Ghadiri, 2015) to
estimate the number of bees at the entrance of a hive.
This method is not precise if bees are at different ele-
vations, moreover, it requires an a-priori information
about the pixel number for the representation of the
bees in the image. Histogram of Oriented Gradients
(HOG) features is used in (Azarcoya-Cabiedes et al.,
2014) to detect the presence of bumblebees, but chan-
ges in lighting and insect shadows affect de detection.
Nevertheless, authors suggest the performance can be
improved by using a detection-and-tracking strategy.
Contrary to our approach, the segmentation is perfor-
med on crawling bees, as this is the case the algorithm
developed in (Tu et al., 2016). The authors use a back-
ground subtraction method to segment the images and
count the number of segmented pixels in a grayscale
image in order to evaluate the number of bees entering
in the hive.

3 DETECTION AND TRACKING

3.1 Technical Challenge

The technical challenge is to measure the in-and-out
activity at a beehive entrance without sophisticated
devices and with the smallest amount of resources.
The device we propose is described in Fig. 1. Only
the 4 following items are involved in the core issues
of this paper:

• a camera

• a white background
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(a) It−1 (c) Shadow and background (e) It−1− It combined
subtraction in (a) with (d) for shadows

(b) It (d) Shadow and background (f) image in (e) with
subtraction in (b) with original colors

Figure 2: Example of segmentations for Algo 4: two bees are detected. Edges are extracted on binary images as image in (e)
to approximate ellipses.

• a hive with bee traffic

• image processing bee counting software.

A camera records the bee traffic which is enhanced
thanks to a white background and an algorithm that
computes the activities of the hive (arrivals and depar-
tures). The camera is placed above a Dadant beehive
entrance, being sure that the entire entrance width is
covered by the camera. The 12 megapixels camera
sensor is equipped with a wide-angle lens (28mm,
f/1.8). It acquires 1080p videos at 60 frames per se-
cond (fps). Videos are saved in the MOV format and
resized for different experiment evaluations: 1080p,
720p, 540p and 360p at 60 fps or 30 fps. Finally,
when bees fly close to the white background, Table
1 presents their approximate length in pixels for our
experiments.

3.2 Problem of Shadows and Bee
Detection

The daily activity of the bees starts at sunrise and
stops at sunset. The phases of high activity often ma-
tch with very sunny periods and this periods is funda-
mental for evaluating the hive health. Nevertheless, as
the camera is placed verticality above the landing bo-
ard (see Fig. 1), the bee shadows are projected against
the white background and also recorded. Shadows
could be a significant problem in bee counting be-
cause a bee could be counted twice: the bee and its

Table 1: Minimum length of bees and image resolution.
Image resolution 1080p 720p 540p 320p
Length of bees 56 pixels 37 pixels 29 pixels 19 pixels

associated shadow. Additionally, a shadow could be
present on the white background without the bee’s
presence in the image, depending on angle of the sun.
The closer the bee is to the background, the darker the
shadow will appear and could be detected whereas it
corresponds to an outlier.

The blue color of the sky is due to Rayleigh scat-
tering. As the light moves through the atmosphere,
most of the wavelengths pass straight through. Ho-
wever, much of the shorter wavelength light is ab-
sorbed by the gas molecules (Adeline et al., 2013).
The absorbed blue light is then radiated in different
directions, and, the sky looks blue. It gets scatte-
red all around the sky and contributes to the illumi-
nation of objects in the natural shadow (i.e., hidden
from the sun). This scenario assumes that shadows
are mainly illuminated by the sky light (Adeline
et al., 2013). Consequently, in a natural environment,
shadows have high saturation in blue channels and
low intensity. Fortunately, bee are not blue, but rat-
her brown, orange or yellow (in term of the pixel va-
lues). Thus, the white background remains very use-
ful because shadows can be easily removed when co-
lor pixel contains more blue than the other colors (il-
lustrated in Fig. 3(h)).

Four algorithms (Algo 1, 2, 3 and 4) are developed
and compared, as presented in Table 2. Bees are de-
tected by computing ellipses (Contours and Ellipses,
). The ellipses are created after an thin edge detection
and the thresholding (Canny, 1986). Large and too
small ellipses are easily removed to avoid numerous
outliers, their sizes depends on the image resolution
(see Table 1). Concerning Algo 1, edges are extrac-
ted directly on the original image, creating ellipses in
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Table 2: Different algorithms compared in this study.

Steps of the algorithm Algo 1 Algo 2 Algo 3 Algo 4
Difference between It−1 and It X
Difference between IM and It X X
Remove blue parts (shadows) X

Variance between each color channel Vc X
Binary images X X X

Edge detection (Canny, 1986) + thresholding + Fit ellipses (Contours and Ellipses, ) X X X X
Concordance C : Eq. 5 X X X X

undesirable parts of the image and for shadows (as
image in Fig. 2(a)). Algo 2 computes the difference
pixel by pixel between It and It−1, respectively the
images at time t and t − 1, in order not detect ob-
jects without movements. The problem of shadows
remains in this algorithm and some parts in the white
background are not efficiently eliminated. Further-
more, when a bee is not moving much or remains
statics, it does not appear using the image difference
It−1− It , and, the tracking process will fail. Algo 3
considers a difference between It and IM , a median
image of several previous images (for example 30 pre-
vious frames). However, shadows are always present
and some parts remain visible in the background, re-
sulting in the creation of undesirable ellipses. Thus,
Algo 4 also considers the difference between It and
IM , removes pixels that are mostly blue and pixels
with a high variance Vc between each color channels:

Vc(x,y) =
1
n
·

n

∑
i=1

(ci(x,y)−µ(x,y)), (1)

with

µ(x,y) =
n

∑
i=1

ci(x,y)
n

(2)

where (x,y) represents the pixel coordinates and n
corresponds to the number of channels ci (3 in our
case: Red, Green and Blue). Finally, Algo 4 correctly
extracts bees in the image for pixels having a high
variance Vc (brown, orange... pixels, and, removing
white parts with small Vc, i.e., Vc less than a thres-
hold) and no blue parts (i.e., shadows) followed by an
image difference. The protocol described in the next
subsection is applied to these four bee algorithms.

3.3 Tracking of Bees

Once the bees are detected, the next step consists on
extracting the movement of these bees throughout the
video, from their appearance to their disappearance.
Standard objects trackers fail to follow the bees (Vi-
ola and Jones, 2001)(Bradski, 1998), because of their
numbers in the image. Moreover, they appear at diffe-
rent scales, turn around themselves and bees all look
the same. In this study, the general idea is to deter-
mine the assumed position of bees in the next image.

It works thanks to its positions on the two previous
images. This assumed position is compared with all
the bees on the image to determine which one fits a
particular bee the best. To determine this assumed
position, information about the bees in the previous
images of the video is required, such as its coordina-
tes and orientations.

Considering one detected bee represented by an
ellipse at time t: εt (see Table 2), the bee trajectory
for the t + 1 frame can be estimated by knowing the
coordinates of the two previous positions of the bee.
Indeed, represented by the center and the orientation
of an ellipse, at time t− 1: εt−1, the distance the bee
travels for the frame at time t + 1 can be estimated,
and, the direction it moves DA is estimated thanks
to the orientation of εt−1 and εt . Indeed, as illustra-
ted in Fig. 4, if Θt−1 is the angle of εt−1, and Θt of
εt , by computing the angle difference ∆Θ, we can as-
sume that the ellipse εA at time t + 1 will shift in the
direction DA. This direction corresponds to Dt the
movement direction between εt−1 and εt , adjusted by
∆Θ: {

∆Θ = Θt−1−Θt
DA = Dt +∆Θ mod 2π. (3)

Thereafter, with DA and the pixel distance bet-
ween εt−1 and εt , the assumed position of εA is esti-
mated. Calling (Xt−1, Yt−1 ), and (Xt , Yt ), respectively
the coordinate of the ellipse centers at time t and t−1,
thus, (XA, YA), the assumed coordinate of εA are:{

XA = Xt +(Xt −Xt−1) · sin(DA)
YA = Yt +(Yt −Yt−1) · cos(DA).

(4)

In the following step, the assumed ellipse εA is
compared with all the real ellipses of the image at time
t + 1. For each real center of an ellipse, the distance
between the center of εA is calculated. As illustrated
in Fig. 4, the detected ellipse εt+1 at time t+1 related
to εt corresponds to which one has the minimal dis-
tance with the point at (XA, YA), that corresponds to a
concordance C :




C = min
√

(XA−XD)2 +(YA−YD)2

(Xt+1,Yt+1)= argmin
(XD,YD)

√
(XA−XD)2 +(YA−YD)2,

(5)
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(a) Frame 1 (b) Frame 4 (c) Frame 8 (d) Frame 12 (e) Frame 16

(f) Bee tracking (g) Bee tracking
without concordance using concordance

(h)

Points in (h) Red Green Blue Vc
Shadow 91 95 106 3

Bee 123 88 106 11
Background 216 214 214 0.33

Figure 3: Comparison of bee tracking with and without concordance, 1080p, 60 fps.

where (XD,YD) represents the coordinates of the cen-
ter of the detected ellipse in the image at time t + 1
and (Xt+1, Yt+1) the coordinates of the center of εt+1.
Figs. 3 (f) and (g) show the difference of a bee tracked
with and without concordance.

If εt has no ellipse corresponding at time t + 1,
thus the bee is considered as moved out of the screen.
When an ellipse at time t + 1 has no corresponding
ellipse from time t, it is assimilated as a new bee en-
tering the screen. Finally, the higher the frame rate is
important the most accurate this method is.

3.4 Bee Counting

The final stage in the bee tracking is to count the num-
ber of bees. Bees are identified in term of three diffe-
rent behaviors:

• fly in the beehive: entrance

• fly out the hive: departure

• flying by the hive.

These three entities define the in-and-out activity. To
find the number of bees that come into the camera
range, the purpose is to count the number of bee paths
that the tracking algorithm has drawn. As illustra-
ted by the results, the tracking method using Algo 4
seems robust: even though bees are really close to
each other or fly in the same direction, there can be
only one path per bee; bee counting would be as accu-
rate as the bee detection is. The three behaviors imply
there are three different paths which are drawn using
three different colors, as detailed in Fig. 5. To deter-
mine their status (entrance, departure or passing by),
the algorithm compares where each path begins and

ends. To add an entrance, a bee must come from the
outside zone and cross the area of the hive entrance at
the end of its trajectory. On the contrary, to add a de-
parture, the insect must leave the entrance of the hive
at the beginning of its flight, then disappear beyond
the outside zone. To be considered that a bee flies by,
it must cross two times the outside zone. By the end,
the algorithm returns a specific state for 100% of the
detected bee paths.

4 EXPERIMENTAL RESULTS

The algorithms Algo 1, 2, 3 and 4 are coded in Py-
thon and use the OpenCv library. They are compa-
red using 4 videos: 2 videos with 30fps and 2 with
60fps. These different videos, edited with four dif-
ferent image qualities (i.e., resolutions, see Tab. 2),
have been used with the four presented algorithms:
1080p, 720p, 540p and 360p. The ground truth was
obtained by five humans evaluators who counted the
number of bees in the videos. Each algorithm has to
run with every video in the four different sizes and
different fps. The results are recorded in Tables 3, 4,
5 and 6. In tables are also reported the Mean of C
in pixels ; the more the image size is large, the more
the concordance must be high. Bees are moving fast
in the video, often several dozens of pixel, so the re-
sults are better concerning videos with 60fps. Algo
4 is more precise in term of bee entrance and depar-
ture. Bees are counted several times in flyby, as the
trajectory has been lost. However, the most important
is to count as precisely as possible their inputs and
departures, as Algo 4.
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0

Assumed position 
of the ellipse at

time t + 1
Detected ellipse at time t + 1

Figure 4: Concordance computation between the assumed ellipse and a detected one.

Table 3: Results on video 1 with 30fps, 429 frames.
1080p 720p 540p 360p

Detection Ratio Detection Ratio Detection Ratio Detection Ratio

Algo 1

Entrances 2/7 Entrances 2/7 Entrances 3/7 Entrances 5/7
Departures 2/12 Departures 2/12 Departures 2/12 Departures 4/12
Flyby 9/19 Flyby 10/19 Flyby 8/19 Flyby 8/19

Mean of C 18,2 Mean of C 11,6 Mean of C 9,3 Mean of C 6,4

Algo 2

Entrances 4/7 Entrances 4/7 Entrances 7/7 Entrances 7/7
Departures 5/12 Departures 5/12 Departures 6/12 Departures 6/12
Flyby 11/19 Flyby 12/19 Flyby 14/19 Flyby 15/19

Mean of C 16,6 Mean of C 11,2 Mean of C 8,1 Mean of C 5,5

Algo 3

Entrances 4/7 Entrances 4/7 Entrances 6/7 Entrances 6/7
Departures 5/12 Departures 5/12 Departures 5/12 Departures 5/12
Flyby 11/19 Flyby 14/19 Flyby 14/19 Flyby 16/19

Mean of C 16,4 Mean of C 10,8 Mean of C 8,1 Mean of C 5,5

Algo 4

Entrances 7/7 Entrances 5/7 Entrances 7/7 Entrances 7/7
Departures 4/12 Departures 4/12 Departures 5/12 Departures 4/12
Flyby 18/19 Flyby 14/19 Flyby 19/19 Flyby 21/19

Mean of C 15,0 Mean of C 9,6 Mean of C 7,4 Mean of C 5,0

Table 4: Results on video 1 with 60fps, 858 frames.
1080p 720p 540p 360p

Detection Ratio Detection Ratio Detection Ratio Detection Ratio

Algo 1

Entrances 2/7 Entrances 1/7 Entrances 2/7 Entrances 3/7
Departures 2/12 Departures 2/12 Departures 2/12 Departures 3/12
Flyby 12/19 Flyby 14/19 Flyby 17/19 Flyby 16/19

Mean of C 7,5 Mean of C 5,5 Mean of C 4,2 Mean of C 2,7

Algo 2

Entrances 6/7 Entrances 3/7 Entrances 4/7 Entrances 6/7
Departures 7/12 Departures 6/12 Departures 6/12 Departures 8/12
Flyby 11/19 Flyby 14/19 Flyby 16/19 Flyby 21/19

Mean of C 6,6 Mean of C 4,4 Mean of C 3,3 Mean of C 2,3

Algo 3

Entrances 6/7 Entrances 5/7 Entrances 8/7 Entrances 9/7
Departures 8/12 Departures 7/12 Departures 7/12 Departures 7/12
Flyby 16/19 Flyby 17/19 Flyby 17/19 Flyby 20/19

Mean of C 5,2 Mean of C 3,6 Mean of C 2,7 Mean of C 1,9

Algo 4

Entrances 7/7 Entrances 8/7 Entrances 8/7 Entrances 7/7
Departures 7/12 Departures 8/12 Departures 7/12 Departures 9/12
Flyby 20/19 Flyby 20/19 Flyby 20/19 Flyby 19/19

Mean of C 5,8 Mean of C 3,6 Mean of C 2,7 Mean of C 2,3

Table 5: Results on video 2 with 30fps, 878 frames.
1080p 720p 540p 360p

Detection Ratio Detection Ratio Detection Ratio Detection Ratio

Algo 1

Entrances 1/31 Entrances 0/31 Entrances 0/31 Entrances 1/31
Departures 0/22 Departures 0/22 Departures 1/22 Departures 0/22
Flyby 12/13 Flyby 13/13 Flyby 14/13 Flyby 16/13

Mean of C 18,1 Mean of C 12,2 Mean of C 9,1 Mean of C 5,4

Algo 2

Entrances 17/31 Entrances 20/31 Entrances 16/31 Entrances 25/31
Departures 4/22 Departures 9/22 Departures 11/22 Departures 13/22
Flyby 23/13 Flyby 26/13 Flyby 21/13 Flyby 35/13

Mean of C 18,2 Mean of C 12,2 Mean of C 9,2 Mean of C 6,3

Algo 3

Entrances 11/31 Entrances 20/31 Entrances 22/31 Entrances 24/31
Departures 6/22 Departures 9/22 Departures 10/22 Departures 13/22
Flyby 29/13 Flyby 21/13 Flyby 34/13 Flyby 32/13

Mean of C 17,7 Mean of C 11,9 Mean of C 8,8 Mean of C 6,0

Algo 4

Entrances 26/31 Entrances 24/31 Entrances 20/31 Entrances 26/31
Departures 13/22 Departures 16/22 Departures 15/22 Departures 14/22
Flyby 21/13 Flyby 24/13 Flyby 29/13 Flyby 23/13

Mean of C 13,9 Mean of C 9,4 Mean of C 7,0 Mean of C 4,6

Fly-in bee Fly-out bee Fly-by bee 

First recorded position Last recorded position 

Entrance zone Outside zone 

Figure 5: Device for the bee hive traffic monitoring.

Table 6: Results on video 2 with 60fps, 1756 frames.
1080p 720p 540p 360p

Detection Ratio Detection Ratio Detection Ratio Detection Ratio

Algo 1

Entrances 1/31 Entrances 0/31 Entrances 0/31 Entrances 0/31
Departures 0/22 Departures 0/22 Departures 0/22 Departures 0/22
Flyby 22/13 Flyby 17/13 Flyby 21/13 Flyby 22/13
Mean of C 7,0 Mean of C 4,7 Mean of C 3,3 Mean of C 2,3

Algo 2

Entrances 13/31 Entrances 16/31 Entrances 18/31 Entrances 20/31
Departures 9/22 Departures 17/22 Departures 20/22 Departures 23/22
Flyby 45/13 Flyby 36/13 Flyby 44/13 Flyby 51/13
Mean of C 9,3 Mean of C 6,2 Mean of C 4,5 Mean of C 3,1

Algo 3

Entrances 23/31 Entrances 23/31 Entrances 26/31 Entrances 28/31
Departures 12/22 Departures 14/22 Departures 19/22 Departures 20/22
Flyby 46/13 Flyby 43/13 Flyby 56/13 Flyby 56/13
Mean of C 8,2 Mean of C 5,4 Mean of C 4,0 Mean of C 2,7

Algo 4

Entrances 31/31 Entrances 25/31 Entrances 30/31 Entrances 30/31
Departures 22/22 Departures 23/22 Departures 23/22 Departures 23/22
Flyby 27/13 Flyby 37/13 Flyby 35/13 Flyby 33/13
Mean of C 5,5 Mean of C 3,7 Mean of C 2,8 Mean of C 2,0

Figs. 6 and 7 show bee tracking on a video at
720p, 60fps. Green lines corresponds to entrances,
red to departures, blue to flyby and light blue to un-
resolved (see in Fig. 5). Contrary to algo 1, 2 and 3,
bee shadows does not disturb the be tracking in the
videos (see frames 6, 500, 1000 and 1755), exhibiting
the interest of the proposed method.

(a) Algo 1, Frame 1755

(b) Algo 2, Frame 1755

Figure 6: Bee tracking, video at 720p, 60fps.
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(a) Algo 3, Frame 6 (b) Algo 4, Frame 6

(c) Algo 3, Frame 100 (d) Algo 4, Frame 100

(e) Algo 3, Frame 500 (f) Algo 4, Frame 500

(g) Algo 3, Frame 1000 (h) Algo 4, Frame 1000

(i) Algo 3, Frame 1755 (j) Algo 4, Frame 1755

Figure 7: Bee tracking using algo 3 and 4, video at 720p, 60fps.
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5 CONCLUSION

This paper presents a simple and accurate way to
count bees. The proposed approach combines dif-
ferent filtering methods to obtain new results on de-
tection, tracking and counting bees. A particular at-
tention has been given to the bee detection, without
be disturbed by shadows. Indeed, variance treatment
is used to improve bee segmentation, thus improving
the tracking. Moreover, the concordance is used in
the tracking step, which represents an elegant man-
ner to follow fast objects in videos: the angular speed
leads to the likelihood ellipse position. Quantitative
experimental results show a precise detection of the
bee entrances/departures. As this approach considers
only a variance, edge detections, thresholds and el-
lipses, this new algorithm could be used in real-time
process.

As future directions, we intend to implement these
algorithm on nomad recording system to help beekee-
pers and researchers in their daily work. At the mo-
ment, this method gives quite good results but suffer
from a too small fps. A possible enhance the detection
is to integrate biggest camera angle to capture more
bees on a larger white back ground.
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