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Abstract: In this paper, we propose a model based test generation methodology to evaluate the impact of the interaction
of the wireless network and the application (app) configurations on the performance of a mobile multimedia
streaming app. The methodology requires four artefacts as inputs, namely, a behaviour model of the software
under test (SUT), a network model, a test coverage criterion, and desired performance levels. The methodology
consists of three steps. First, two performance models are developed: mathematical and simulation. Second,
to evaluate the end-user quality of experience (QOE), test generation is formulated as an inversion problem.
To account for different types of performance models, the inversion problem is solved as an optimization
problem. Third, the necessary information to execute test cases is inferred using the simulation model. Two
test coverage criteria are proposed: user-experience (UE) and user-experience-and-input-interaction (UEII).
The mathematical performance model for a streaming app is developed using Markov chain. To account for
realistic network behaviours, the Markov chain is solved using the supplementary variable technique (SVT).
A reusable network model is developed for a mobile device that has a network access through a WiFi LAN.
Finally, the effectiveness of the methodology is evaluated in comparison with random testing.

1 INTRODUCTION

Performance is an important property of software sys-
tems, having a vital impact on user’s experience. In
the mobile systems domain, the main theme is being
context sensitive (Liu et al., 2015), imposing extra re-
quirements on mobile software development. Being
able to communicate with many network types ne-
cessitates testing whether the app will perform as re-
quired under different environmental and contextual
scenarios (Diaz et al., 2010). However, testing mobile
apps for network behaviour is challenging since it re-
quires multidisciplinary expertise. Another important
aspect of mobile apps is the emphasis on the user ex-
perience. Therefore, there is a need for performance
testing methodologies that take into account both the
network behaviour and the end-user’s QOE.

In this paper, we consider an important category
of networked apps, which are mobile multimedia
streaming apps. Figure 1(a) depicts the main elements
of the system model. We aim to evaluate the interac-
tion of network operating parameters (NOPs) and app
configuration parameters (ACPs) on the performance
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(b)
Figure 1: System model and test generation scheme.

of a mobile streaming app. We assume the app to be
functionally correct. NOPs are a set of controllable
parameters that model the network condition, such as
data rate. NOPs are network technology dependent.
ACPs represent a set of app configuration settings that
have an impact on the performance metric under con-
sideration, such as the size of the receiving buffer.

The main idea in generating tests is shown in Fig-
ure 1(b). Determining test inputs that lead to cer-
tain performance behaviour is akin to solving the in-
version problem (Kumar et al., 2015). The inver-
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sion problem is the problem of inferring the causes
by observing the effects. This problem is solved in
three main steps: system parametrization, forward
modelling, and inverse modelling (Tarantola, 2005).
In this work, system parametrization corresponds to
identifying both ACPs and NOPs. Forward modelling
corresponds to the performance model development.
Inverse modelling is the optimization problem formu-
lation that when solved test input is generated.

The desired performance level is a quantitative
measure of the performance metric under consider-
ation. Generally, performance metrics are evaluated
using statistical measures such as mean, percentage,
and probability. The network model captures how
the quality of network service quantified in terms of
NOPs impacts the performance behaviour of the SUT.
Different metrics are used to model network quality of
service. In streaming apps, user experience is mainly
influenced by the frame inter-arrival time delay. The
behaviour model of SUT is an abstraction of the app
dynamics that capture the performance metric under
consideration. In this work, we use activity diagrams
to describe this model.

Since performance metrics are statistical mea-
sures, extra information is required to execute the
generated test cases. Test execution parameters
(TEPs) encompass all the necessary information to
execute test cases. From a statistical point of view,
each test case is an experiment. Therefore, we need
to know how many times the experiment should be
repeated, or for how long it should be executed, so
that the output is statistically reliable. Thus, we aim
to design a set of test cases where each test case is
basically a set of ACPs, NOPs, TEPs and the ex-
pected performance level. In other words, given the
SUT is executed with the determined parameters of
ACPs, NOPs, and TEPs, the observed performance
level is statistically equivalent to the expected perfor-
mance level if the SUT is correctly implemented from
the performance point of view. Because performance
metrics are mainly continuous, infinite number of per-
formance levels and test cases are anticipated. There-
fore, test selection strategies are needed to generate
an effective set of performance test cases.

In this paper, we propose a methodology to gener-
ate test cases to evaluate a mobile multimedia stream-
ing app. We adopt a black-box model-based testing
approach (Siavashi and Truscan, 2015). The method-
ology is realized by a procedure of three steps. First,
two performance models (mathematical and simula-
tion) to capture the interactions between the SUT and
the network are developed using Markov chains. Sec-
ond, generating tests to evaluate the end-user experi-
ence is formulated as an inversion problem and solved

as an optimization problem. Third, TEPs are inferred
using the simulation model. To enhance the quality of
the generated test cases, two test coverage criteria are
proposed: i) user experience (UE) and ii) user experi-
ence and input interaction (UEII). In the UE criterion,
test cases are generated to fully cover the identified
categories of end-user experience. In the UEII crite-
rion, test cases are generated to cover end-user expe-
rience and interactions of the input parameters simul-
taneously. We develop a reusable network model for
a mobile app that downloads data via a WiFi inter-
face and over the User Datagram Protocol (UDP). In
summary, we make the following contributions:

• we propose a test generation methodology to eval-
uate the impact of the interaction of network and
app configurations on the performance of a mobile
streaming app;

• we propose two testing coverage criteria to enhance
the quality of the generated test cases; and

• we show by means of a procedure how TEPs are
inferred using the performance simulation model.

The paper is organized as follows. In Section 2,
the related works are reviewed. In Section 3, the
proposed methodology is introduced. In Section 4,
we use an app example to illustrate the steps of the
methodology. In Section 5, the efficacy of the pro-
posed methodology is evaluated. In Section 6, the
work is concluded and key challenges in applying the
proposed methodology are discussed.

2 RELATED WORKS

In literature, considerable efforts have been made to
integrate performance analysis with the software de-
velopment life cycle. A comprehensive summary can
be found in (Koziolek, 2010; Balsamo et al., 2004).
The main objective in this research is to conduct
performance analysis to evaluate design alternatives
while the software is still in the development process,
whereas our objective is to generate test cases and de-
velop test selection strategies for performance testing.
Our approach is orthogonal to theirs, but complemen-
tary to the early-stage performance testing phase.

Frequently, performance testing is viewed as load
testing. Load testing is used to test large-scale multi-
user transaction based software systems, such as web
sites and database systems (Jiang and Hassan, 2015).
In contrast, we target software apps that are devel-
oped for mobile devices, where network access is ac-
complished via wireless technologies. This differ-
ence in scope leads to a core distinction between our
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Figure 2: The main steps of the methodology.

work and the model-based load testing. The devel-
oped models in load testing is network-technology in-
dependent, while our approach models explicitly the
network technology.

In spite of the much research efforts going into
performance testing, test generation to evaluate the
network impact on the performance of mobile apps
has not received much attention (Liu et al., 2015;
Joorabchi et al., 2013). The main focus is on test-
ing networked apps for functional requirements (Se-
bih et al., 2014; Walls et al., 2015), designing soft-
ware profilers to debug communication errors (Diaz
et al., 2010), or providing test execution beds to eval-
uate the impact of the environment on wireless mobile
apps (Satoh, 2004).

In software engineering, simulation models have
been widely used in different software development
activities. However, the emphasis is on using simu-
lation models to evaluate alternative design choices
(Kim et al., 2013), or to design test cases to verify
software systems represented as simulation models
(Matinnejad et al., 2016). In our work, we provide a
procedure based on two statistical procedures to infer
test execution parameters from simulation models.

3 THE METHODOLOGY

In this section, our test generation methodology is in-
troduced. Figure 2 shows the main steps, the inputs,
and the expected output of the methodology. We start
by discussing the methodology input requirements.
Then, we explain the methodology steps.

3.1 Inputs to the Methodology

The methodology requires four different artefacts as
inputs. In this section, we describe them briefly:

3.1.1 Behaviour Model of the SUT

This model should describe how the app-network in-
teractions impact the performance metric under con-
sideration. According to Figure 1(a), the app-network
interactions in streaming apps are well modelled by
capturing the buffering behaviour of the app. The out-
comes of this task are the behaviour model of the SUT
and the set of app configuration parameters (ACPs)
that affect the considered performance metric. We use
activity diagrams to describe this model.

3.1.2 Network Model

This model should capture how the wireless network
affects the considered performance metric. In general,
network models are determined by the technology
(WiFi or cellular) and the transport protocol (TCP or
UDP). As shown in Figure 1(a), the app interacts with
the network through a basic request-response (REQ-
RES) mechanism. In multimedia streaming, the net-
work’s impact can be captured by modelling the RES
inter-arrival time delay, which is a random variable.
The expected outcomes of network modelling are the
probability distribution of this random variable and
the NOPs. To obtain the distribution, we employ dis-
tribution fitting using the first two moments: the mean
and variance. Assuming the UDP protocol, we de-
velop in Appendix A mathematical expressions for
the mean and variance of packet (RES) inter-arrival
time delay for a mobile user in a WiFi network.

3.1.3 Desired Performance Levels

The methodology requires a set of levels of the perfor-
mance metric under consideration. In this work, we
are interested in application level performance met-
rics that directly relate to the end-user’s quality of
experience (QOE). For example, the user experience
of file transfer apps is assessed using two metrics:
goodput and transfer time performance (Ivanovici and
Beuran, 2010). Both are ratio metrics on a scale
from 0 to 1, where 1 represents the best performance.
Therefore, desired performance levels are merely nu-
merical values sampled from the interval [0,1]. How
many of those levels are needed and how they are cho-
sen are addressed in the test selection strategies.

3.1.4 Test Selection Strategies

In general, a test selection strategy encodes the main
objectives of the testing process. Satisfaction of test-
ing objectives is measured using coverage criteria. In
this methodology, we propose two coverage criteria
(UE and UEII). Initially, we need to introduce some
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notations. The sets of NOPs and ACPs are denoted
as SNOP and SACP with cardinalities n and m, respec-
tively. Therefore, we have n + m input parameters
p1, p2, ..., pn+m. To generate a test case, we assign a
specific value vpi to each parameter pi ∈ SNOP∪SACP,
where vpi ∈ V pi, the set of permissible values of the
parameter pi, 1 ≤ i ≤ n+m. Thus, a test case t j is
basically a tuple of the form (vp j

1, vp j
2, ..., vp j

n+m, l j),
where l j is the expected performance level.

i) User Experience (UE) Coverage Criterion

Herein, the objective is to generate test cases to cover
the whole spectrum of the considered performance
metric. However, since the performance spectrum
is most likely to be continuous, an infinite number
of test cases are needed. To generate a minimal set
of test cases, partition testing (Grindal et al., 2005)
is applied. The idea is to partition the parameter
space into multiple regions where all the points of the
same region are equivalent from the testing point of
view. In our work, we apply partition testing to per-
formance metrics, utilizing the fact that the end-user
perception of the performance behaviour is discontin-
uous and can be characterized in terms of a few spe-
cific categories (QOE categories). Given R categories,
we divide the performance spectrum W into R non-
overlapped regions r1,r2, ...,rR such that W =

⋃R
i ri.

The number of QOE categories is app type dependent.
Next, a performance level li is selected for each re-
gion such that li ∈ ri, 1≤ i≤ R. Last, the correspond-
ing test input vpi

1, vpi
2, ..., vpi

n+m for li is determined.
Procedure 1 summarizes the steps needed to generate
test cases that satisfy this criterion:

• Procedure 1: Test selection strategy to achieve the
UE coverage criterion

• Inputs: The number of QOE categories R

• Outputs: A test suite T of at least R test cases

S1: Partition W into R regions r1,r2, ...,rR;
S2: Select the set Sl={l j: l j ∈ r j, 1≤ j ≤ R};
S3: ∀ l j ∈ Sl , generate test inputs vp j

1,vp j
2, ...,vp j

n+m.

ii) User Experience and Input Interaction (UEII)
Coverage Criterion

It may be noted that the UE coverage criterion is an
output based criterion. However, satisfying this cri-
terion is not enough to assure the quality of the app,
because the designed test suite does not adequately
cover the input space of the SUT. In combinatorial
testing, it is emphasized that the effectiveness of the
generated test cases increases as the coverage of the
interactions of the input parameters increases (Yılmaz

et al., 2014). Therefore, we are interested in generat-
ing test cases that satisfy both aspects of the SUT: the
input space and the performance behaviour. For this
purpose, we extend Procedure 1 as follows. First, we
generate the set TS of R seed test cases using Proce-
dure 1. This set does cover the performance spec-
trum. Then, to enhance input space coverage, we use
the seed tests to generate follow-up test cases so that
a combinatorial metric is satisfied. The combinato-
rial metric is applied on subsets g1, g2, ..., gG of the
SNOP∪SACP set, where G≥ 1. These subsets are con-
structed such that the parameters in which their inter-
actions are important to cover are grouped together
into a subset. A set of follow-up test cases Ti j is gen-
erated for every subset g j and seed test si ∈ TS. The
parameters’ values vpi

1, vpi
2, ..., vpi

n+m of the follow-
up test cases are determined as follows. The values of
the parameters of the g j subset are determined using
the combinatorial metric. The remaining parameters
{p : p ∈ SINP− g j} are assigned the same values of
the seed test case si.

The input space is constrained by conditions im-
posed by the network, the SUT, and by the condition
that the expected performance levels for the follow-
up test cases should remain within the same perfor-
mance region of the test seed. That is, given the sets
TS, SG = {g1,g2, ...,gG}, C (the set of constraints),
and a combinatorial metric b, Ti j = Pert(g j,si,C,b),
1≤ j ≤ G, 1≤ i≤ R, where Pert realizes the follow-
up test generation using the combinatorial coverage
metric b. Therefore, test generation to satisfy UEII
criterion is basically a combinatorial test generation
with constrained parameters. The generated test suite
T is the union of the follow-up test sets Ti j and the
seed tests TS. The following procedure summarizes
the steps explained before:
• Procedure 2: Test selection strategy to achieve the

UEII coverage criterion

• Inputs: R, G, C, and b

• Outputs: A test suite T =
⋃

i, j Ti j
⋃

TS.

S1: Generate the set TS using “Procedure 1”;
S2: Create the set SG={g j: g j ⊂ SINP, 1≤ j ≤ G};
S3: ∀ j, i, Ti j = Pert(g j,si,C,b).

Hence, the UEII criterion subsumes the UE criterion.

3.2 The Procedure of the Methodology

As shown in Figure 2, the methodology’s steps are:

3.2.1 Develop Performance Models

By the performance model we mean any mathemati-
cal representation that quantitatively captures the im-
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pact of the interaction of NOPs and ACPs on the
performance of the SUT. In this work, we employ
the Markovian framework to develop the performance
models. This framework is appropriate when the sys-
tem state is defined by the buffering behaviour of the
SUT. We use supplementary variable technique (Cox
and Miller, 1977) to solve the model. This technique
is used if the stochastic process is not Markovian,
allowing for more practical interactions between the
SUT and the network to be modelled. In this method-
ology, two performance models are developed: math-
ematical and simulation. The simulation model is
used to verify the mathematical model and in the test
generation process as well. In Appendix B, the perfor-
mance model (Equations (23-30)) of the considered
app example is developed. This step requires the net-
work model and behaviour model of the SUT.

3.2.2 Generate Test Cases

NOPs and ACPs are found by formulating test gener-
ation as an inversion problem. In order to determine
the input that leads to a certain output, an inverse re-
lationship should be derived. For most mathemati-
cal models, deducing a closed form for the inverse
relationship may not be feasible. Furthermore, the
structure of some models is unknown as in simulation
models. Therefore, we cast the inversion problem as a
root finding problem. Given the desired performance
level li ∈ Sl , the test input is basically the root that
satisfies the relationship:

Perf model(p1,p2, ...,pn+m)− li = 0 (1)

where Perf model(...) represents the performance
model. The roots (NOPs and ACPs values) can be
found by reformulating Equation (1) as a minimiza-
tion problem:

Minimize |Perf model(p1,p2, ...,pn+m)− li| (2)

where | · | is the absolute value operator. We minimize
the absolute of the difference to force the solver that
the required minimum is zero. In this work, we use
the mathematical performance model as the objective
function, although the simulation model can also be
used. The minimization problem is constrained by
the conditions imposed by the network model and the
semantics of the SUT behaviour.

3.2.3 Evaluate Test Execution Parameters

We employ the simulation model to determine the
TEPs. We determine the parameters in two stages.
First, using a univariate sequential procedure called
Law and Carson (abbreviated as L&C) (Law, 2015),
we estimate the mean run length for the simulation

model to reach steady-state and use this value as an
estimate of the mean execution time of the test case.
We build a point estimator T̂x and a confidence inter-
val CI(T̂x) so that the estimated value for the consid-
ered performance metric is within a pre-specified er-
ror from the true value. Second, the rest of TEPs are
inferred simultaneously by utilizing the Bonferroni
inequality (Charnes, 1995). This inequality provides
a lower bound for the overall confidence level (1−ζ)
given that the overall significant level ζ is equal to the
sum of the individual significant levels. We construct
individual confidence intervals using the Independent
Replication Sequential (IRS) procedure (Law, 2015).
The precision of estimation is controlled by the rel-
ative error in estimation γ. Procedure 3 summarizes
how to infer TEPs using the simulation model:

• Procedure 3: Determine TEPs using the simula-
tion model

• Inputs: The test case (vp j
1, vp j

2, ..., vp j
n+m, l j), γ, ζ,

and the number of replications

• Outputs: The corresponding TEPs values

S1: Invoke the L&C procedure to obtain T̂x and
CI(T̂x);

S2: Choose ζ1, ζ2, ..., ζk so that ∑k
i=1 ζi = ζ;

S3: Invoke IRS procedure to obtain the estimated
mean and the confidence interval for the remain-
ing TEPs.

4 USING THE METHODOLOGY

In this section, we apply the proposed methodology
on an example of a mobile multimedia streaming app.
The considered performance quality is the smooth-
ness of the streaming as perceived by the end user. We
assume that the app utilizes the UDP protocol and the
last hop to the end user is through a wireless connec-
tion using a WiFi hotspot that implements the IEEE
802.11 protocol. We start this section by defining the
behaviour model of the SUT and the network model.
Then, we apply the proposed methodology to gener-
ate test cases using both test selection strategies.

4.1 Behaviour Model of the SUT

We assume that the SUT implements a progressive
streaming in which both frame downloading and de-
coding are interleaved. The app behaviour is mod-
elled by two main components: downloader and
player. Both components interact with each other
through a playback buffer. Figure 3 shows the de-
sired behaviour of the SUT. At the beginning, the app
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is in the Buffering phase. In this phase, the down-
loader starts fetching media frames from the network
and queues them in the buffer, while the player is still
off. The app remains in this phase until the data level
in the playback buffer reaches a certain limit usually
known as a high watermark level (M). This level de-
termines the length of the buffering phase and thereby
the length of the time period the user has to wait be-
fore the player starts playing. Also, this level deter-
mines when the app stops asking for new frames. The
downloader resumes fetching media frames whenever
data level drops below a certain limit, known as a low
watermark level (L). This level represents the mini-
mum amount of data in the buffer to ensure smooth
playback. To capture end user experience, we con-
sider the frequency of rebuffering events as the per-
formance metric (Mok et al., 2011). This metric has
a direct relationship with the frequency of visiting
the Empty Buffer state. The SUT behaviour is char-
acterised by three configuration parameters (ACPs):
playback buffer size (B), M, and L.
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Figure 3: The behaviour model of the app example.

4.2 Wireless Network Model

The streaming is through a WiFi AP. We assume all
the fluctuations in the wireless channel and in the
wired network manifest as a time delay. Thus, packet
loss is negligible. The probability distribution (CDF)
of the frame inter-arrival time delay is matched with
Hyper-Erlang distribution using the mean and vari-
ance that are given by Equations (11) and (13) in Ap-
pendix A, respectively. The network impact is cap-
tured by three operating parameters (NOPs): data rate
D, the mean rate of frame arrival at the AP per user λ,
and the number of end users N connected to the AP.
To validate the matched CDF, we conduct simulation
experiments using the Network Simulator NS2. Fig-
ure 4 shows both the empirical and analytical CDFs.

4.3 The Procedure

Given the network model and the behaviour model of
the SUT, now we apply the methodology procedure:

4.3.1 Performance Models

We develop two performance models: mathematical
and simulation. The performance metric under con-
sideration correlates with the fraction of time of be-

Figure 4: The empirical and analytical CDFs.

ing in the Empty Buffer state out of the total time of
streaming. Since the performance metric is a steady-
state metric, the Buffering phase is not included in the
models. To evaluate the performance metric, the sta-
tionary distribution of the playback buffer length is
required. We are only interested in the probability of
having zero frames in the playback buffer π0.

To facilitate the modelling process, we assume
that the frame decoding rate is exponentially dis-
tributed. Nevertheless, the stochastic process is still
not Markovian, as the frame arrivals are not exponen-
tially distributed. Therefore, we develop the model
using the supplementary variable technique as shown
in Appendix B. The performance model is pictorially
shown by the Markov chain in Figure 7 and mathe-
matically described by the set of Equations (23-30).

To verify the performance model, Figure 5 shows
the performance metric π0 with different buffer sizes
and for both simulation and mathematical models,
where µ represents the mean rate of frame decoding,
f is a tuning parameter to control the relation between
the frame arrival rate and µ; p and k are Hyper-Erlang
distribution parameters. In the simulation model, we
simulate a streaming session of 30 minutes. Each sim-
ulation experiment is repeated 50 times.

Figure 5: The considered performance metric (π0) versus
buffer size for both performance models.

4.3.2 Test Generation

Before solving the optimization problem, the con-
straints and bounds of the input parameters have to
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be defined. The ACPs (B, M, and L) are defined as
integer number of multimedia frames. The semantics
of the SUT introduce the following two constraints:

M ≤ B and L≤M−1. (3)

The high watermark cannot be higher than the buffer
size, and the low watermark cannot be equal or higher
than the high watermark. For the NOPs, accord-
ing to the IEEE 802.11 a/g standard data rate D can
take either of the following values: 6, 9, 12, 18, 24,
32, 48, or 54 Mbps. It mainly relates to the qual-
ity of the wireless connection between the AP and
the end user. Regarding the number of users N, the
network model is validated with the number of users
that ranges from 4 to 30. λ is the only continuous
parameter. Using the upper and lower bounds of N
and D and the constraints imposed by the network,
we bound λ between 10 and 416 packets/sec, and we
represent this parameter by the following 42 discrete
values [10,20,30,...,410,416].

In multimedia streaming, the mean encoding rate
at the server is set according to the end-user device
characteristics. Thus, we assume that the mean arrival
rate to the end user 1/Er (Equation 11) is equal to the
mean decoding rate (µ) (Li et al., 2009), i.e.:

µ =
1
Er

(4)

Solving Equation (4) in terms of NOPs (λ, N, and
D), a non-linear equality constraint is obtained. Since
most optimization solvers do not easily accommodate
non-linear equality constraints, we assume that the
mean of the packet inter-arrival time delay falls in a
closed interval around 1/µ. Thus:

k1
µ
≤ Er ≤

k2
µ

(5)

where k1 and k2 are tunable parameters introduced
to control the width of the closed interval. By doing
so, we relax the non-linear equality constraint to two
non-linear inequalities that are easier to deal with.

Another constraint that should be taken into con-
sideration is that the traffic intensity (ρ) at the AP
should be less than 1:

ρ < 1 (6)

Otherwise, the buffer at the AP will build up in-
finitely. Therefore, the optimization problem has five
constraints (inequalities 3, 5, and 6).

i) Test Generation using UE Coverage Criterion

In Procedure 1.S1, the performance spectrum is par-
titioned according to the end-user QOE categories.

In multimedia streaming and using the probability
of empty buffer state π0 as a performance met-
ric, three different end-user experiences are reported
(Mok et al., 2011). If π0 is less than 2%, the video
quality is high; between 2% and 15%, the quality is
medium; and above 15%, the quality is poor. Hence,
we divide the performance spectrum into the reported
three regions (R=3). Then, we select a performance
level for each region {π0 = 0.01,π0 = 0.05,π0 = 0.2}.
Solving the minimization problem for each of them,
the corresponding network and SUT parameters’ val-
ues are determined as shown in part (a) of Table 1
(the left most seven columns). The buffer size B is
bounded between 10 and 40 frames, the mean of the
decoding rate µ is 30 f rames/sec, and the parameters
k1 and k2 are 0.75 and 1.25, respectively.

ii) Test Generation using UEII Criterion

We consider the three generated test cases that are
listed in part (a) of Table 1 as test seeds TS (Procedure
2.S1). We utilize the combinatorial coverage metric
each-choice (Grindal et al., 2005) to enhance the input
space coverage. We choose to cover the interaction of
SACP and SNOP independently (Procedure 2.S2)(i.e.,
G=2, g1=SACP, g2=SNOP). For g1 subset, we apply
each-choice criterion for high watermark (M) and low
watermark (L) only, since the playback buffer size (B)
does not directly affect the system output. The param-
eters B, D, λ, and N are kept fixed on seed’ values.
The same procedure is applied for g2 subset.

To generate the follow-up test cases (Procedure
2.S3), we use the combinatorial tool ACTS v3 (ACT,
2016). Because the input parameters are constrained
by non-linear constraints, we first identify the param-
eter values that satisfy the constraints and then we ap-
ply the combinatorial testing criterion. Applying Pro-
cedure 2.S3 for g1 subset, we get 33 (T11), 40 (T12),
and 9 (T13) follow-up test cases for the performance
regions [0,0.02], (0.02,0.15], and (0.15,1], respec-
tively. As an example, we show the set T13 below:

T13 = {(10,5),(11,1),(12,1),(13,1),(8,7),(6,4),
(5,3),(9,6),(7,2)}

The first element of each tuple is M and the second
is L. For g2 subset, we get 5 (T21), 3 (T22), and
3 (T23) follow-up test cases for the regions [0,0.02],
(0.02,0.15], and (0.15,1], respectively. As an exam-
ple, we show the set T23 below:
T23 = {(54M,110,15),(54M,150,11),(54M,330,5)}
The first element of each tuple is D, the second is λ,
and the third is N. The remaining parameters’ (B, M,
and L) values are fixed on test seed values. Hence, the
designed test suite T using the UEII criterion is the
union of the sets T11, T12, T13, T21, T22, T23, and TS.
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4.3.3 Determining TEPs

For the app example, each test case is a streaming ses-
sion with certain configuration parameters. To exe-
cute each test case, the length of the streaming session
and the size of the multimedia file need to be deter-
mined. Since we have two TEPs parameters only, we
do the estimations without the need to use Bonferroni
inequality (Procedure 3.S2). The used values for γ, ζ,
and the number of replications are 0.075, 0.1, and 10,
respectively. We build a point estimator and a con-
fidence interval independently for the mean test case
execution time T̂x (Procedure 3.S1) and the mean file
size F̂s (Procedure 3.S3) so that the estimated proba-
bility of the empty playback buffer state (π̂0) is within
a pre-specified error from the true value. We estimate
T̂x and F̂s for the three test cases as shown in part (b)
of Table 1. We gauge the adequacy of the estimated
simulation time by controlling the width of the con-
fidence interval CI(π̂0) through the parameter γ. As
expected, test case execution time is test case depen-
dent. Moreover, as π0 increases, the required time to
reach steady-state decreases.

5 EVALUATION OF THE
APPROACH

We use random testing as a baseline to evaluate the
effectiveness of the proposed methodology. Herein,
we use the phrases test configurations and test cases
interchangeably. As the implementation of the SUT
is not available, we generate test cases randomly us-
ing the procedure shown in Figure 6, where R is the
number of performance regions, Q is the number test
cases per region, and C is the coverage criterion. We
first use the UE coverage criterion. We use the devel-
oped performance model to evaluate the performance
behaviour lc (π0) of the configuration tc. To antici-
pate the incurred cost of the random test generation,
we keep track of four types of test configurations: In-
valid executable test configurations (IETCs), Invalid
non-executable test configurations (INTCs), Valid-
and-useful test configurations (VTCs), and Valid-but-
not-useful test configurations (VNTCs).

A test configuration tc is invalid if the chosen pa-
rameters’ values do not satisfy the constraints im-
posed by the network model, SUT, or both. If tc
does not satisfy the network requirements only (in-
valid NOPs), the SUT can still execute, while if tc
does not satisfy the constraints imposed by the SUT
(invalid ACPs), it is not executable. We assume that
the SUT implements the necessary logic to catch out
inconsistent ACPs. Therefore, we have two types of

invalid test configurations: executable (IETCs) and
non-executable (INTCs). It is important to differen-
tiate between them as IETCs are more expensive than
INTCs from the time cost point of view. If tc satis-
fies all the imposed constraints, it is a valid configura-
tion. Moreover, if this valid configuration increases
the coverage of the designed test suite so far, it is
considered as a valid-and-useful configuration. Oth-
erwise, it is a valid-but-not-useful test configuration.

start

Randomly choose tc
Inputs: R, Q, C

SUT constraints ?

Network constraints ?
S1 = S1 U {tc}NO

YES

S2 = S2 U {tc}NO

Evaluate lc using the performance model

YES

Coverage criterion C ?

S3 = S3 U {tc}NO

S4 = S4 U {tc}YES

|S4| = R×Q ?

end

YES

NO

Define S1={φ}, S2={φ}, S3={φ}, and S4={φ}

Outputs: S1, S2, S3, and S4
Figure 6: The implemented flowchart of test generation us-
ing random testing. The sets S1, S2, S3, and S4 are the sets
of INTCs, IETCs, VNTCs, and VTCs, respectively.

To estimate the incurred cost of generating a test
suite of size R×Q, we design an experiment with
R and Q as controllable factors. The obtained re-
sults are shown in Table 2. The results are basically
the median of 10 repetitions. For example, to ran-
domly generate a test suite with one test case (R = 1,
Q = 1), the incurred cost is approximately the sum of
the time cost of running 566 IETCs and one VTCs,
while in our framework, we need to execute the SUT
with one VTC only. Since performance metrics are
mostly statistical, the time needed to observe the per-
formance behaviour lc of the real system is not triv-
ial. As we employ a heuristics based optimization
formulation which solely depends on function (per-
formance model) evaluations to find the optimal point
(test case), random testing can be better than ours if
the performance model evaluation is more expensive
than running the real SUT and/or if the employed op-
timizer needs more model evaluations than random
testing. For the first condition, even if the perfor-
mance is modelled using a simulation model, many
techniques have been proposed to speed up simulation

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

232



Table 1: The augmented set of test cases. T̂x is measured in minutes, D is measured in Mbps and F̂s is measured in MB.

(a) test cases (b) test execution parameters (TEPs)

π0 B M L D λ N T̂x CI(T̂x) F̂s CI(F̂s)

0.01 34 34 4 18 131.965 7 159.288 [145.385,173.2] 425.8 [425.32,426.28]
0.05 38 31 7 32 162.8702 8 109.226 [74.161,144.291] 280.2018 [279.77,280.63]
0.2 24 7 2 6 98.9693 4 6.4 [4.651,8.148] 13.8505 [13.780,13.921]

Table 2: The cost of random testing in terms of the number of test configurations that need to be executed for different cases.

R Q Suite size IETCs INTCs VNTCs VTCs

1 1 1 566 1795.5 0 1
1 2 2 1471 5016 0 2
1 3 3 1849.5 6149 0 3
2 1 2 3193 10317 3 2
2 2 4 4817 15966 6.5 4
2 3 6 11472 38262 14.5 6
3 1 3 18290 60399 29.5 3
3 2 6 40018 1.3266×105 66.5 6
3 3 9 1.0785×105 3.5653×105 178.5 9

executions, while real system executions cannot be
accelerated. For the second condition, many heuris-
tics based optimization algorithms are available in lit-
erature that can perform better than our optimization
solver. Indeed, within the used solver, many strategies
can be used to fine tune its performance. In conclu-
sion, there is still much room to enhance the perfor-
mance of our framework compared to random testing.

In addition, as R increases, the incurred time cost
increases and reaches astronomical values as the case
with R = 3 and Q = 3. In this scenario, the time
cost is approximately the sum of the time cost of run-
ning 1.0785×105 IETCs, 178.5 VNTCs, and 9 VTCs.
In theory, as the number of performance regions (R)
increases, the width of each region decreases and
thereby the probability of getting a valid test case us-
ing random testing decreases. In contrast, the time
cost of generating a test case by solving the inversion
problem does not depend on the width of the region.
Compared to random search, our optimization based
approach employs a guided search to figure out valid
test configurations. This conclusion also applies to
UEII coverage criterion, as UEII metric builds upon
UE and combinatorial metrics.

6 DISCUSSION AND
CONCLUSION

In this paper, a model based test generation method-
ology was proposed to evaluate the impact of the in-

teraction of the app configuration parameters and the
network operating parameters on the performance of
mobile multimedia apps. The methodology required
four different artefacts as inputs: a behaviour model
of the SUT, a network model, desired performance
levels, and coverage criteria. The methodology com-
prised three steps: performance models development,
test inputs generation, and estimation of TEPs. Test
generation was formulated as an inversion problem
and solved as a minimization problem. To generate
effective test cases, two coverage criteria were pro-
posed: i) user experience (UE) and ii) user experi-
ence and input interaction (UEII). We applied the pro-
posed methodology on a mobile multimedia stream-
ing app example. The effectiveness of the method-
ology was empirically evaluated in comparison with
random testing. The incurred time cost to generate
a test suite using random testing was estimated to be
much more than the cost of our framework.

In model-based testing, model development is the
most critical operation that is difficult to automate. In
this work, constraints derivation is another intensive
operation that is fortunately amenable to automation
especially with the promising advances that have been
made in symbolic computing. Moreover, solving the
inversion problem as a black box optimization prob-
lem has enabled test generation regardless of the inter-
nal structure of the performance model and the used
stochastic notation.

In the app example, the main observation was the
high computing cost of evaluating the mathematical
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model compared to the simulation model when the
buffer size was beyond a certain value. To mitigate
this issue, we can employ the simulation model in
solving the inversion problem. In literature, there
is an increasing interest in using simulation models
in optimization problems (Gosavi, 2014). To en-
hance the quality of the generated test cases, we pro-
posed the UEII coverage criterion. However, the net-
work model has constrained NOPs by non-linear con-
straints, making test generation using combinatorial
metrics very complicated. To overcome this issue,
we exhaustively checked all combinations for the im-
posed constraints. However, this approach might be
very expensive in terms of execution time, especially
for systems with a large number of parameters and/or
parameter values, which indicates the need for more
powerful mechanisms to address such scenarios.
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A PACKET DELAY STATISTICS
IN A WIFI NETWORK

In this part, we derive analytical expressions for the
mean and variance of the packet (or frame) inter-
arrival time delay for streaming over a UDP protocol
and via a WiFi network. We assume that the WiFi
AP operates in the Distributed Coordination Function
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(DCF) mode. In this mode, a station (mobile device
or AP) can only send a MAC frame if the channel is
sensed idle for a DIFS (distributed inter-frame space)
interval of time. If the sender transmits and does not
receive an ACK within a certain amount of time, a
collision is detected and the frame has to be resched-
uled for transmission. In this case, the sender has to
wait for extra random amount of time after a com-
plete DIFS interval of being sensed idle to send the
frame. This random amount of time is called the
back-off interval. We assume data exchange between
stations are achieved using the four-way handshaking
scheme. Therefore, the time needed to successfully
send a packet Ts is given by (Bianchi, 2000):

Ts = TRT S+TCT S+3×TSIFS+TDIFS+TACK +T (7)

where TRT S, TCT S, TACK , and TSIFS are the trans-
mission times of ready-to-send packet, clear-to-send
packet, ACK packet, and short inter-frame space time
interval, respectively. The packet transmission time T
depends on the packet size P and on the data rate D of
the wireless connection:

T = TPHY +
HMAC +HUDP +P×8

D
(8)

where TPHY , HMAC, and HUDP represent the PHY
layer overhead, MAC layer header size, and UDP
header size (20 Bytes), respectively. We assume that
the WiFi AP has infinite buffer size, so the probability
of packet loss due to AP buffer overflow is negligible.
When a packet reaches the head of the AP buffer, the
time duration seen by this packet from this instant to
the instant at which it is successfully delivered to the
end user corresponds to the service time of the packet
St and it’s mean is given by:

E[St ] = Ts +σ×W
2

(9)

where σ is the slot time interval. The back-off counter
is a uniform random variable in [0,W ].

Since the variance in packet service time is neg-
ligible, we assume that the AP as an M/D/1 queue-
ing system. Therefore, the mean of the packet inter-
arrival time delay Er at the end user is basically the
mean of the packet response time at the AP, which is
the sum of the mean of queueing time delay and the
packet service time (Jain, 1991):

Er = E[St ]+
ρ×E[St ]

2× (1−ρ)
(10)

where ρ is the traffic intensity at the access point.
Therefore, with few simplifications, the mean packet
inter-arrival time delay is given by:

Er =
(2−ρ)

2×α× (1−ρ)
(11)

Figure 7: The state diagram of the application.

where α is the packet service rate at the AP. Conse-
quently, the variance in packet inter-arrival time delay
Vard is mainly due to the variance in the AP queueing
waiting time and it is given by (Jain, 1991):

Vard =
NλE[S3

t ]

3(1−ρ)
+

(NλE[S2
t ])

2

4(1−ρ)2 (12)

where N and λ are the number of users and the packet
mean arrival rate for each user at the AP. With few ma-
nipulations, the variance in packet inter-arrival time
delay settles down to the following equation:

Vard =
ρ× (4−ρ)

12×α2× (1−ρ)2 (13)

B PROBABILITY DISTRIBUTION
OF THE PLAYBACK BUFFER
LENGTH

In multimedia streaming, the end-user quality of ex-
perience correlates with the probability of empty
buffer state π0. Therefore, the stationary distribu-
tion of the playback buffer length should be evaluated.
Since the buffer dynamics’ process is not Markovian,
the model is solved using SVT. In this technique,
the state of the Markov chain should be redefined so
that all the necessary information to determine the
next state is available in the current state. Thus, the
stochastic process is defined as follows:

{B(t),V (t), t ≥ 0} (14)

where B(t) is a discrete random variable that repre-
sents the playback buffer length at time t, and V (t)
is a continuous random variable that represents the
elapsed time from the last frame arrival till time t.
Figure 7 shows the Markov chain of the SUT. All
states that are expected to receive frames are aug-
mented with the supplementary variable v to account
for the elapsed time since the last arrival. Our ob-
jective is to find the steady state probability distribu-
tion of B(t). The derivation depends on examining
the short-term behaviour of the chain. For each state,
a difference equation is derived using the basic law
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of total probability of two mutually exclusive events.
For state 0, it is:

π0(t +∆t,v+∆t) =π0(t,v)(1−λ(v)∆t)
+π1(t,v)µ∆t +o(∆t)

where o(∆t) is the probability of having more than
one event in a short interval ∆t. For states 1,2, ..., and
M−2, it is:

πn(t +∆t,v+∆t) = πn(t,v)(1−λ(v)∆t−µ∆t)
+πn+1(t,v)µ∆t +o(∆t), 1≤ n≤M−2

For the states M−1 and M, they are:

πM−1(t +∆t,v+∆t) =πM−1(t,v)(1−λ(v)∆t−µ∆t)
+o(∆t)

πM(t +∆t) =πM(t)(1−µ∆t)

+
∫ ∞

0
πM−1(t,v)λ(v)∆tdv+o(∆t)

For the last M−L−1 states, It is:

πn(t +∆t) =πn(t)(1−µ∆t)+πn−1(t)µ∆t
+o(∆t), M+1≤ n≤ 2M−L−1

The corresponding differential and partial differential
equations are:

∂π0(t,v)
∂t

+
∂π0(t,v)

∂v
=−π0(t,v)λ(v)+π1(t,v)µ

(15)
∂πn(t,v)

∂t
+

∂πn(t,v)
∂v

=−πn(t,v)(λ(v)+µ)

+πn+1(t,v)µ, 1≤ n≤M−2
(16)

∂πM−1(t,v)
∂t

+
∂πM−1(t,v)

∂v
=−πM−1(t,v)(λ(v)+µ)

(17)
dπM(t)

dt
=−πM(t)µ+

∫ ∞

0
πM−1(t,v)λ(v)dv (18)

dπn(t)
dt

=−πn(t)µ+πn−1(t)µ,

M+1≤ n≤ 2M−L−1
(19)

subject to the following boundary conditions:

π0(t,0) = 0 (20)

πn(t,0) =
∫ ∞

0
πn−1(t,v)λ(v)dv,1≤ n≤M−1\{L}

(21)

πL(t,0) =
∫ ∞

0
πL−1(t,v)λ(v)dv+π2M−L−1(t)µ (22)

For steady-state analysis, there is no need to spec-
ify initial conditions. To simplify solving the above
equations, there is a tactic to remove λ(v) from the

equations reported in (German, 2000). Applying this
tactic on Equations (15-18, 20-22), yields:

∂p0(t,v)
∂t

+
∂p0(t,v)

∂v
= p1(t,v)µ

∂pn(t,v)
∂t

+
∂pn(t,v)

∂v
=− pn(t,v)µ+ pn+1(t,v)µ,

1≤ n≤M−2
∂pM−1(t,v)

∂t
+

∂pM−1(t,v)
∂v

=−pM−1(t,v)µ

dπM(t)
dt

=−πM(t)µ+
∫ ∞

0
pM−1(t,v) f (v)dv

subject to the following boundary conditions:

p0(t,0) = 0

pn(t,0) =
∫ ∞

0
pn−1(t,v) f (v)dv, 1≤ n≤M−1\{L}

pL(t,0) =
∫ ∞

0
pL−1(t,v) f (v)dv+π2M−L−1(t)µ

where pn(t,v) is the instantaneous rate function of
Πn(t,v), the corresponding cumulative distribution of
πn(t,v), and f (v) is the probability density function
of the inter-arrival time delay v. As t → ∞, the sys-
tem reaches steady-state and the behaviour does not
depend any more on the time. Hence, the state equa-
tions become as follows:

dp0(v)
dv

= p1(v)µ (23)

dpn(v)
dv

=−pn(v)µ+ pn+1(v)µ, 1≤ n≤M−2
(24)

dpM−1(v)
dv

=−pM−1(v)µ (25)

0 =−πMµ+
∫ ∞

0
pM−1(v) f (v)dv (26)

0 =−πnµ+πn−1µ, M+1≤ n≤ 2M−L−1 (27)
subject to the following boundary conditions:

p0(0) = 0 (28)

pn(0) =
∫ ∞

0
pn−1(v) f (v)dv, 1≤ n≤M−1\{N}

(29)

pL(0) =
∫ ∞

0
pL−1(v) f (v)dv+π2M−L−1µ. (30)

The Equations (23-30) describes the dynamics of the
SUT. The probability distribution of the states are:

πn =
∫ ∞

0
pn(v)F̄(v)dv, 0≤ n≤M−1 (31)

where F̄(v) is the complementary cumulative distri-
bution function of v. The solution of Equations (23-
31) with the normalization equation, ∑2M−L−1

n=0 πn = 1,
gives the stationary distribution of the playback buffer
length. We are only interested in π0.
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