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Recent developments in computational science and engineering allow a great deal of experimental work to be

conducted through computer simulation. In a simulation experiment, a model of the phenomena to be studied
is run in a computing environment under varying model and environment settings. As models are adjusted
to experimental procedures and execution environments, variations arise. Models also evolve in time. Thus,
models must be managed. We propose to bring Global Model Management (GMM) to bear on simulation
experiment management by using techniques and tools from megamodeling. The proposed approach will
facilitate model management tasks by providing an interface to query the model repository, relate models
with each other, and apply model transformations from/to simulation models. Our proposed Megamodel for
Simulation Experiments is based on SED-ML (Simulation Experiment Description Markup Language).

1 INTRODUCTION

In many science and engineering problems, theories
and hypotheses about what makes a system work,
or to explain some phenomena in terms of cause
and effect relationships, are put forth. Then, exper-
iments are conducted to test the hypotheses. Values
of the input variables of the system are changed in-
tentionally, and the resulting output values are ob-
served and measured. Experiments produce evi-
dence whether proposed theories are supported or not
(Montgomery, 2006). With recent developments in
computational science and engineering, modeling and
simulation technologies, experiments are now per-
formed on computers to avoid the risk, or even the
practical impossibility, of conducting experiments in
the real world. Furthermore, simulation experiments
usually require less time, cost and effort. Such exper-
iments are known as in silico experiments. Therefore,
the use of simulation experiments is common among
the experimental scientists and engineers. There is
a growing number of simulation experiment projects
such as myExperiment (Goble et al., 2010) and Ex-
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periment (Denny Luan, 2017) projects, which are es-
sentially social web sites for researchers sharing sci-
entific workflows. These projects involve the develop-
ment of various kinds of simulation experiment mod-
els. However, these models need a supporting envi-
ronment that is easy to use by non-programmers to be
sustainable and manageable. The experiment models
in the environment should be accessible and manip-
ulable (e.g. loading/saving/editing/deleting/search-
ing/executing models). In that respect, Global Model
Management (GMM) is a suitable concept for this
problem. GMM aims to manage a large and var-
ied set of artifacts produced in modeling-in-the-large
(globally dealing with models, metamodels and their
properties and relations (Bézivin et al., 2005) ef-
forts in projects that adopt Model Driven Engineering
(MDE).

The main objective of this paper is to apply the
GMM concept for simulation experiments to provide
an environment for scientists, who deal with stand-
alone simulations, simulation data (configuration, pa-
rameter, and input and output data), and multiple sim-
ulation models over time. Although a single model
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might be relatively easy to manage, in real-life sit-
uations experimenters have to deal with large sets
of interacting simulation models and associated data
which are difficult to maintain manually. Manage-
ment of the evolution of models and related arti-
facts requires configuration management support, es-
pecially because, developers need to search and reuse
models from previous projects. Also, collaboration
among multiple developers require cooperative man-
agement of models (Koegel and Helming, 2010).

Models keep evolving along with the scientific en-
deavor. Their sophistication and variety tend to in-
crease over time. When a large number of models
are involved, users are faced with formidable system
management issues, including the need to maintain
consistency. New types of relations between models
can be configured during model evolution. Addition-
ally, the system should be extensible so that it can be
readily adjusted to new domains. Furthermore, simu-
lation experimentation brings about logical complex-
ity at multiple levels such as domain modeling (con-
ceptual modeling) issues, model complexity, simula-
tion complexity (method for generating behavior from
a model), complexity of operational environments for
simulation execution, heterogeneity of the experiment
design, complexity of the management of simulation
input and output data and other scenario-related data,
and challenges about presentation of results (includ-
ing visualization).

To alleviate the above mentioned problems, we
propose to carry Simulation Experiments into an
MDE environment and provide a user interface for
Simulation Experiment models that enables the query,
relating and applying model transformation from/to
available models. We contend that a megamodel will
be helpful to manage the models involved in a family
of simulation experiments. More specifically, in this
article we report on ongoing work about how to sup-
port simulation experiments through megamodeling
techniques. Our work takes advantage of the Xper-
imenter. Xperimenter is a domain specific language
(DSL) that aims to provide a declarative medium for
experiment specifications. We also present a case
study that aims to query Xperimenter models. The
case study is realized by using Xtend (Efftinge, 2017),
a programming language that is a flexible and expres-
sive dialect of Java, particularly effective for dealing
with model transformations.

The rest of this paper is organized as follows: in
Section 2, some related works about GMM and meg-
amodeling are discussed. Then, Xperimenter DSL for
Simulation Experiment overview is given in Section
3 for background. In Section 4, our megamodel is in-
troduced. Further, we have a small case study, intro-

Supporting Simulation Experiments with Megamodeling

duced in Section 5, for querying Xperimenter mod-
els. Finally, conclusions and future work directions
are given in Section 6.

2 RELATED WORK

Global Model Management (GMM) aims to handle
models and metamodels, and their properties and re-
lations, in a model-engineering environment. It is a
sophisticated way of creating, storing, viewing, ac-
cessing, modifying, and using the information asso-
ciated with all these modeling elements. As for a
megamodel, it is a model that contains models and
relations between them. The megamodel represents
the Model Driven Engineering artifacts, including the
transformation composition and execution within a
model. Basically, GMM provides a framework for
managing the large sets of heterogeneous and com-
plex MDE artifacts and a megamodel is a model de-
fined in GMM that contains MDE artifacts.

The proposed approaches for GMM are summa-
rized in (Hebig et al., 2011). In (Jouault et al., 2010),
megamodels are combined with model weaving and
proposed as a new infrastructure for GMM. However,
the proposed technique does not support automated
production of traceability links for model navigation
nor does it provide model synchronization. As for
identification of the model relationships, the GEMOC
initiative (Combemale et al., 2014) defines three re-
lations: interoperability, collaboration, and composi-
tion. Interoperability provides information exchange
among the models. Collaboration supports coupling
between models and coupled models affect each oth-
ers development. Finally, composition enables one to
combine information from different models to create
anew one.

As for megamodel, it is a model that contains
models and relations between them. The megamodel
represents the Model Driven Engineering artifacts,
including transformation composition and execution
within a model. Megamodeling is applied for sev-
eral practical purposes. In (Favre and NGuyen, 2005),
it is applied for modeling software evolution through
transformations. In (Fritzsche et al., 2009), the model
driven concept is utilized for a non-functional prop-
erty and megamodeling is applied to Model Driven
Performance Engineering. Furthermore, megamodel-
ing is reportedly applied in such diverse areas such as
data analysis (Ceri et al., 2013), consistency checking
of industrial product lines (Vierhauser et al., 2012)
and an e-government project (Biittner et al., 2014).
In particular, Simmonds and coworkers (Simmonds
et al., 2015) undertook a megamodel study for Soft-
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ware Process Line modeling and evolution. They as-
sert that megamodeling facilitates achieving a uni-
form mechanism for process definition, variability,
tailoring and evolution.

In our work, we aim to build a megamodel that fa-
cilitates scientific experiments with simulation mod-
els. The Xperimenter DSL is used to specify and exe-
cute simulation models. Unlike prior work, our study
aims to contribute to the management of simulation
models, the abstraction of simulation experiments at
design and execution levels, and the management of
simulation artifacts. We intend to specify and run sim-
ulation experiments and analyze the results with the
support of megamodeling techniques. Additionally,
we propose to create an extendable environment that
adapts existing simulation models developed with dif-
ferent technologies.

3 BACKGROUND

3.1 Xperimenter for Simulation
Experiment

Xperimenter is a DSL for simulation experiment de-
sign and execution. The DSL has three main objec-
tives. The first one is to provide a medium for specify-
ing simulation experiments. The second is to manage
simulation experiment variability by mapping frag-
ments of an experiment specification to higher level
abstractions, namely, features. The third is running a
simulation experiment on a target platform, such as a
scientific workflow management system. A simplified
metamodel definition of Xperimenter is given in Fig-
ure 1. The elements of the metamodel are briefly de-
scribed below to provide a conceptual framework for
the components of a simulation experiment as well as
the relationships among them.

Experiment: The attributes of this class include
identifying information related to an experiment, such
as the experiment name, date and description. An
experiment is composed of following main compo-
nents: Simulation model, objective, simulation runs ,
design, design matrix, statistical analysis and visual-
ization methods.

SimulationModel: It is the core aspect of the sim-
ulation experiment. On the other hand, in simula-
tion experiments, the simulation model is the primary
source of information.

Objective: The class defines the purpose of the
experiment. This definition influences the experi-
ment type and the number of runs that are required
to achieve the experiment’s goals.
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Run: The number of simulation runs required is
not necessarily known at the time of experiment de-
sign; it may depend on the actual progress of the ex-
periment. Each run has a start and end time.

Design and DesignMatrix: Design class captures
the structural aspect of the experiment. The experi-
mental structure is defined by the responses, the fac-
tors and their levels, and user-provided value ranges.
Based on this design, a design matrix can be created,
which specifies the actual experimental runs.

StatAnalysis: Statistical analyses on the experi-
mental data can provide a wealth of useful informa-
tion about the influence of factors on the responses.
Xperimenter enables the use of ANOVA analysis,
hypothesis testing, and confidence intervals in its
present version.

Visualization: This part of the model denotes the
method of visual representation of the analysis.

Variable (Response and Factor): Each variable
is identified by its name and type. Currently, four
types of variables (Integer, Float, Boolean, String) are
supported in the metamodel. These variables can be
divided into two distinct classes, namely, responses
and factors. Responses, which correspond to de-
pendent variables, represent the output values of the
experiment. An experiment is conducted by vary-
ing these factor values and recording the outcomes.
Each factor can have multiple levels (also called treat-
ments). There is a one-to-one mapping between a fac-
tor level and a factor value. The factor values are the
values that are actually fed into the simulation model.
Response values are generated at each experimental
run. An experimental run is a run of the simulation
model with a set of input parameters. The input pa-
rameters are the factor values for that run.

SamplingInstance: A sampling instance is basi-
cally an aggregation of a variable and its actual value.
It can be an input to the model (factor variable) or out-
put of it (response variable). Sampling instances can
be used in a design matrix.

4 MEGAMODEL FOR
SIMULATION EXPERIMENTS

4.1 Conceptual Overview

The groundwork involves building a metamodel for
simulation experiment megamodels so that conform-
ing megamodels can be defined by users for their ex-
periments. We call the megamodel GMMA4SE, short
for Global Model Management for Simulation Ex-
periments. GMMA4SE defines the supported types of
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Figure 1: Simulation Experiment Domain Model.

modeling artifacts; presently these are metamodels,
transformations, and the relationships between meta-
models and model transformations. Figure 3 depicts
our simplified megamodel definition. The workspace
shown in the upper part of Figure 2 refers to the model
workspace. It contains a model-based solution com-
prised of three modeling artifacts: (i) a metamodel
for Xperimenter, which was introduced in Section 2,
(i) Xperimenter models, and (iii) a model-to-model
transformation that produces models conforming to
the Xperimenter metamodel from models conform-
ing to the same metamodel. All of the modeling
artifacts in the workspace represent data for a par-
ticular megamodel. The megamodel keeps informa-
tion about their locations in the directory and the re-
lationships among them (e.g., dependency between
the source and target models of model transforma-
tion). The megamodel conforms to the GMM4SE
metamodel.

There are two fundamental mechanisms to specify
model relations in our megamodel. The first mecha-
nism is used to define weaving relationships among
the models, and the second mechanism is used to de-
fine constraints between them. Model weaving is an
operation for defining fine-grained relationships be-
tween models and metamodels and produces a weav-
ing model from the relationship. Also, operations are
executed on them based on the semantics of the weav-
ing relations (Bézivin, 2005). For instance, when a
weaving relation occurs, a weaving model is produced
and it represents a mapping between the related mod-
els.

As for the constraints, they are provided by defin-
ing rules among the models. However, rules specific
to simulation experiments are currently missing in our
megamodel. We are planning to add rule definition
functionality to the megamodel by using Xtend. We
will define a number of constraints to help megamodel
users analyze various properties of simulation exper-
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Figure 2: Overview of Megamodel for Simulation Experi-
ments.

iments. For instance, when a source metamodel def-
inition of a model transformation is updated, associ-
ated source models must be checked for conformance.
If the associated models do not conform to the up-
dated metamodel, model transformation fails. A rule
for checking the conformance relation on updates can
be useful. Being an element of another model can be
given as another rule example. An experiment model
includes the information only related to the specified
experiment, its simulation, design etc. The graphical
user interface is given in another model. The graph-
ical user interface model becomes an element of the
experiment model. A rule between these models can
be utilized to check that if meaningful visualization of
the experiment results is feasible or not.

4.2 Construction of a Megamodel for
Simulation Experiments

Our GMM environment for Simulation Experiments
is implemented in the Eclipse environment. It is com-
prised of three main elements: (i) a workspace (model
repository) for modeling artifacts, (ii) GMM4SE
(metamodel definition for a megamodel), and (iii)
model interfaces in Xtend for model operations such
as model loading and model querying. By using the
Model Interfaces, which are specified and generated
by using Xtend, megamodel users are able to load,
edit and delete models, query available models, cre-
ate links among them and apply model transformation
from/to available models. Additionally, the Model In-
terfaces layer aims to separate the megamodel from
user interfaces. This separation leads to a flexible and
reusable model management environment. The im-
plementation components and the available user op-
erations are shown in the Figure 3.

In addition, all metamodel definitions are speci-
fied by using ECORE (a part of EMF) in the Eclipse
Modeling Framework (EMF) (Steinberg et al., 2009).
We choose to employ the Eclipse-based platform be-
cause of implementation concerns. Eclipse is at the
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Figure 3: Megamodel Structure for Simulation Experiments
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foundation of an ecosystem that supports free and
open software tools and languages like ECORE, EMF
and Xtend. Additionally, we intend to use Eclipse for
integration of the tools that we use for modeling, such
as Atlas Model Weaver (Didonet et al., 2006), to es-
tablish relationships between models.

S CASE STUDY: QUERYING
XPERIMENTER MODELS

In this case study, an experiment involving a quad-
copter is modeled using Xperimenter. A quadcopter,
also known as a quadrotor helicopter or quadrotor, is
a multi-rotor helicopter that is lifted and propelled by
four rotors. Flight control of a quadcopter is a good
example of how a Proportional-Integral-Derivative
(PID) controller can be used to adjust some opera-
tional variables to hold an output variable at a set-
point. Validating the controller of the quadcopter by
using actual test flights can be hazardous and costly.
Therefore, we need to find a practical way to validate
a controller. As the name suggests, PID control in-
volves three basic coefficients, namely, proportional,
integral and derivative (Kp, Ki, Kd). These coeffi-
cients can be varied to get an optimal response. We
want to experiment with the model to find near opti-
mal PID gains.

The quality of a controller depends on the gain
values, and tuning these parameters require an experts
intuition and time. By using Xperimenter this tun-
ing is facilitated. First we need to define a research
question: “Which gain parameter is most important
to determine the quality of the controller?”. Assume
that we have a differential equation model for quad-
copter flight and its gain parameters are configurable
(preprocessed for this experiment). The Xperimenter
code snippet in Figure 4 articulates a full factorial de-
sign for this experiment.

Our Quadcopter Xperimenter model in Figure 4
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experiment QuadcopterExperiment {
desc “Which PID parameter effects the controller quality most";
objective COMPARATIVE;
design CompQuadcopterExpDesign;
simulation QuadcopterSim;
analysis AnovaAnalysis;
visual DEFAULT;
target KEPLER;
}
variable Ki: INTEGER group FACTOR [1, 10];
variable Kp: INTEGER group FACTOR [1, 10];
variable Kd: INTEGER group FACTOR [1, 10];
variable AV: INTEGER group RESPONSE;
design CompMachineIntExpDesign {
method FULLFACTORIAL;
varlist Ki Kp Kd AV;
}
simulation QuadcopterSim {
modelFile "c:\\quad_pid_sim.m";
modelType DISCRETEEVENT;
inport Ki: Ki;
inport Kp: Kp;
inport Kd: Kd;
outport AV: AV;
}
analysis AnovaAnalysis {
file "http://ceng.metu.edu.tr/~el564178/xperimenter/anova-service”;
}

Figure 4: Quadcopter Experiment model.

has a simulation element called QuadcopterSim and
there exist four variables: Ki, Kp, Kd and AV. The
model file and model type are specified in the sim-
ulation element. Additionally, the inports and out-
ports are identified. An inport is a link to pull data
from the outside of the simulation, and an outport is a
link to push data to outside. The experiment design is
called CompMachinelntExpDesign and the FullFac-
torial method is applied in the design. Finally, an
Anova Analysis takes place; the Anova service acces-
sible from the given URL is used.

Table 1: Quadcopter Models Input Variables.

name | lowValue | highValue
Quadcopter 1 E:i g g
Variables Kp 6 3
Quadcopter 2 E:i g ;
Variables

Kp 1 8

Querying on two different Xperimenter models
has been implemented by using Xtend. The example
Xperimenter models are shown in Figure 4 and Table
1. The implementation of the querying is shown as an
Xtend code snippet and the query result is shown in
Figure 5. The Xperimenter domain models are rather
simple for the purpose of illustration: Two models in
the repository are queried whether their input vari-
ables lowest and highest values are between the re-
quired value.

As for the Xtend implementation for the query-
ing in the code snippet, first the Xperimenter meta-
model (defined in Section 2), is registered to the EMF
registry, and then the two Xperimenter models are
loaded as resource sets. These resource sets manage a
collection of related resources that are received from



URISs and they can be loaded into a collection. In our
query example, Xperimenter models are loaded into
resource sets. From these resource sets, classes like
experiment, simulation, design are obtained. Then,
the query is executed. The query finds the input vari-
ables of the models which have the lowest value big-
ger than 2 and the highest value smaller than 8. The
Xperimenter models input variables are described in
Table 1. Finally, the query result is shown on the
Eclipse console.

class XperimenterQuery {
def static void main(String[] args) {
InputOutput.<String>println
("\nXperimenter 1")
new XperimenterQuery ()
.queryModel ("Quadcopterl.xml")
InputOutput.<String>println
("\nXperimenter 2")
new XperimenterQuery ()
.queryModel ("Quadcopter2.xml")
}
// Query the model
def queryModel (String file) {
// Register the EMF model
doEMF Setup
val resourceSet = new ResourceSetImpl
// Load the model and get the resources
val resource = resourceSet.getResource
(URI.createFileURI (file), true)
for (content : resource.contents)
validateModel (content)
}
// Validate the model
def validateModel (EObject o) {
val expImpl = o as ExperimentImpl
//find the variable which is between 2
and 8
for(v: expImpl.design.variables) {
if (v.lowValue > 2 && v.highValue<8)
InputOutput.<String>println(v.name
+"["+v.lowValue+",
"+v.highValue+"] is between
2 and 8")
}
}
// Register Xperimenter packages to EMF
def doEMFSetup() {
EPackage.Registry.INSTANCE.put
(XperimenterPackage.eINSTANCE.nsURI,
XperimenterPackage.eINSTANCE) ;
Resource.Factory.Registry.INSTANCE.
extensionToFactoryMap.put ("xml",
new XMIResourceFactoryImpl);

An important point is that the models are checked
whether they satisfy structural conformance to their
metamodels. At the beginning, Java class pack-
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Figure 5: Xperimenter model validation result.

ages are generated from the Xperimenter Ecore meta-
model. doEMFSetup method registers these packages
to the EMF registry and checks metamodel confor-
mance. Then, the model is loaded as a ResourceSet.
If loading fails, this means the model conformance
control has failed.

In this case study, we managed to load and query
multiple Xperimenter models. This case study gives
a basic idea about utilizing a megamodel in terms of
models and metamodels, and it is an initial step for
building an environment for Simulation Experiments.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we report on our ongoing effort aimed
at creating a Global Model Management environment
for simulation experiments. We take advantage of
megamodeling techniques, which promote the reuse
of available simulation experiment models by inter-
relating the models and using the models for a vari-
ety of operations such as, loading, editing, deleting,
querying, applying model transformation. We pre-
sented a case study for Quadcopter experiment, im-
plemented using Xtend, for rudimentary querying of
Xperimenter models.

By using the GMM concept and megamodeling
techniques, we substantiate that the concept is effec-
tive in connecting different technologies that serve the
same purpose. we are planning to extend the environ-
ment for Simulation Experiments by integrating with
other scientific workflow systems such as Kepler (Al-
tintas et al., 2004) and Apache Taverna (Belhajjame
et al., 2008) to support model variety. Moreover, we
intend to base our simulation experiment environment
on SED-ML (Waltemath and Novre, 2014). SED-
ML is a standard language to encode simulation ex-
periments. Extending our proposed megamodel us-
ing SED-ML will be a complementary step toward
standardization of the model management environ-
ment. Additionally, with SED-ML, simulation ex-
periment descriptions becomes exchangeable among
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simulation software, and the validation and reuse of
simulation experiments in different tools are enabled
(Waltemath et al., 2011). Therefore, SED-ML com-
pliance will promote the replicability of simulation
experiments among users and software tools.
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