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Abstract: Data sharing and collaboration are important success factors for modern biomedical research. As biomedical 

data contains sensitive information, any mechanism that governs biomedical data sharing should protect 

subjects’ privacy while providing high-utility data in an efficient and prompt manner. The use of biomedical 

data for research has been studied extensively from the legal aspect. Several regulations control its use and 

sharing to limit privacy risks. However, current sharing mechanisms can be a barrier to the research 

community needs. Going through the IRB process is time consuming and will become a bottleneck for the 

intensive data need of the biomedical research community. Alternatively, creating a universal de-identified 

research sub-dataset accessible through honest-broker-systems will not satisfy all research use-cases, as 

stringent de-identification methods can reduce data utility. A risk-aware access control model is a good 

alternative toward making data more available. In such a model, data requests are evaluated against their 

incurred privacy risks, and are granted access after the application of appropriate protection levels. In this 

paper, we describe a formal risk-aware model that will be used in the access control layer and describe the 

different risk components that can be combined to provide a decision against a data access request. 

1 INTRODUCTION 

Data-sharing and collaboration are important key 

success factors for modern biomedical research 

(Lynch, 2011). The scientific community realized the 

importance of data sharing and many international 

initiatives are focusing on new policies and 

procedures to promote biomedical data sharing 

among the research community, such as, the 

International Cancer Genome Consortium (ICGC) 

(“International Cancer Genome Consortium,” n.d.) 

and the Global Alliance for Genomics and Health 

(GA4GH) (“Home | Global Alliance for Genomics 

and Health,” n.d.). These initiatives reflect, on one 

hand, the desire to capture a wide spectrum of 

detailed biomedical data and on the other hand, the 

need of collaborating across disciplines and 

institutions. 

This emerging context poses new challenges 

toward safeguarding the privacy and security of the 

data subjects, complicating the traditional institution-

based oversight system. Institutional Review Boards 

(IRBs) or ethical committees are in charge of 

analysing and evaluating research proposals in terms 

of their risk and benefit. In general, the approved 

research projects are the ones that present consequent 

benefit with minimal risk and that comply with the 

ethical standards and the local policies. 

However, going through the IRB process is time 

consuming and with the intensive data consumption 

need of modern biomedical research, it is expected 

that the IRB process will become a bottleneck for the 

research activity (He et al., 2014). A current 

mechanism to overcome the burden of the IRB 

process is to share a universal de-identified sub-

dataset with the research community. An IRB-

approved honest broker system is in charge of the 

distribution and the access to the de-identified data. 

Although this mechanism reduces the time to acquire 

data, it treats all requests equally in terms of de-

identification, thus disregarding the individualities of 

the different data requests. 

In a more efficient data-sharing scenario, the level 

of granted access has to reflect the risk that we incur 

with this data sharing and has to be compatible with 

the research purpose. Moreover, it is not reasonable 

to seek IRB approval for each research proposal 

especially when it is in the exploratory phase. In 
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(Dankar and Al-Ali, 2015; Dankar and Badji, 2017), 

the authors describe a theoretical multi-level privacy 

protection framework for biomedical data 

warehouses. The objective of the proposed 

framework is to create a responsible data-sharing 

mechanism through an electronic Honest Broker 

System (e-HBS) that will enable the researchers’ 

timely access to biomedical data while lowering the 

data access-related risk to an acceptable level. 

Briefly, the cited model evaluates the risk posed by a 

data request using all contextual information 

surrounding the request and presents it to an access 

control module that applies mitigation measures to 

counter the posed risk.  

Thus the risk-aware access control system 

(RAAC) allows the mitigation of risks while previous 

existing systems concentrate on the worst-case 

scenario in the system design, and their access 

decisions are consequently exclusively binary: allow 

or deny. With the RAAC model, low-risk access 

requests will be granted and high risk access requests 

will be denied or granted after the enforcement of 

some risk mitigation measures, such as: scaling-up 

the security applying data de-identification, and/or 

enforcing constraints on data access.  

In this paper, we propose a formal risk aware 

access-control model for the risk aware information 

disclosure framework proposed in (Dankar and Badji, 

2017). The model incorporates two use cases: (i) the 

e-HBS case (described earlier), in which access 

control decisions are made to counter the risk 

associated with the different requests, and (ii) the IRB 

case, which is the usual IRB manual application 

process. The IRB use-case is useful for investigators 

who are not happy with the level of protection offered 

by the automated process, or the investigators who are 

willing to endure the extra time taken by the IRB.  

Our work extends prior work (Armando et al., 

2015; Chen et al., 2012) in risk aware access control 

to the field of biomedical research. One of the 

distinctive features in our model is the introduction of 

the legal risk, which represents the decision of the 

IRB. Specifically, our system allows the IRB as an 

approved authority to override access decisions made 

by the system at any point in time under specific 

conditions. Thus realizing the above two scenarios. 

The rest of the paper is organized as follows: 

Section 2 describes a high-level overview of our 

RAAC-based model; Section 3 presents the model 

formally and defines the proposed authorization 

function; Section 4 summarizes related work in the 

field and compares it to our model; and Section 5 

concludes the paper and presents future research 

directions. 

2 RISK-AWARE SYSTEMS FOR 

BIOMEDICAL DATA SHARING 

Privacy preservation and legislation compliance are 

key aspects in the development of biomedical 

research platforms. Research Data requests will be 

granted, if and only if, the risk incurred by such access 

is acceptable and controlled. In (Cheng et al., 2007) 

the authors define the risk of a data request as a 

predictive function of the expected value of damage 

(equation 1). 

Quantified risk = (probability of damage)× 

(value of damage) 
(1) 

Risk estimation is of the responsibility of the 

policy writer and is domain and application 

dependent. In our case, the IRB is responsible of the 

estimation. Nevertheless, our model has to be able to 

define all the necessary components used in this 

estimation.  

In equation 1, the risk is associated with a 

probability and represented as a metric value. The 

damage in the equation can be caused by a number of 

circumstantial factors that are specific to the data 

sharing episode.  In (Dankar and Badji, 2017), the 

authors define and measure these factors, they 

establish that the risk of granting data access to a user 

is dependent upon the data requested, the stated 

purpose for the access, the motives of the user (can 

we trust the user?) and on the security of the user’s 

environment (check Figure 1). For example, access to 

highly sensitive data at the data-holder’s location by 

a trusted user is inherently less risky than providing 

the same user with a copy of the dataset. Similarly, 

access to de-identified clinical data from a secure 

remote system is inherently less risky than access to 

identifiable data from an unknown location.  

The authors then define the risk-aware access 

control as realized on a risk scale divided into 

multiple risk bands (or classes). These risk bands are 

determined according to the organization risk 

tolerance levels and can be dynamically adjusted. 

Every access request falls into one of these risk bands 

according to its risk estimate. The access decision is 

made accordingly and will deny, allow with or 

without risk mitigation-measures the access (See 

Figure 1, which is an adaptation from (Cheng et al., 

2007)). For a detailed description of the different risk 

dimensions, ways to calculate the risk and an 

illustration, refer to  (Dankar and Badji, 2017). 
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Figure 1: Risk scale associated with an access request. 

3 RISK-AWARE ADAPTIVE 

ACCESS CONTROL MODEL 

We take the definition of the formal model for risk-

aware access control (RAAC) developed in (Chen et 

al., 2012) and its subsequent refinement proposed in 

(Armando et al., 2015) as the basis of our model. We 

add a new function called IRBapproved to represent 

the legal risk. This function allows the access in the 

context of risky situations as long as, the IRB, as a 

legal entity, has authorized that. We then define the 

final data sharing decision as a combination of 

individual risk functions. The components of the 

formal model are defined as follows: 

 

• U: a set of users. 

• 𝐷: denotes a dataset and 𝑑 ⊆ 𝐷 denotes any 

subset 

• 𝑂: is a set of operations that can be applied to a 

dataset 𝑑, 𝑜 ∈ 𝑂 denotes a particular operation. 

• 𝐴: a set of access purposes representing all the 

possible access purposes in our platform and 𝑎 ∈
𝐴 is a particular data access purpose. 

• 𝑃: a set of permissions represented as operation-

data-purpose tuples 𝑝 = (𝑜, 𝑑, 𝑎). 

• 𝑄: a set of access requests represented as a pair 

𝑞 = (𝑢, 𝑝)  

• 𝑀: a set of risk mitigation methods. A risk 

mitigation method 𝑚 ∈ 𝑀 is any action that can 

be taken by the user or/and the system to reduce 

risk. Such as data de-identification or constraints 

on data access time and mode (Dankar and Badji, 

2017). 

• 𝐿 = {𝑙 ∈ 𝑅; 0 ≤ 𝑙 ≤ 1}: a risk domain where 0 

represents no risk and 1 is the maximum risk. A 

risk interval [𝑙, 𝑙′[ is defined as {𝑥 ∈ 𝐿; 𝑙 ≤ 𝑥 ≤
𝑙′} 

• 𝜋 =
[(𝑙0, 𝑚0), (𝑙1, 𝑚1), … , (𝑙𝑛−1, 𝑚𝑛−1), (𝑙𝑛, 𝑚𝑛)], 
where 0 = 𝑙0 < 𝑙1 < ⋯ < 𝑙𝑛−1 < 𝑙𝑛 ≤ 1, 

 and 𝑚𝑖 ⊆ 𝑀 (𝑚𝑖 is a set): is a list that 

associates risk levels with mitigation methods 

and represents the risk mitigation strategy. Note 

that a risk level 𝑙 can be associated with multiple 

mitigation measures. The choice of what 

mitigation measure to apply is left to the user. 

• Σ: a set of states represented as tuples of the form 

(𝑈, 𝑃, 𝜋, 𝜏) where a state 𝜎 = (𝑢, 𝑝, 𝜋, 𝜏) 

represents a request 𝑞 = (𝑢, 𝑝) in an 

environment adopting strategy 𝜋 and 

implementing rules 𝜏. In our case,  𝜏 represents 

the features of a Role-Based Access Control 

model (RBAC) (Chen and Crampton, 2011). It 

defines a set of roles 𝑅, the user-role assignment 

relation 𝑈𝐴 ⊆ 𝑈 × 𝑅, the role permission 

assignments relation 𝑃𝐴 ⊆ 𝑃 × 𝑅, and the role 

hierarchy ≥⊆ 𝑅 × 𝑅. In other words, 𝜏 defines 

who has the right to request data, and the kind of 

data they can request based on their role. 

• 𝑔𝑟𝑎𝑛𝑡𝑒𝑑𝜏(𝑢, 𝑝): a boolean function that holds if 

and only if 𝑢 is granted access to 𝑝 according to 

𝜏. 

• 𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝): an authorization function 

where 𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑: 𝑈 × 𝑃 → 𝐸 and for each 

tuple (𝑢, 𝑝), the IRB approval status 𝑒 ∈ 𝐸 =
{0,1} is returned. 𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝) will be set 

by default to 0, unless the user has an explicit 

IRB approval for the data. This function reflects 

somehow the legal risk of a granted data access. 

If the IRB approves the request, then the legal 

risk is minimal. 

• 𝑟𝑖𝑠𝑘: a risk function with 𝑟𝑖𝑠𝑘: 𝑄 × Σ ⟶ [0,1] 
that returns for each access request 𝑞 in a 

particular state 𝜎, the risk 𝑟𝑖𝑠𝑘(𝑞, 𝜎) = 𝑙. This 

function is the core of our system and will be 

defined next. 

• 𝑎𝑢𝑡ℎ: an authorization decision function where 

𝑎𝑢𝑡ℎ: 𝑄 × Σ ⟶ 𝐷 × 2𝑀 and for each access 

request 𝑞 in a particular current state 𝜎 an 

authorization decision  𝑑𝜖𝐷 = {𝑎𝑙𝑙𝑜𝑤, 𝑑𝑒𝑛𝑦} is 

returned along with a set of mitigation methods 

𝑚 ∈ 𝑀. Formally: 

𝑎𝑢𝑡ℎ(𝑞, 𝜎)

= {
(𝑑𝑖 , 𝑚𝑖)      𝑖𝑓 𝑟𝑖𝑠𝑘(𝑞, 𝜎)𝜖[𝑙𝑖 , 𝑙𝑖+1[, 𝑖 < 𝑛,
(𝑑𝑛, 𝑚𝑛)                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Several parameters can be taken into account in 

the estimation of the risk associated with a data 
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request (Chen and Crampton, 2011). In prior work 

(Dankar and Badji, 2017), we identified the different 

risk categories in the context of biomedical research 

and data sharing. We proposed also different methods 

to calculate the different risks associated to these 

categories. The aim of this model is to use the values 

of these different risks to calculate an access decision. 

We define briefly each risk category and then we 

propose an equation (𝑟𝑖𝑠𝑘) to combine them: 

 

− User risk: the user risk is related to the 

trustworthiness of the user. The risk associated to 

the user trustworthiness is defined as follows: 

 

𝑟𝑖𝑠𝑘𝑇(𝑢) = {
1      𝑖𝑓 𝑛𝑜𝑡 𝑔𝑟𝑎𝑛𝑡𝑒𝑑𝜏(𝑢, 𝑝),
1 − 𝛼(𝑢)              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝛼(𝑢) reflects the degree of trustworthiness 

of user 𝑢. 

 

− Security risk: is the risk associated with the 

request session, such as: network security, 

connection location, connection time, etc. 

Defining a precise method to calculate this kind 

of risk is not an easy task. Nevertheless, several 

works in the literature have proposed methods to 

calculate such risk (“Google Android: A 

Comprehensive Security Assessment - Google 

Scholar,” n.d.). It is out of the scope of this paper 

to adopt one of these methods. However, we use 

the formal definitions of the associated risks to 

define our model. 

𝑟𝑖𝑠𝑘𝑆(𝑢, 𝑝) = {
1      𝑖𝑓 𝑛𝑜𝑡 𝑔𝑟𝑎𝑛𝑡𝑒𝑑𝜏(𝑢, 𝑝),
1 − 𝛽(𝛿)              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where 𝛽(𝛿) reflects the security level of the 

request session under the current state 𝛿. 

 

− Data sensitivity risk: There are many ways to 

estimate the data sensitivity: data classification, 

statistical metrics, etc [8]. The formal definition 

of the risk associated to data sensitivity is as 

follows: 

 

𝑟𝑖𝑠𝑘𝑃(𝑢, 𝑝)

= {
1      𝑖𝑓 𝑛𝑜𝑡 𝑔𝑟𝑎𝑛𝑡𝑒𝑑𝜏(𝑢, 𝑝),
𝛾(𝑝)                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where 𝛾(𝑝) reflects the data sensitivity level. 

 

− Access purpose risk: we consider that in 

biomedical research some tasks are riskier than 

others. For example, exploratory research is less 

risky than the creation of public data sets out of 

the requested data. Whenever the data request 

could be followed by data publication the risk has 

to be higher. This necessitates of course a 

classification of the different data access 

purposes and the estimation of their incurred risk. 

Hereafter is a formal definition of the access 

purpose risk that will be used in our model: 

 

𝑟𝑖𝑠𝑘𝐴(𝑞, 𝑎)

= {
1      𝑖𝑓 𝑛𝑜𝑡 𝑔𝑟𝑎𝑛𝑡𝑒𝑑𝜏(𝑢, 𝑝),
𝜆(𝑎)                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where 𝜆(𝑎) reflected the degree of risk 

associated with the access purpose 𝑎. 

 

− Legal risk: is reflected with the function  

𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝). 

 

 

The IRB is the authority that will define how we 

calculate the risk associated to each situation and the 

combination of them. The combined risk will be 

defined as a function of the different risk elements. 

The authorization decision is made based on the 

combined risk estimation: 

𝑟𝑖𝑠𝑘((𝑢, 𝑝), 𝜎)

= {

1  𝑖𝑓 𝑛𝑜𝑡 𝑔𝑟𝑎𝑛𝑡𝑒𝑑𝜏(𝑢, 𝑝) ∨ 𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝),
 

𝜃((𝑢, 𝑝), 𝑎, 𝜎)                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 
(2) 

Where 𝜃((𝑢, 𝑝), 𝑎, 𝜎) =

max  {min  (𝑟𝑖𝑠𝑘𝑃(𝑢, 𝑝), (1 −

𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝))) ; 𝑚𝑖𝑛 (𝑟𝑖𝑠𝑘𝑇(𝑢), (1 −

𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝))); 𝑚𝑖𝑛 (𝑟𝑖𝑠𝑘𝐴(𝑞, 𝑎), (1 −

𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝))); 𝑟𝑖𝑠𝑘𝑆((𝑢, 𝑝), 𝜎)}  

 

Using Equation 3, we take the approach of 

maximizing the risk. If the data is very sensitive and 

the researcher has the IRB approval, she will be able 

to access the data. By the same manner, we can link 

the other risk components with the IRB approval. For 

example, a less trusted person will be able to access 

sensitive data if she has the IRB approval and so on. 

Embedding the IRB approval into the equation will 

allow us to check for the IRB approval for every 

access and the privileges will be revoked as soon as 

the IRB approval is suspended or expired for 

example. The IRB approval will be able to lower the 

risk associated to the data access purpose, the data 

sensitivity and the user trustworthiness but not the 

security one. Even if a researcher has an IRB approval 

we cannot take the risk of disclosing sensitive data 

into an unsecure connection for example. 
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3.1 Illustration 

Assume that a biomedical platform holds different 

data sets of different sensitivity levels ranging fro 0 

to 1 (with 1 being the highest sensitivity), such as: 

 

− 𝐷1: a public data set with sensitivity level 0 

− 𝐷2: a de-identified dataset of flu patients with 

low sensitivity level 0.2 

− 𝐷3: a de-identified dataset of kids with ADHD 

with sensitivity level 0.5 

− 𝐷4: a de-identified dataset of HIV patients with 

high sensitivity level 0.8 

 

When a researcher requests a permission to access 

a dataset, Equation 3 is used to calculate the risk 

associated with her request. The decision is made 

according to the risk band corresponding to the 

request risk level. For this example, let us suppose 

that the researcher is highly trusted and is requesting 

data for exploratory research purposes. Therefore, the 

risks associated with the user trustworthiness and the 

access purpose are minimal (say both are equal to 0). 

Assume that the researcher is trying to access dataset 

𝐷4 which is highly sensitive. 

 

If the role associated to the researcher doesn’t 

allow her to access the data set and she has no IRB 

approval to do so, then the risk to access this data is 

maximum = 1 and therefore has to be denied. 

Otherwise, a risk calculation will be performed 

according to the equation 3: 

We have two possible cases: 

 

− The researcher has IRB approval for this 

particular dataset. Therefore: 

𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝) = 1, and 

 𝑟𝑖𝑠𝑘 ((𝑢, 𝑝), 𝜎) =

𝑚𝑎𝑥{𝑚𝑖𝑛(0.8,0)) ; 𝑚𝑖𝑛(0,0) ; 

𝑚𝑖𝑛 (0,0)); 𝑟𝑖𝑠𝑘𝑆((𝑢, 𝑝), 𝜎)} 
It means that the only risk considered here is 

the security risk to avoid the disclosure of 

sensitive data in case of high security risk. 

− The researcher does not have IRB approval for 

this particular data set. Therefore: 

𝐼𝑅𝐵𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑(𝑢, 𝑝) = 0, and: 

 𝑟𝑖𝑠𝑘 ((𝑢, 𝑝), 𝜎) =

max{𝑚𝑖𝑛(0.8,1)) ; min(0,1) ; 

min (0,1)); 𝑟𝑖𝑠𝑘𝑆((𝑢, 𝑝), 𝜎)} 

In this situation, we choose the maximum of the 

risks related to data sensitivity and security. 

4 RELATED WORK 

With the pressing need of data sharing and 

collaborative data computing there is a growing 

interest from the scientific community to develop 

novel data-access models and efficient data sharing 

mechanisms while maintaining data privacy and 

legislation compliance. In the literature, the notion of 

risk in the context of access control is of two types:  

1. First, the risk of hindering the performance of a 

task if the information is not disclosed. For 

example, the exceptional disclosure of sensitive 

medical information in some urgent situation 

like in (Choi et al., 2015) or (Kayes et al., 

2015).  

2. Second, the risk of privacy leakage associated 

with data disclosure.  

In our case, we focus on the second point, that is, 

the risk associated with data disclosure.  

In existing systems, the risk is either explicitly 

taken into account by the system by having a risk 

calculation function or implicitly taken into account 

by enforcing context-aware policies, where the 

context captures some risk-related situation 

information. Our proposed model is based on the 

formal meta-model developed in (Chen et al., 2012) 

The instantiation of the meta-model allows the 

creation of RAAC models with different risk 

mitigation strategies. The authors focus on system 

obligations and user obligations as risk mitigation 

strategies and propose the models to implement these 

strategies.  

In (Armando et al., 2015), the authors consider 

the risk of leaking privacy-critical information when 

querying a dataset. The risk is calculated according to 

the query result and using anonymity metrics related 

to personal-identifiable information. The model 

includes adaptive anonymization operations as risk 

mitigation methods to lower the risk associated with 

a particular data request. In (Kandala et al., 2011), the 

authors rely on an attribute-based framework to 

capture the different elements needed to implement 

an adaptive risk-based access control mechanism. 

The attributes capture information about different 

components that can impact the risk level associated 

with a particular data request. These components are 

related to the data access purpose, the security level 

and the situational factors reflecting any contextual 

factors that can increase the risk related to a data 

request. 
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5 CONCLUSIONS/FUTURE 

WORK 

In this paper we depicted the need for risk-aware 

access control models that support the regulation, 

development, and deployment of access control 

procedures for data sharing in biomedical research 

platforms. We proposed a method that identifies the 

essential risk components, necessary for such access 

control procedures and extended existing models to 

overcome the limitations of the “manual” biomedical 

data sharing processes, such as the IRB, and the 

“automated” ones based on e-HBS. 

Currently we are working on coming up with 

efficient equations to calculate the different risk 

elements. This work is challenging and requires 

significant efforts on many fronts:  

• Assigning data sensitivity to datasets is the main 

challenge. As a start, we are currently working 

on classifying data into a set of pre-defined 

sensitivity classes. 

•  Creating local (and ideally universal) user 

records for storing data breach information is 

another theoretical/practical challenge. 

Analogous to credit scores, the risk associated 

with individual users should indicate the gravity 

of their past breaches, and should reward users’ 

progress. Our approach is to standardize all data 

breaches (i.e. create a breach classification) and 

create an account system for all users that can be 

accessed by data holders when required.  

• The security of the user’s environment is related 

to the user’s institution (the research institution 

to which a user is affiliated). Thus, the risk can 

benefit from having universal security 

certification programs for research institutions. 

Such programs would provide certifications to 

different institutions based on their privacy and 

security practices. Refer to (El Emam et al., 

2009) for a list of parameters to take in 

consideration when evaluating institutions’ 

privacy and security practices. 

 

Another necessary task is to extend the system to 

provide Omics data. For that, we need to study the re-

identification power of this data to be able to annotate 

it with any privacy risk. Some work has already been 

done along these lines for single nucleotide 

polymorphisms (SNPs) (Lin et al., 2004). 
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