
Model Driven Architecture based Testing

Tool based on Architecture Views

Burak Uzun and Bedir Tekinerdogan
Information Technology Group, Wageningen University, Wageningen, The Netherlands

Keywords: Model based Testing, Software Architecture, Architecture based Testing, Software Architecture Viewpoints.

Abstract: Model Driven Architecture Based Testing (MDABT) is a testing approach exploiting the knowledge in the

design phase to test the software system. MBT can use different representations of the system to generate

testing procedures for different aspects of the software systems. The overall objective of this paper is to

present a model-driven architecture based testing tool framework whereby the adopted models represent

models of the architecture. Based on the model-based testing approach we propose the MDABT process and

the corresponding tool. The tool has been implemented using the Eclipse Epsilon Framework. We illustrate

the MDABT tool framework for deriving test cases from different architecture views.

1 INTRODUCTION

In general, exhaustive testing is not practical or

tractable for most real programs due to the large

number of possible inputs and sequences of

operations. As a result, selecting set of test cases

which can detect possible flaws of the system is the

key challenge in software testing. Model based

testing (MBT) addresses this challenge by automating

the generation and execution of test cases using

models based on system requirements and behaviour

(Utting, et al., 2012). MBT relies on models to

automate the generation of the test cases and their

execution. A model is usually an abstract, partial

presentation of the desired behaviour of a system

under test (SUT). MBT can use different

representations of the system to generate testing

procedures for different aspects of the software

systems. Example models include finite state

machines (FSMs), Petri Nets, I/O automata, and

Markov Chains. A recent trend in MBT is to adopt

software architecture models to provide automated

support for the test process leading to the notion of

model-driven architecture-based testing (MDABT).

Software architecture is different from the other

design representations since it provides a gross-level

representation of the system at the higher abstraction

level (Tekinerdogan, 2014). In this paper, we present

MD-ArchT, an MDABT tool framework for

supporting model based testing using architecture

models. The tool takes as input a set of architecture

views that can be used to automatically create test

cases. In this paper, we focus in particular on using

the test cases for checking the architecture-code

consistency (Eksi & Tekinerdogan, 2017). We

illustrate the MDABT tool framework for deriving

test cases from different architecture views.

The remainder of the paper is organized as

follows. In section 2, we present the method for

architecture driven model based testing that will be

implemented using the MD-ArchT tool. Section 3

presents the tool framework. Section 5 the related

work and finally section 6 concludes the paper.

2 MDABT APPROACH

Models have been widely used in software

engineering and support the communication among

stakeholders, the analysis, and the guidance in of the

overall development process. Model-based testing

(MBT) uses detailed models to automatically derive

test artefacts (Utting, et al., 2012). There are obvious

reasons for adopting MBT including test

maintenance, test design and increasing test quality.

The MDABT approach that builds on and refines the

general MBT process is shown in Figure 1.

404
Uzun, B. and Tekinerdogan, B.
Model Driven Architecture based Testing Tool based on Architecture Views.
DOI: 10.5220/0006603604040410
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 404-410
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Architecture

1. Test Model

Construction

Test Criteria

Test Model

2. Abstract Test

Case Generator

Abstract Test

Suite

Concrete Test

Suite

4. Test Execution

Report

5. Analyze Test

Results

3. Concrete Test

Case Generator

Figure 1: The MDABT Approach.

The foremost issue in MDABT is that the adopted

models are not just any design models but

architectural models. To derive test artefacts from

these architectural models these should be precisely

defined. Further it is necessary to properly define the

criteria that will be needed to test the system. Testing

criteria informs the process about what is to be tested

and what is the purpose of the generated tests. Using

architecture models along with testing criteria, a test

model is created as an intermediate form.

Subsequently, an abstract test suite is generated from

the testing model which is further used to generate a

concrete test suite. The concrete test suite is the actual

test set that runs on the system under test. After the

test executions, the results are analyzed by a test

oracle. Test model construction, abstract and concrete

test case generation, test execution and analysis can

be automatic or manual depending on the suggested

approach.

3 TOOL FRAMEWORK

This section provides an implementation of the

generic process model presented in Figure 1. The

implementation of the tool is based on the Eclipse

Epsilon environment that contains languages and

tools for code generation, model to model

transformation, model validation, comparison,

migration and refactoring (Eclipse, 2014). We

implemented our tool using Epsilon Generation

Language (EGL), Epsilon Generation Runner (EGX),

and Human-Usable Textual Notation (HUTN) tool.

Figure 2: Snapshot of the MDABT Tool.

Package Explorer EGL Template Editor Model ViewEGX EditorHUTN Editor

Model Driven Architecture based Testing Tool based on Architecture Views

405

EGL is a template based model to text

transformation language designed in the Epsilon

environment. Depending on the provided model code,

documents or other textual notations can be derived.

EGX is a runner for EGL templates that can

parametrize the defined templates in which

transformation rule is defined. In the Eclipse Epsilon

environment, the creation of models which conforms

to predefined metamodels can be modelled using

HUTN tool. The execution of EGX file generates a

single JUnit test case which can be executed

automatically. In Figure 2 a snapshot of the IDE is

shown. In the following sub-sections, we describe the

process steps in detail.

3.1 Architecture View Modelling

Our approach uses architecture views for deriving test

cases to check the conformance among the

architecture views with the code. Every architecture

view conforms to an architecture viewpoint that

defines the language for representing the

corresponding views. To support model-based testing

using architecture views we thus need to define the

domain specific languages for the required

architecture viewpoints. We did this for each of the

architecture viewpoint of the Views and Beyond

approach (Demirli & Tekinerdogan, 2011)

(Clements, et al., 2010). HUTN is used to generate

the view models that are used in the test

transformation model construction. The implemented

view model in HUTN can be easily converted to view

model using the integrated HUTN tool in the Eclipse

Epsilon environment.

3.2 Defining Test Criteria for

Architecture Views

Since we use architecture views for architecture

models for testing, we need to define the testing

criteria for each of the adopted architecture views.

The predefined metamodels for each viewpoint

reveals what is to be tested for the respective

viewpoint. In our implementation, we have created

EGL templates for each architecture view under test.

The view criteria are used in the construction of the

EGL templates. In addition, the constructed templates

are used when generating JUnit test cases. Basically,

the transformation rule in the transformation model is

applied on the template using the architecture view

model.

Architecture View

1. Transformation

Model Construction

EGX Based
Transformation Model

View Criteria Based

EGL Template

2. Concrete Test

Case Generator
JUnit Test Cases

3. Automatic

Execution

4. Automatic

 Test Analysis

Report

Figure 3: Process Model for Our Approach.

3.3 Defining the Transformation Model

Once we have defined the executable models for the

architecture views and the required test criteria we

developed the generators for automated generation of

test cases. For this we adopt the EGX language in

which the required transformation rules are defined.

The transformation rule details consisting of model to

be used, template and its parameters, generated file

location and name is defined in the transformation

rule. Transformation models are created for each

architecture for once for generating the test cases.

After the execution of the rule the test cases are

generated using given model and template to the

given path with its name.

3.4 Generating JUnit Test Cases

Test cases for each view are generated consisting of

multiple test methods. The generated test cases

depend on Java’s built-in reflections library. Each

generated test case can be imported to the project’s

path and executed automatically.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

406

4 EXAMPLE CASE

In the following we will use the shared data and

decomposition architecture views to derive test test

cases for checking the conformance with the code.

The shared data viewpoint is used in data-intensive

systems in which components interact through a

repository. The architecture view specifies the

repository, the number and type of data accessors, and

data writers. The data or the repository has multiple

accessors with different access right as read, write, or

read and write.

To develop the domain specific language for this

viewpoint we first need to define the metamodel for

it. This is shown in Figure 4 (Tekinerdogan &

Demirli, 2013).

Figure 4: Metamodel for the Shared Data Viewpoint.

Each architecture viewpoint and the defined

architecture view enforces some constraints on the

system to be implemented. In the shared data

viewpoint, we identified the following testing criteria:

• Does each data accessor exist in the code?

• Does each attachment of data accessor exist in

the code?

In Figure 5 an example shared data model is shown.

In this model, we have two data accessors

PersistenceManager and QueryingEntityManager

having find, persist and getResultList operations

respectively.

Figure 5 Shared Data Viewpoint Model.

In Figure 6, we have provided our EGL template

for the shared data viewpoint that implements the

above two constraints as assertions. Considering the

model shown above three test methods will be created

checking the existence of persistenceManager and its

operations and queryingEntityManager and its

operations.

Figure 6: Shared Data Viewpoint EGL Template Code

Snippet for Generation of Test Case Methods.

In Figure 7 the shared data transformation rule is

shown. The transformation rule is named

SharedData2JUnit. It consists of one transformation

which takes the model file as input and uses the EGL

template (sharedData2Junit.egl) to generate the target

output as java file (gen/TestSharedData.java).

Figure 7: Transformation Rule for the Shared Data

Viewpoint.

The execution of the transformation rule creates a

JUnit test case. An example generated code snippet is

shown in Figure 8.

The created test case checks it data accessor
existence and existence of its data operations. First
two test methods check for a data accessor named
persistentManager and its operations existence.
Likewise, third test method checks the existence of
queryingEntityManager data accessor and its
operations.

The decomposition viewpoint deals with concerns
of partition of system responsibilities into modules
and modules into submodules. It is a containment
relation among modules and submodules. In Figure 9
decomposition viewpoint metamodel can be seen
(Tekinerdogan and Demirli, 2013).

Model Driven Architecture based Testing Tool based on Architecture Views

407

Figure 8: Shared Data Viewpoint Generated Test Case

Code.

Figure 9: Metamodel for the Decomposition Viewpoint.

In the decomposition viewpoint, we can identify

the following testing criteria:

• Does every element in the view model appear in

the code?

• Does every subelement in the view model appear

in the code?

• Does every subelement exits under

corresponding element in the code?

In Figure 10 a sample decomposition model is

presented. In this case module x is decomposed into

criteria module which is further decomposed into

criteriamodifier and transformer.

Figure 10: Decomposition Model.

Figure 11 shows the EGL template for the

decomposition viewpoint. In this viewpoint test case

method will iteratively be created for each element’s

subelements. Three constraints are asserted in the test

methods which are: the existence of element,

existence of subelement and decomposition relation

between element and its subelement. Three test

methods will be generated considering the sample

model given above. The first test method will check

the existence of x, criteria and check the

decomposition relation between these elements.

Moreover, second and third test methods will both

check for criteria’s existence and subelements which

are criteriamodifier and transformer. Furthermore,

second and third test cases will also assert the

decomposition relation between these elements.

Figure 11: Decomposition Viewpoint EGL Template Code

Snippet for Generation of Test Case Methods.

Figure 12 shows the transformation rule for

generating test case from decomposition model using

the EGL template. The generated file will be named

TestDecomposition.java.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

408

The execution of the transformation rule creates

again a JUnit test case.

The generated test case has three test methods

named testCriteriaDecomposedOfCriteriamodifier,

testCriteriaDecomposedOfTransformer and

testXDecomposedOfCriteria each method parent and

child module existence and parent child relation

between modules.

Figure 12: Transformation Rule for Decomposition

Viewpoint.

Figure 13 shows the generated test case code

snippet for three test methods which are:

testXDecomposedOfCriteria,

testCriteriaDecomposedOfCriteriamodifier and

testCriteriaDecomposedOfTransformer. As shown in

the figure there are three assertions are listed in each

generated method the first two assertions are

Figure 13: Decomposition Viewpoint Generated Test Code

Snippet testXDecomposedOfCriteria,

testCriteriaDecomposedOfCriteriamodifier,

testCriteriaDecomposedOfTransformer.

checking the existence of element and subelement,

whereas the last assertions check the decomposition

relation between element and subelement. First

method checks the assertions for element x and

subelement criteria. Likewise, the second and third

test methods checks the assertions for criteria,

criteriamodifier and transformer.

5 RELATED WORK

Model-driven architecture based testing (MDABT)

has been proposed and discussed in various studies.

In Bertolino et al. (2000) an approach is provided for

the derivation of test plans from software architecture

(SA) specifications. The authors adopt the approach

for analyzing the conformance of the architecture

with the code. Further they use the SA specification

in particular to support integration testing. In

subsequent work they adopt sequence diagram as the

model for testing the conformance of the architecture

and code (Bertolino, et al., 2000), (Muccini, et al.,

2004).

In (Jin and Offutt, 2001) formal test criteria are

defined based on architectural relations. In

Scollo and Zecchini’s study (Scollo and Zecchini,

2005), SA based testing is performed on architectural

level to test requirements of the system against

functionalities of SA. In (Johnsen, et al., 2011), the

so-called Architecture Analysis and Design

Language (AADL) specifications are used for the

verification of software systems. Within the study,

both model checking of SA and SA based testing

approaches are observed to test code to architecture

conformity. In (Keum, et al., 2013), service-oriented

applications (SOA) are tested to solve observability

and controllability problems that are created by

message exchanges between the services that are

hidden behind the front service of the system.

In (Lochau, et al., 2014), use SA based testing

approaches to variant-rich software systems. Authors

addressed the challenge of ensuring correctness of

components implementations and interactions with

any system variant. The main motivation of the study

is to ensure the conformity between code and

architecture.

In the study referenced in (Li, et al., 2016),

behavioral UML models are used to utilize

architecture based testing for generating behavior

driven tests for cucumber tool. The proposed

approach and tool addresses the concern of

conforming given architecture to implementation.

Model Driven Architecture based Testing Tool based on Architecture Views

409

In (Elallaoui, et al., 2016), an automated model

driven testing approach which uses UML sequence

diagrams is presented.

6 CONCLUSIONS

In this paper, we have presented our MDABT

approach and the corresponding tool MD-ArchT. We

have defined the overall process based on the generic

model-based testing process. Different from existing

MBT approaches the MDABT process adopts

architectural specification as the model to

automatically derive test artefacts. The tool has been

developed using the Eclipse Epsilon framework

based on ecore models. Architecture models represent

the architecture views that are represented as

specification of the corresponding domain specific

language. We have explained the MDABT approach

in detail and illustrated the approach and the tool for

the shared data viewpoint and the decomposition

viewpoint. We have presented the adopted

metamodels and the test criteria for these views.

Further we have also shown the EGL template and

EGX transformation rule. We have illustrated the

MDABT approach for testing the conformance

between the architecture and the code. Yet, both the

process and the tool are in fact generic and can be

applied also for different test scenarios. In our future

work we will elaborate on this and also integrate

behavioral modeling for generating the test artefacts.

REFERENCES

Antonio, B., Muccini, H., Pelliccione, P. & Pierini, P.,

2004. Model-Checking Plus Testing: From Software

Architecture Analysis to Code Testing. Berlin, Springer.

Bertolino, A., Corradini, F., Inverardi, P. & Muccini, H.,

2000. Deriving test plans from architectural

descriptions. Limerick, ACM.

Clements, P. et al., 2010. Documenting Software

Architectures: Views and Beyond. 2. ed. s.l.:Addison-

Wesley.

Demirli, E. & Tekinerdogan, B., 2011. Software Language

Engineering of Architectural Viewpoints. s.l., in Proc.

of the 5th European Conference on Software

Architecture (ECSA 2011), LNCS 6903, pp. 336–343.

Eclipse, 2014. Epsilon. [Online] Available at:

http://eclipse.org/epsilon [Accessed 1 2 2015].

Eksi, E. & Tekinerdogan, B., 2017. A Systematic Approach

for Consistency Checking of Software Architecture

Views. Journal of Science and Engineering, 19(55.1).

Elallaoui, M., Nafil, K., Touahni, R. & Messoussi, R., 2016.

Automated Model Driven Testing Using AndroMDA

and UML2 Testing Profile in Scrum Process. Procedia

Computer Science, Volume 83, pp. 221-228.

IEEE, 1994. 1059-1993 - IEEE Guide for Software

Verification and Validation Plans. [Online]

Available at: http://ieeexplore.ieee.org/document/

838043 [Accessed 3 1 2014].

IEEE, 2011. 1471-2000 - IEEE Recommended Practice for

Architectural Description for Software-Intensive

Systems. [Online] Available at: https://

standards.ieee.org/findstds/standard/1471-2000.html

[Accessed 3 1 2014].

Jin, Z. & Offutt, J., 2001. Deriving Tests From Software

Architectures. Hong Kong, IEEE.

Johnsen, A., Pettersson, P. & Lundqvist, K., 2011. An

Architecture-Based Verification Technique for AADL

Specifications. Berlin, Springer.

Keum, C., Kang, S. & Kim, M., 2013. Architecture-based

testing of service-oriented applications in distributed

systems. Information and Software Technology, 55(7),

pp. 1212-1223.

Li, N., Escalona, A. & Kamal, T., 2016. Skyfire: Model-

Based Testing With Cucumber. Chicago, IEEE.

Lochau, M. et al., 2014. Delta-oriented model-based

integration testing of large-scale systems. Journal of

Systems and Software, Volume 91, pp. 63-84.

Mellor, S., Scott, K., Uhl, A. & Weise, D., 2004. MDA

Distilled: Principle of Model Driven Architecture. 1.

ed. s.l.:Addison-Wesley.

Muccini, H., Bertolino, A. & Inverardi, P., 2004. Using

software architecture for code testing. IEEE

Transactions on Software Engineering, 30(3), pp. 160-

171.

Muccini, H., Dias, M. & Richardson, D., 2004. Systematic

Testing of Software Architectures in the C2 Style.

Barcelona, Springer, pp. 295-309.

Muccini, H., Dias, M. & Richardson, D., 2006. Software

architecture-based regression testin. Journal of Systems

and Software, 79(10), pp. 1379-1396.

Reza, H. & Lande, S., 2010. Model Based Testing Using

Software Architecture. Las Vegas, IEEE.

Scollo, G. & Zecchini, S., 2005. Architectural Unit Testing.

Electronic Notes in Theoretical Computer Science,

Volume 111, pp. 27-52.

Tekinerdogan, B., 2014. Software Architecture. In: T. G. a.

J. Díaz-Herrera, ed. Computer Science Handbook,

Second Edition, Volume I: Computer Science and

Software Engineering. s.l.:Taylor and Francis.

Tekinerdogan, B. & Demirli, E., 2013. Evaluation

Framework for Software Architecture Viewpoint

Languages. Vancouver, ACM, pp. 89-98.

Utting, M., Pretschner, A. & Legeard, B., 2012. A

taxonomy of model-based testing approaches. Software

Testing, Verification and Reliability, 22(5), pp. 297-

312.

Winbladh, K., Alspaugh, T., Ziv, H. & Richardson, D.,

2006. Architecture-based testing using goals and plans,

New York: ACM.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

410

