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Abstract: When a lane marker such as a white line is not drawn on the road or it’s hidden by snow, it’s important for
the lateral motion control of the vehicle to detect the boundary line between the road and the roadside object
such as curbs, grasses, side walls and so on. Especially, when the road is covered with snow, it’s necessary to
detect the boundary between the snow side wall and the road because other roadside objects are occluded by
snow. In this paper, we proposes the novel method to detect the shoulder line of a road including the boundary
with the snow side wall from an image of an in-vehicle monocular camera. Vertical lines on an object whose
height is different from a road surface are projected onto slanting lines when an input image is mapped to a
road surface by the inverse perspective mapping. The proposed method detects a road boundary using this
characteristic. In order to cope with the snow surface where various textures appear, we introduce the degree
of road boundary that responds strongly at the boundary with the area where slant edges are dense. Since the
shape of the snow wall is complicated, the boundary line is extracted by the Snakes using the degree of road
boundary as image forces. Experimental results using the KITTI dataset and our own dataset including snow
road show the effectiveness of the proposed method.

1 INTRODUCTION

For the past several decades, many vision-based lane
detection methods have been proposed for advanced
driver assistance system or autonomous driving sys-
tem(M. Bertozzi, A. Broggi, M. Cellario, A. Fas-
cioli, P. Lombardi and M. Porta, 2002)(J. C. Mc-
Call and M. M. Trivedi, 2006)(B. Hillel, R. Lerner,
D. Levi, and G. Raz, 2014). Most of these meth-
ods detect lane markers such as white lines from an
image and estimate a traffic lane. In the literature
(M. Bertozzi and A. Broggi, 1998), a belt-like re-
gion whose width is constant and whose brightness
is higher than a road surface is detected as a lane
marker. In the literature (J.Douret, R. Labayrade, J.
Laneurit and R. Chapuis, 2005), a lane marker is de-
tected from a pair of the positive edge and the nega-
tive edge with constant distance. The literature (M.
Meuter, S. Muller-Schneiders, A. Mika, S. Hold, C.
Numm and A. Kummert, 2009) proposes the method
that detects a boundary of the white line from a peak
of the histogram of edge gradient. The literature (C.
Kreucher and S. Lakshmanan, 1999) proposes the
method that detects a lane marker by extracting a
slanting edge by DCT. The method to detect a broken
line(S. Hold, S. Gormer, A. Kummert, M. Meuter, S.
Muller-Schneiders, 2010) or a zebra line(G. Thomas,

N. Jerome and S. Laurent, 2010) by a frequency anal-
ysis is also proposed. The literature (Z. W. Kim,
2008) detects a lane marker by a discriminator cre-
ated by learning many lane marker images.

Although these methods are effective for roads on
which lane markers are drawn, they can not be ap-
plied to roads without lane markers or roads covered
with snow. In these cases, it’s necessary to detect the
boundary line between the road and the roadside ob-
ject such as curbs (Fig. 1(a)), grasses (Fig. 1(b)),side
walls (Fig. 1(c)) and so on, instead of lane markers.
Especially, when the road is covered with snow, the
boundary with the snow side wall (Fig. 1(d)(e)(f))
needs to be detected since other roadside objects are
hidden by snow.

To detect a shoulder of the road, several methods
using color (M. A. Turk, D. G. Morgenthaler, K. D.
Gremban and M. Marra, 1988) and texture(J. Zhang
and H. Nagel, 1994) have been proposed. However,
when a road is covered with snow, it’s difficult to
detect a road boundary by color and texture because
there are various kinds of snow surfaces, such as the
rough snow surface (Fig. 1(d)), the rutted snow sur-
face (Fig. 1(e)), and smooth white snow surface (Fig.
1(f)).

Since road shoulder is usually different in height
from a road plane, many methods using depth infor-
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mation obtained by a stereo camera have been pro-
posed(D. Pfeiffer and U. Franke, 2010)(N. Einecke
and J. Eggert, 2013)(J. K. Suhr and H. G. Jung,
2013)(C. Guo, J. Meguro, Y. Kojima and T. Naito,
2013)(M. Enzweiler, P. Greiner, C. Knoppel and U.
Franke, 2013)(J. Siegemund, D. Pfeiffer, U. Franke
and W. Forstner, 2010). However, a stereo camera is
more expensive than a monocular camera and it takes
time and effort to install because strict calibration be-
tween two cameras is needed.

Road detection method based on semantic seg-
mentation has also been proposed. The literature (J.
M. Alvarez, T. Gevers and A. M. Lopez, 2010) pro-
poses the method which extracts road area by com-
bining 3D road cues, such as a horizon line, a vanish-
ing point and road geometry, and temporal road cues
in Bayesian framework. The literature (D. Hoiem,
A. A. Efros and M. Hebert, 2007) detects road area
by describing the 3D scene orientation of each im-
age region coarsely. The literatures (J. M. Alvarez,
Y. LeCum, T. Gevers and A. M. Lopez, 2012) and (J.
M. Alvarez, T. Gevers, Y. LeCum and A. M. Lopez,
2012) propose the method which detects road area by
Convolutional Neural Networks. The literature (D.
Levi, N. Garnett and E. Fetaya, 2015) proposed the
StixelNet whose input is Stixel instead of images. The
literature (C. Brust, S. Sickert, M. Simon, E. Rodner
and J. Denzler, 2015) detects road area by Convolu-
tional Patch Network whose input is a single image
patch extracted around a pixel to be labelled. In the
literatures (R. Mohan, 2014) and (G. L. Oliveira, W.
Burgard and T. Brox, 2016), road detection method
which combines deep deconvolutional and convolu-
tional neural networks is proposed. The literature (A.
Laddha, M. K. Kocamaz , L. E. N-serment, and M.
Hebert, 2016) proposes a boosting based method for
semantic segmentation of road scenes. The literature
(D. Costea and S. Nedevschi, 2017) proposes road de-
tection method which reduces human labeling effort
by a map-supervised approach. These methods show
considerably good results in various road scenes but
the results applied to the snow road are not shown.

This paper proposes the novel method that can de-
tect a road boundary from an image of a monocular
camera even if a road is covered with snow. Verti-
cal lines on an object whose height is different from
a road surface are projected onto slanting lines when
an input image is mapped to a road surface by the
inverse perspective transformation. Our method de-
tects a road boundary using this characteristic. We
introduce the degree of road boundary whose value
increases at the boundary with the area where slant-
ing edges are dense. Road boundary is extracted by
the Snakes using the degree of road boundary as im-

(a) Curbs (b) Grasses

(c) Side walls (d) Snow side walls (Rough
snow surface)

(e) Snow side walls (Rutted
snow surface)

(f) Snow side walls
(Smooth snow surface)

Figure 1: Road boundary.

age forces.
This paper is organized as follows. Section 2

shows the outline of the proposed method. Section
3 explains how to create the Inverse Perspective Map-
ping (IPM) image from an input image. Section 4
explains the method to create IPM edge image that
emphasizes slant edges on road side objects. Section
5 explains the method to calculate the degree of road
boundary in each pixel of the IPM edge image. Sec-
tion 6 describes the method to track the road bound-
ary by the Snakes. Section 7 discusses experimental
results performed to several road scenes. Conclusions
are presented in Sect. 8.

2 THE OUTLINE OF THE
PROPOSED METHOD

Figure 2 shows the procedure of the proposed method.
The road boundary is detected in the Inverse Perspec-
tive Mapping (IPM) image. In the IPM image, the
patterns existing on the road surface are projected to
the shape viewed from the right overhead. On the
other hand, as shown in Fig. 3, road side objects or
obstacles whose height is different from the road sur-
face are projected to the shape falling backward from
the location where the obstacles touch the road plane.
Therefore, the proposed method detects the boundary
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Creation of IPM edge image

Calculation of the degree of road boundary

Road boundary tracking

Figure 2: Outline of the proposed method.

Camera position

Figure 3: Shape of projected area.

between dense areas of slant edges and sparse areas
of slant edges as the road boundary since a lot of slant
edges appear around a road side in the IPM image
(Fig. 4). First, the IPM edge image that emphasizes
slant edges on road side objects is created. Next, the
degree of road boundary whose value increases at the
boundary with the dense areas of slant edges is calcu-
lated in each pixel of the IPM edge image. Finally, the
road boundary is tracked by the Snakes whose image
force is the degree of road boundary.

3 CREATION OF IPM IMAGE

The inverse perspective mapping (IPM) image, which
overlooks a road surface, is created by inverse per-
spective transform. A point (x,y) in the image co-
ordinate system and a point (u,v) in the IPM image
coordinate system satisfy

(u,v) = (RX
x−Vpx

y−Vpy
,

RY 2

y−Vpy
− RY 2

ylim
), (1)

where (Vpx,Vpy) is the position of a vanishing point
in the image coordinate system, RX and RY are com-
pression or expansion rates for direction x and y, and
ylim is the lower limit of y-coordinate value in the im-
age(T. Yasuda and K. Onoguchi, 2012). Figure 5(b)
shows the IPM image created from Fig. 5(a). Param-
eters (Vpx,Vpy), RX , RY and ylim are calibrated when
the camera is installed in the vehicle. Unless the cam-
era position changes, these parameter are fixed. In ex-

Camera position
C

Figure 4: Projection of vertical edges.

(a) Input image

(b) IPM image
Figure 5: Inverse perspective mapping.

periments, the IPM image whose size is 640×480 is
created from an input image whose size is 640×480.

4 CREATION OF IPM EDGE
IMAGE

In the smooth snow surface, both a road side and a
road surface contain only weak texture in the IPM im-
age, as shown in Fig. 6(b). To emphasize slant edges
around a road side, the IPM edge image EAND(u,v) is
created by the below preprocessing.

1. The vertical edge image Ev(x,y) (Fig. 6(c)) is cre-
ated by applying the Sobel operator to the input
image I(x,y) (Fig. 6(a)). (x,y) is the coordinate
value of an image.

2. Ev(x,y) is converted to the IPM image E ipm
v (u,v)

(Fig. 6(d)). (u,v) is the coordinate value of the
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IPM image.

3. The slant edge image E ipm
s (u,v) (Fig. 6(e)) is cre-

ated by applying the Sobel operator to the IPM
image of I(x,y) (Fig. 6(b)).

4. The AND image EAND(u,v) of E ipm
v (u,v) and

E ipm
s (u,v) is created as the preprocessing im-

age for road boundary detection. Figure 6(f)
shows EAND(u,v) obtained from E ipm

v (u,v) and
E ipm

s (u,v).

Vertical edges on a roadside object are converted
into slant edges in the IPM image. On the other hand,
there are not many vertical edges on the road surface
converted into slant edges. Therefore, in EAND(u,v),
slant edges around a road side remains but slant edges
on a road surface are suppressed.

5 THE DEGREE OF ROAD
BOUNDARY

The vertical edge on the road side object is projected
as a shape falling backward radially around the cam-
era position, as shown in Fig.4. Therefore, in each
pixel of the IPM edge image, a parallelogram shaped
mask is set along a straight line Lcp connecting the
camera position C and each pixel P, as shown in Fig.7.
When parameters Vx, Vy, RX , RY and ylim for creating
the IPM image are fixed, the straight line Lcp can be
determined in advance. An enlarged view of a par-
allelogram shaped mask is shown in Fig.8. Let the
length of the left and right sides of a mask be H, the
width between the left and right sides be W, the region
on the left side of the point P be RW and the region on
the right side of the point P be RB.

The road boundary is located on the left side of
the IPM image since vehicles drive on the left side of
the road in Japan. Since slant edges usually appear
densely on road side objects in the IPM edge image,
the number of edges in RW is large and the number
of edges in RB is small if the pixel P is around the
road boundary. For this reason, at each pixel P on the
left half of the IPM edge image, the degree of road
boundary BD is calculated by

BD =
(NW +(SB−NB)

SW +SB
, (2)

where NW is the number of edges in RW , NB is the
number of edges in RB , Sw is the total number of pix-
els of Rw and SN is the total number of pixels of RN .
The degree of road boundary BD increases around the
road boundary since it shows large value when NW is
large and NB is small.

(a) Smooth snow surface

(b) IPM image

(c) Ev(x,y)

(d) E ipm
v (u,v)

(e) E ipm
s (u,v)

(f) EAND(u,v)
Figure 6: Road boundary in smooth snow surface.

Since the camera position C is determined by
straight lines k1k2 and k3k4 indicating the bottom of
the IPM image as shown in Fig. 7, the slope θ of the
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straight line Lcp connecting the camera position C and
each pixel P can be calculated in advance. Therefore,
our method speeds up the calculation of NW and NB by
creating the table describing the information of paral-
lelogram shaped mask at each point P. At each pixel
P, the same W and H are used for the parallelogram
mask. The search angle around C is θ1 < θ < θ2 and
the degree θ is quantized in an integer value. Since
the parallelogram in the digital image is approximated
like a step as shown in Fig. 9, the shape of the paral-
lelogram mask generated by the parameter (W,H,θ)
is limited to several patterns Tk(k = 0, . . . ,n−1). The
number of patterns n is uniquely determined when
W,H,θ1 and θ2 are fixed.

At the pixel ti(ui,vi)(i = 0,1, . . . ,w−1) on the up-
per side of each pattern Tk, a relative coordinate value
(ui− u,vi− v) with the center P(u,v) of the mask is
calculated. Then, the table PTu(k, i)(0 ≤ k < n,0 ≤
i < W − 1) in which ui − u is stored and the table
PTv(k, i)(0 ≤ k < n,0 ≤ i < W − 1) in which vi− v
is stored are created for parallelogram shaped mask.

At each pixel P(u,v) of the IPM edge image in
the range of θ1 < θ < θ2, the slope θ of the straight
line Lcp is calculated in advance, and the index k of
the pattern Tk corresponding to the angle θ is written
to two-dimensional array IA(u,v) whose size is same
as the IPM edge image. θ1 and θ2 are determined by
manually selecting the upper end Amax and the lower
end Amin of the shoulder in the IPM image which is
created from a vehicle parked on the shoulder (Fig.7).

In order to count the number of edges at high
speed, the line integral image S(u,v)(0 ≤ u <
WIPM,0 ≤ v < HIPM) in the vertical direction is cre-
ated by applying the equation (3) to the IPM edge im-
age EAND(u,v)(0≤ u <WIPM,0≤ v < HIPM).

S(u,v) =
v

∑
i=0

EAND(u, i) (3)

Using the line integral image S(u,v), the number of
edges Enum on the vertical line between the red pixel
ti(ui,vi) and the green pixel ei(ui,ui +H) in Fig. 9 is
calculated by the equation (4).

Enum = S(ui,vi +H)−S(ui,vi) (4)

Therefore, at each pixel P(u,v) of the IPM edge
image, NW and NB in the equation (2) are given by
equations 5 and 6 when IA(u,v) is equal to k.

NW =

W
2 −1

∑
i=0

(S(u+PTu(k, i),v+PTv(k, i)+H)

−S(u+PTu(k, i),v+PTv(k, i))) (5)

C

P(u,v)

Q

θ
1

θ2

L

Amin

Amax

Lcp

k1

k2 k3

k4

Figure 7: The degree of road boundary.

RW

RB

H

W

P

Figure 8: Parallelogram shaped mask.

NB =
W−1

∑
i=W

2

(S(u+PTu(k, i),v+PTv(k, i)+H)

−S(u+PTu(k, i),v+PTv(k, i))) (6)

Since both SW and SB are WH
2 , the degree of road

boundary BD is calculated from equations (2), (5) and
(6). Figure 10(b) shows the example of the degree of
road boundary BD calculated from the IPM edge im-
age shown in Fig. 10(a). In this image, an BD is quan-
tized in the range from 0 and 255, and high intensity
shows high degree of road boundary.

6 ROAD BOUNDARY TRACKING

Our method detects and tracks the road boundary
by Snakes(M. Kass, A. Witkin and D. Terzopoulos,
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ti(ui,vi)

P(u,v)

ei(ui,vi+H)

H

Figure 9: Parallelogram shaped mask in digital image.

1988) whose image force is the degree of road bound-
ary BD. First, in the BD image such as Fig. 10(b),
the intensity is accumulated vertically and the vertical
line passing through the peak is used as the initial po-
sition of the Snakes as shown in Fig. 11(a). The num-
ber of control points is 61 and the number of updates
is 10 per frame. Figure 11(b) shows the convergence
result of the Snakes.

7 EXPERIMENTS

We conducted experiments to detect the road bound-
ary from images taken by an in-vehicle monocular
camera. The KITTI dataset(KITTI, ) and our own
dataset including snow road scenes were used for
qualitative and quantitative evaluation.

7.1 Qualitative Evaluation

Figure 12 show some experimental results using the
KITTI dataset. Since Japanese roads are on the right
side, we detected the road boundary in the mirror im-
age. In each figure, the left is the detection result over-
laid on the input image with a magenta line and the
right is the ground truth of the road surface shown in
KITTI dataset. In Fig. 12(a), the curb is detected as
the road boundary correctly. In Fig. 12(c), the bound-
ary between the road surface and the roadside grass is
detected correctly. In Fig. 12(e), The boundary with
the parked vehicle is correctly detected.

Since snow road scene is not included in the
KITTI dataset, we built the dataset containing vari-
ous roads covered with snow. We call this dataset
HRB(Hirosaki Road Boundary) dataset. Figure 13
shows some experimental results using HRBD. In
each figure, the left is the detection result and the
right is the ground truth set manually in the IPM im-
age. The HRB dataset also contains road boundaries
such as the curb, the roadside grass and so on other
than snowy road. In Fig. 13(a) and (c), the curb

(a) IPM edge image

(b) The degree of road boundary
Figure 10: Example of the degree of road boundary.

(a) Initial position of Snakes

(b) Convergence result
Figure 11: Tracking result of road boundary.

and the roadside grass are detected correctly. Figure
13(e) shows the result in a sherbet-like snow surface,
Fig. 13(g) shows the result in a smooth snow surface
and Fig. 13(i) shows the result in the scene where
the road surface is not covered with snow but a lane
marker is occluded by the snow side wall. Although
lane markers are invisible in these scenes, the bound-
ary between the snow side wall and a road surface is
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(a) Curb (b) Curb(Ground Truth)

(c) Grass (d) Grass(Ground Truth)

(e) Parked vehicle (f) Parked vehicle(Ground
Truth)

Figure 12: Results of road boundary detection (KITTI
dataset).

detected correctly as a boundary of the driving lane.

7.2 Quantitative Evaluation

We evaluated the performance of the proposed
method quantitatively in the KITTI dataset and the
HRB dataset.

In the KITTI dataset, images containing road side
objects such as curbs, grasses, vehicles and so on were
used for evaluation. 127 frames of the curb and 56
frames of the other road side object including parked
vehicles were evaluated. Only the left side of the driv-
ing lane in the mirror image was compared with the
ground truth tracing the left boundary of the true road
area shown in the KITTI dataset.

The HRB dataset contains 100 frames of the curb,
161 frames of the road side grass and 142 frames of
the snow side wall. The ground truth was obtained by
tracing the road boundary manually in the IPM image.

The detection accuracy DA given by the equation
(7) is estimated in the IPM image. Therefore, the
ground truth for the KITTI dataset is projected onto
the IPM image.

DA =
∑n−1

i=0
|pu(i)−ptux(i)|

LaneWidth
n

(7)

(a) Curb (b) Curb(Ground Truth)

(c) Grass (d) Grass(Ground Truth)

(e) Sherbet-like snow surface (f) sherbet-like snow sur-
face(Ground Truth)

(g) Smooth snow surface (h) Smooth snow sur-
face(Ground Truth)

(i) Wet surface (j) Wet surface(Ground
Truth)

Figure 13: Results of road boundary detection (HRB
dataset).

Where pu(i) is the u coordinate value of the control
point calculated by the snakes, ptu(i) is the u coor-
dinate value of the ground truth whose v coordinate
value is same as pu(i), n is the number of the control
points in the Snakes and LaneWidth is the width of
the driving lane in the IPM image.

Table 1 shows the detection accuracy DA in the
KITTI dataset. The average DA of all scenes is 0.088.
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Table 1: Detection accuracy (KITTI dataset.)

# of frames DA
Curb 127 0.095

Other 56 0.071
Total 183 0.088

Table 2: Detection accuracy (HRB dataset.)

# of frames DA
Curb 100 0.046

Grass 161 0.118
Snow side wall 142 0.080

Total 403 0.087

This result shows that the error of 0.27m occurs when
the width of the driving lane is about 3m. However,
this result shows that a vehicle has some space to run
in the driving lane if the vehicle width is less than
2.5m. Therefore, the proposed method can also be
applied to ordinary vehicles.

Table 2 shows the detection accuracy DA in the
HRB dataset. The average DA of all scenes is 0.087
and DA of the snow side wall is 0.08. This result
shows that the proposed method is effective for road
boundary detection on snowy roads.

8 CONCLUSION

This paper proposed the method to detect the shoulder
line of a road including the boundary with the snow
side wall from an image of an in-vehicle monocular
camera. Vertical lines on an object whose height is
different from a road surface are projected onto slant-
ing lines when an input image is mapped to a road
surface by the inverse perspective mapping. The pro-
posed method detects a road boundary using this char-
acteristic. In the IPM edge image, the degree of road
boundary that responds strongly at the boundary with
the area where slant edges are dense is calculated
by using the parallelogram shaped mask. The road
boundary is tracked by the Snakes whose image force
is the degree of road boundary. Experimental results
using the KITTI dataset and our own dataset including
snow scenes show the effectiveness of the proposed
method. The future work is to improve the detection
accuracy of distant shoulder.
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