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Abstract: This paper presents a prospective background model for robust object detection in severe scenes. This back-

ground model using a novel algorithm, Co-occurrence Pixel-block Pairs (CPB), that extracts the spatiotem-

poral information of pixels from background and identifies the state of pixels at current frame. First, CPB

realizes a robust background model for each pixel with spatiotemporal information based on a “pixel to block”

structure. And then, CPB employs an efficient evaluation strategy to detect foreground sensitively, which is

named as correlation dependent decision function. On the basis of this, a Hypothesis on Degradation Modifi-

cation (HoD) for CPB is introduced to adapt dynamic changes in scenes and reinforce robustness of CPB to

against “noise” in real conditions. This proposed model is robust to extract foreground against changes, such

as illumination changes and background motion. Experimental results in different challenging datasets prove

that our model has good effect for object detection.

1 INTRODUCTION

Object detection is one active area of research in the

field of visual surveillance(Hu et al., 2004), where

background subtraction has been widely used in va-

rious problems(Yilmaz et al., 2006; Moeslund et al.,

2006; Cheung and Kamath, 2005). However, imple-

menting background subtraction for real scenes with

severe backgrounds is beset with challenges(Vacavant

et al., 2012), not least of which are those related to il-

lumination changes, e.g. variable sunlight outdoors

or lights being switched on and off indoors, and then

background motions, e.g. swaying trees or moving

waves on the water.

To overcome such challenges, two types of design

schema have been proposed. First is the pixel-wise
model, in which the intensity of each pixel is inde-

pendently analyzed in the temporal domain and then

the current frame is subtracted. An example of this

approach is Pfinder(Wren et al., 1997), a real-time

method for analyzing the color information (Y/U/V)

of each pixel and then building a pixel-wise mo-

del by the Gaussian mixture model (GMM)(Stauffer

and Grimson, 1999), which is a well-known way to

deal with multiple background objects. Elgammal et

al.(Elgammal et al., 2002) proposed a non-parametric

method that can be used to detect object in severe sce-

nes by the using of kernel density estimation (KDE).

The second scheme is the spatial-based mo-

del, in which a background model is built by ma-

king decisions regarding the spatial correlations be-

tween pixels or blocks. Seki(Seki et al., 2003)

proposed such a method that involved estimating

the co-occurrence correlation between neighboring

blocks. Subsense(St-Charles et al., 2015), a re-

cently algorithm following ViBe’s strategy(Barnich

and Van Droogenbroeck, 2011) that presented one

pixel-level segmentation method that relies on spati-

otemporal binary features combined with color infor-

mation to detect foreground.

The first design schema can not deal well with

illumination changes in the absence of contextual

spatial information and most of the second design

schema pay much attention to the local spatial infor-

mation of neighboring pixels or blocks and ignore the

global spatial information.

To counter these overlooked issues, we propose an

effective method of co-occurrence pixel-block pairs
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(CPB) for detecting objects robustly in severe scenes.

This is based on our earlier works(Iwata et al., 2009;

Zhao et al., 2011; Liang et al., 2015) with the inno-

vations: 1) a “pixel to block” structure that can pro-

vide a fast statistical training solution, thereby allo-

wing an on-line approach; 2) a novel evaluation stra-

tegy named correlation depended decision function

for accurate object detection. Based on CPB, we

propose a Hypothesis on Degradation Modification

(HoD) for CPB to adapt dynamic changes in scenes

and reinforce robustness of CPB to against “noise”

in real conditions. More details are described in fol-

lowing sections and we also compare the proposed

method with other advanced techniques to prove the

efficiency of our method under various challenging

datasets. This paper is organized as follows. Secti-

ons 2 introduces how CPB method works in details.

Section 3 gives one introduction of Hypothesis on

Degradation Modification (HoD) for CPB. Section 4

reports experimental results to compare the perfor-

mance of the proposed method with other advanced

approaches. Section 5 concludes the paper along with

future work.

2 CPB BACKGROUND MODEL

Figure 1: Overview of working mechanism of CPB.

2.1 Overview

In general, the proposed CPB includes two processes:

training process and detecting process. Fig. 1 shows

the overview of working mechanism of CPB.

2.2 Model Building

As an extension from the “pixel to pixel ” structure

that works SRF(Iwata et al., 2009), GAP(Zhao et al.,

2011) and CP3(Liang et al., 2015) to estimate the tar-

get pixel p with other pixels one by one and then

to select the suitable supporting pixels for the tar-

get pixel p, in CPB we compare the target pixel p

with the QB as block, and define {QB
k }k=1,2,...,K =

{QB
1 ,Q

B
2 , ...,Q

B
K} to denote a supporting block set for

the target pixel p. As an instance, we first divide each

frame (the size is U×V ) into the blocks {QB}, the

size of each block is m×n and the number of blocks

is M×N (U
m
= M, V

n
= N). In theory, since a large

part of computation cost can be reduced in the trai-

ning process , CPB is expected mn times faster in the

training than CP3(Liang et al., 2015).

For each pixel p, it is expected to own one or more

blocks QB that maintain a stable relation in the diffe-

rence Ip − ĪQ throughout the whole training frames as

shown in Fig.2, where ĪQ is the average intensity of

block QB. The relation shown in Fig.2(b) is called as

“Co-occurrence between intensity,” and we can utilize

this knowledge to design the statistical model for the

characteristics in background pixels. Since the main

purpose of this study is to design a robust detector

of any foreground events, such as walking peoples,

animals or cars on the roads or grasses without any

detection of the meaningless events, such as moving

clouds or shaking grasses, we utilize multiple relati-

onship of the co-occurrence mentioned above to build

the background model.

(a) Co-occurrence pixel-block pair
structure.

(b) Pairwise statistical model of pixel-
block pair (p,QB

1 ).

Figure 2: Basic structure of co-occurrence pixel to block
pair.

2.2.1 Selection of Supporting Blocks

A set of supporting blocks {QB
k } is defined for

each pixel p in scene by utilizing Pearson’s product-

moment correlation coefficient:

γ(p,QB
k ) =

Cp,Q̄k

σp ·σQ̄k

, (1)

where Cp,Q̄k
is the intensity covariance between target

pixel p and its k-th supporting block QB
k from a set of

training frames, σp and σQ̄k
are the standard deviati-

ons in the pixel and the block, respectively.

In general, we can expect that if the pixel-block

pair (p,QB
k ) keeps a high correlation coefficient, then
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Figure 3: Example layouts of pixel-block pairs for different position pixels p1(168,334), p2(384,325), p3(439,131) and
p4(223,50), respectively, where K = 5 and the size of each block is 5×5.

the supporting block Qk can provide some reliabi-

lity to estimate the current sate of the target pixel

p. According this approach, we propose a set

of supporting blocks{QB
k }k=1,2,...,K = {QB|γ(p,QB)

is the K highest} for each pixel p. Fig.3 shows

example layouts of the supporting blocks using

PETS2001− dataset3 and the target pixels are se-

lected from the four representative regions: “Grass,”

“Road,” “Building,” “Sky,” respectively.

2.2.2 Statistical Modeling of Pairwise Intensity

Co-occurrence

For the selected K pixel-block pairs, we build a statis-

tical model using the single Gaussian distribution as

defined in the following expression:

∆k ∼ N(bk,σ2
k) ∆k = Ip − ĪQk

, (2)

where Ip is the intensity of the pixel p at t frame and

ĪQk
is the average intensity of the block QB

k at t frame.

We assume that the difference in intensities between

any co-occurrence pairs follows a normalized distri-

butions N(b,σ2)(Liang et al., 2015), and then we use

the single Gaussian model to build the background

model for each co-occurrence pair. The variance esti-

mation σ2
k cis defined as follows:

σ2
k =

1

T

T

∑
t=1

(∆k − bk)
2, (3)

and bk is the differential increment

bk =
1

T

T

∑
t=1

∆k, (4)

where T is the sequence of frames. Through the

training process, the parameters σk and bk are re-

corded as a model description for the next detecting

stage and then the background model is built as a list

consisting of [uk,vk,bk,σk] for supporting block set

{QB
k }k=1,2,...,K , where (uk,vk) is the coordinate of sup-

porting block.

2.3 Object Detection

We contain a competitive binary classification process

for the object detection(Elhabian et al., 2008) in our

CPB by evaluating each pair (p,QB
k ) of every pixel in

turn. It includes two procedures: 1) to estimate the

steady or unsteady state of each pair, and then 2) to

distinguish a target pixel is belongs to foreground or

background.

2.3.1 State Classification of Pixel-Block Pairs

To identify whether a pixel p is belongs to foreground

or background , it is necessary to design a framework

which can distinguish the difference between these

two states at the detecting process. The state F (un-

steady) means p may be occluded by any foreground

object, while the state B (steady) means that p may be

exposed to the camera as it has been in the statistical

training frames. In order to obtain any difference bet-

ween these two states, for each pixel p, we introduce

an index value as a “penalty” for violating the relati-

onships authorized at the statistical training process.

In other words, if the state F is associated with pixel p

and the pixel value may also be changed, therefore we

can utilize statistical tests in which the difference may

belong to the registered distribution or be rejected as a

value outside of the distribution. This idea can be rea-

lized as the following expression for identifying pixel

p is foreground or background as shown in Fig. 4.

In CPB, we can define this statistical structure in

each relation between any pixel and its supporting

block set as the collection of Gaussian distributions

learned in the training process. In the detecting pro-

cess, we utilize these knowledges to find any fore-

ground pixels which may violate the knowledge due

to a different intensity from its background pixel. For

each pair (p,QB
k ), a binary function for identifying its

steady or unsteady state can be defined as follows:

ωk =

{
1 if

∣∣(p−QB
k )− bk

∣∣≥ η ·σk

0 otherwise
, (5)

where
∣∣(p−QB

k )− bk

∣∣ represents a bias in the inten-

sity difference between the real value and the modeled

parameter b to estimate the steady or unsteady state

of each pair (p,QB
k ), where η is a constant for setting

some significant level in this statistical test procedure.
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Figure 4: Relationship in the intensity changes between target pixel p and supporting block QB.

In this function, ωk corresponds a logical value to re-

present the steady state with 0 or the unsteady state

with 1 for each pair, respectively.

2.3.2 Correlation Depended Decision Function

In order to define an efficient decision function for

target pixel, with considering the K supporting blocks

around it, here we introduce γk of the k-th elemental

pair (p,QB
k ) as a weight in the weighted summation

of the products ωk · γk based on the previous decision

proposed in (Liang et al., 2015; Elhabian et al., 2008).

The lager γk may be stronger or more reliable on the

state decision of target pixel p. The definition is rea-

lized as Γ as follows.

Γ =
K

∑
k=1

ωk · γk. (6)

Γ has the following two significances: first, Γ can

count up the unsteady pairs, second, Γ has its own

ideal value, the maximum value of Γ is possibly obtai-

ned in the case that all of K elemental pairs are in the

unsteady state and it is also a relative value with re-

spect to the target pixel. Furthermore, Γ would not

miss to count any high γk in the summation to lead a

wrong decision. To realize relative decision making

on Γ, we can have the following possible maximum

value of it.

Γall =
K

∑
k=1

γk. (7)

With the consideration of mentioned above, by use

of Γall , we can define the following evaluation cri-

terion to classify the target pixel into the foreground

class as:

if Γ > λ ·Γall, then

p is foreground

else

p is background.

λ is a threshold parameter. As shown in Fig. 5, It is

natural to evaluate the state of pixel p through a com-

parative analysis between Γ and Γall , if the value of Γ
is high, it is highly likely that pixel p is a foreground

pixel.

Figure 5: Relationship between Γ and Γall .

3 HoD MODIFICATION

We have introduced the basic algorithms for robust

background subtraction so far, however, in the real

world we have only a set of limited data for training

model over some limited time range. We may have

some mechanism to modify the model to fix some er-

rors which may be observed in any new target frames

out of the training set. In this section, we intend to

introduce a simple mechanism named Hypothesis on

Degradation Modification (HoD) extended from CPB

to adapt dynamic changes in scenes and reinforce ro-

bustness of CPB to against “noise” in real conditions.

3.1 Hypothesis on Degradation

By use of the basic algorithm in learning and de-

tecting structure of CPB, we can extract particular
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Figure 6: Overview of HoD Modification.

events, such as pedestrians or vehicles in scene. Af-

ter a long utilization of initial CPB background mo-

del for real data, we may encounter some strange or

unknown situations which do not belong to the ini-

tial training dataset, and then our initial CPB model

may gradually or suddenly decrease its performance

by reason of the change of observation in scene.

In practice, we propose an assumption that some

“noise” may arise in detecting process due to some

trouble in CPB structure over time. However, we

could not know the true of these troubles without

any ground truth data, and it is not possible to rea-

lize ground truth of future frames in real condition.

Hence, we need an effective modification to adapt

the possible changes in real condition and consolidate

the performance of proposed CPB over time. In this

study, we call this above assumption as “Hypothesis

on Degradation” and name the “noise ” in detecting

process as “hypothetical noise.”

Based on mentioned above, we propose a Hypot-

hesis on Degradation Modification (HoD) for CPB to

against the hypothetical noise by modifying the ini-

tial structure to a new one. Fig. 6 describes an over-

view of the proposed HoD. Here in Fig. 6, it is clear

that HoD is not one post-processing technique, in this

study, HoD is an update approach of model structure

to reinforce the robustness of CPB and is also a feasi-

ble on-line mode for CPB.

To estimate which Pixel-Block structure should be

modified, we first define two types of hypothetical

noise: 1) the hole surrounded by the detected fore-

ground pixels, which is estimated as the background

and we named it ‘NaB’; 2) the dot surrounded by the

non-detected pixels, which is estimated as the event

and we named it ‘NaE’. Fig. 7 shows an example of

the hypothetical noise using AIST − Indoor-dataset

provided by the National Institute of Advanced Indus-

trial Science and Technology in Japan.

For such pixels as mentioned above, we detect

Figure 7: Example of hypothesized noise. (a) Raw data. (b)
Description of hypothesized noise.

them as noise and do modification for the Pixel-Block

structure of them.

3.2 Detection of Possible Wrong

Pixel-Block Pairs

For any detected noise pixels, we need to define

wrong or broken elemental pairs in the Pixel-Block

structure . As introduction in Section 2.3, we adopt

the strategy that any Pixel-Block pair, which has the

lager γ must hold the higher weight in the trained

structures and such pair is more likely to affect the

state of NaE and NaB. We propose a weight-based

decision rule to detect the wrong pair:

if γm ≥ γ̄, then (p,QB
m) is wrong (8)

where (p,QB
m) is the ‘wrong’ pair, which is in unste-

ady state of NaE or steady state of NaB. Depending on

the noise is NaE or NaB, the threshold γ̄ has the diffe-

rent definition. In the case of NaE, it is defined by use

of the total number of unsteady pairs M = ∑K
k=1 ωk as

follows:

γ̄ =
1

M

K

∑
k=1

γk ·ωk =
1

M
Γ. (9)

While in the case of NaB, it is defined as follows:

γ̄ =
1

K −M

K

∑
k=1

γk · (1−ωk) =
1

K −M
(Γall −Γ) .

(10)

We can see a slight difference in the above defini-

tions. The calculations contain the elemental correla-

tion coefficient, the supporting block set and the total

number of Pixel-Block pairs {(p,QB
m)}, and then we

record these “broken pairs” as shown in Fig. 8.

3.3 Removal of Wrong Structure

We try to exchange the wrong pair by new one which

is kept as a spare pair in the training process. Fig. 8

shows its schema for exchange to keep K pairs in any

supporting block sets.
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Figure 8: Modification process.

4 EXPERIMENTS

4.1 Experimental Setup

At first, considering the several challenges of vi-

deo surveillance for background subtraction algo-

rithm(Brutzer et al., 2011). We consider the following

challenges for evaluation:

• Gradual Illumination Changes: the light in-

tensity typically varies during day. We consider

PETS2001− camera1 as the testing data for eva-

luation with the illumination change during day.

• Sudden Illumination Changes: for example the

sudden switch of light, strongly affects the obser-

vation of object to lead a fault for detection. We

consider the dataset AIST − Indoor with strong

sudden light changes when the auto-door opening,

in such moment it is difficult to detect true fore-

ground from the scene.

• Dynamic Background: some movement in

scene should be regarded as background e.g.

swaying tree, waving water. We select one

challenging sequence advertisementBoard from

SceneBackgroundModeling.NET(SBMnet) data-

set for testing, and this sequence contains an ever-

changing advertising board in the scene.

• Intermittent Object Motion: this category is one

difficult challenge for object detection with back-

ground objects moving away, abandoned objects

and objects stopping for a short while and then

moving away. In this category, it is difficult to

detect correct foreground objects. The so f a se-

quence from Change−detection dataset(Goyette

et al., 2012) is selected for testing.

• Camera Jitter: in video surveillance, camera

jitter is one issue that need to be solved for

background subtraction. In our experiment,

we consider sidewalk from Change− detection

dataset(Goyette et al., 2012) to test the perfor-

mance of proposed CPB and CPB+HoD in such

extreme category.

4.2 Evaluation Measurement

To analyze the quality of our method, we utilize three

common analysis measurements: Precision, Recall,

and F-measure. These metrics are widely used to

estimate the quality of background subtraction met-

hods (Brutzer et al., 2011; Vacavant et al., 2012). For

further evaluating our CPB and CPB+HoD, we in-

troduce the peak signal-to-noise ratio (PSNR) as our

metric(Huynh-Thu and Ghanbari, 2008), which can

be used to measure the quality of the estimated resul-

ted compared with the background truth(Huynh-The

et al., 2016). The definition of PSNR is calculated as

follows:

PSNR = 10 · log10

(
2552

MSE

)
, (11)

where MSE is the mean square error.

4.3 Result Evaluation

In this section, we compare the proposed CPB and

CPB+HoD with four different foreground detection

methods: GMM(Stauffer and Grimson, 1999) and

KDE(Elgammal et al., 2002), which are two well-

known traditional algorithms, and two state of the

art techniques IMBS(Bloisi and Iocchi, 2012) and

SuBSENSE(St-Charles et al., 2015), especially SuB-

SENSE is one of the top-ranked methods in Change−
detection dataset at present. In contrast to methods

with complex strategies(Bloisi and Iocchi, 2012; St-

Charles et al., 2015), CPB is a low-complexity al-

gorithm that is more easily realized. The parame-

ters for GMM, KDE, IMBS and SuBSENSE were set

by using the tool bgslibrary(Sobral, 2013). In experi-

ments, we set each block as 8×8 pixels, λ = 0.5 and

η = 2.5 for CPB.

Fig. 9 shows examples of foreground detection for

a typical frame from each dataset sequence. Table 1

lists the results of the performance measurements of

CPB and CPB+HoD with other methods from all the

categories, respectively. Compared with above fo-

reground detection results, the proposed algorithms

outperform the methods GMM, KDE , IMBS and

SuBSENSE in most testing sequences. Meanwhile,

CPB+HoD is quite efficient in extracting foreground

from sequences that suffers from sudden illumination

changes and dynamic background. Furthermore, it is

should be noted that CPB and CPB+HoD can lead

high Precision and PSNR in most testing sequences

as the results shown in Table 1, that means our algo-

rithm is robust against noise for detecting foreground

in severe scenes.
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Figure 9: Foreground detection results in different challenging sequences.

Table 1: Comparison in different challenging categories.

Method Measure Category

Gradual illumination Sudden illumination Dynamic Intermittent object Camera

changes changes background motion jitter

GMM Precision 0.6465 0.6523 0.5151 0.8462 0.4150

Recall 0.9508 0.9207 0.5196 0.6876 0.4811

F-measure 0.7697 0.7636 0.5174 0.7587 0.4456

PSNR 39.46 40.57 26.92 36.11 31.79

KDE Precision 0.5181 0.5896 0.4962 0.7361 0.5640

Recall 0.8836 0.6944 0.4856 0.7820 0.5167

F-measure 0.6532 0.6377 0.4909 0.7583 0.5393

PSNR 17.77 38.16 21.67 25.99 33.68

IMBS Precision 0.5162 0.5760 0.5095 0.8353 0.4457

Recall 0.8841 0.6923 0.5118 0.7298 0.4879

F-measure 0.6518 0.6288 0.5107 0.7790 0.4658

PSNR 16.20 36.36 30.09 28.21 32.10

SuBSENSE Precision 0.9008 0.5864 0.5018 0.9556 0.5966

Recall 0.8840 0.7047 0.5033 0.7803 0.5079

F-measure 0.8923 0.6401 0.5025 0.8591 0.5487

PSNR 54.11 37.14 27.62 32.29 34.92

CPB Precision 0.9566 0.8651 0.7653 0.8928 0.6365

Recall 0.7517 0.8181 0.5118 0.8691 0.5051

F-measure 0.8418 0.8409 0.6133 0.8808 0.5633

PSNR 56.05 53.14 36.64 32.04 34.22

CPB+HoD Precision 0.9652 0.8668 0.7973 0.9079 0.6384

Recall 0.7562 0.8227 0.5214 0.8750 0.5055

F-measure 0.8480 0.8442 0.6305 0.8912 0.5642

PSNR 56.39 53.31 37.39 32.69 34.28

∗ Note that red entries indicate the best in F −measure, and blue entries indicate the second best.

Based on co-occurrence pixel-block pairs, CPB

can build one prospective background model from a

scene, such background model contains spatial and

temporal information of each pixel in sequence, and

then CPB can analyze the current sate of each pixel

effectively with these information. In other words,

at training process, CPB can learn the information of

scene, whether the scene is dynamic or static, our mo-

del can acquire the regularity of scene. Then, at de-

tecting process, when any object enters into the scene

and the information of this object is out of range of

our model, so we can extract the object from the scene

efficiently.

For that reason, CPB does well in above scenes.

On the basis of this, we introduce a HoD into CPB to

adapt dynamic changes in scenes and reinforce robus-

tness in real conditions. Through the results of above

experiments, CPB+HoD leads a good performance in

various scenes.

5 CONCLUSIONS

We have proposed a robust and efficient object de-

tection approach named CPB in severe scenes. It

was designed to reduce the computing cost in trai-

ning process and also to keep the robustness against

scene changes in reality. Furthermore, we realized

a novel modification approach named hypothesis-on-

degradation modification (HoD) for CPB to defend

the possible degradation in practice and it is also a

feasible on-line mode for the proposed CPB. The ex-

perimental results show the good performance of the

proposed approach. In future, we would like to im-

prove our CPB to be an on-line approach by hypothe-

sis on degradation modification (HoD).
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