
A Reference Architecture for the IoT Services’ Adaptability
Using Agents to Make IoT Services Dynamically Reconfigurable

Ademir José Barba and Fernando Antonio de Castro Giorno
Department of Master’s Degree in Computer Engineering, Instituto de Pesquisas Tecnológicas, IPT,

Av. Prof. Almeida Prado, 532 - Cidade Universitária, São Paulo, Brazil

Keywords: Internet of Things, IoT, Software Architecture, Multi-Agent Systems.

Abstract: Internet of Things (IoT) is a concept that illustrates the technological revolution that allows the interaction
between physical things (devices) and virtual things (software) thanks to the Internet and to the evolution of
the sensing and acting devices. This interaction promotes the creation of advanced services that contribute to
society. The evolutionary maintenance of IoT services and the inclusion of new services demand a software
architecture that adapts to these changes without causing damage to the rest of the system. In this work this
requirement is called ”IoT Services Adaptability” and to propose an architecture that contributes with this
requirement is the objective of this work.

1 INTRODUCTION

According to (Vermesan et al., 2015), Internet of
Things is a concept and also a paradigm consisting
of an environment that contains the pervasive pres-
ence of things or objects capable of communicating
and cooperating with each other in order to provide
services and achieve common goals. This is done
through wireless or wired connections and unique ad-
dressing schemes. IoT uses the synergy generated by
the convergence of consumer Internet, business Inter-
net and industrial Internet to create a global, open net-
work that connects people, data, and things. In this
context it is possible to conclude that IoT Services are
services that are not obvious without the intelligence
resulting from the interaction between these elements,
which is made possible thanks to this level of connec-
tivity.

An example of a service could be the intelligent
house, where sensors scattered around the house help
in the automatic accomplishment of tasks such as ad-
justing the brightness according to the occasion, mak-
ing a purchase order in the supermarket after finding
the lack of a product in the refrigerator, etc. This con-
cept is similar to the concept of Agent of Things pro-
posed by (Mzahm et al., 2014). In their proposal, an
Agent of Things is a software agent that allows the
reasoning about the associated agents and provides
services that would be infeasible without these inter-
action.

This work is in agreement with these concepts of
IoT Services. Here, the services also contextualizes
the environment, makes decisions based on the con-
textualized data and acts over this environment.

IoT Services’ Adaptability, in the context of this
work, means to reconfigure IoT Services parts with-
out other Services parts stop working. It also means
adding new IoT Services without the other services
ceasing to work. All these changes are made at run-
time.

To try compose a software architecture that con-
tributes to the IoT ServicesAdaptability, a working
method was followed. The steps of this method are:

• Bibliographical review;

• Composition of the reference architecture;

• Composition of the architecture of a Railway
Management System;

• Implementation of the prototype of a Railway
Management System;

• Testing of the reference architecture;

• Generation of the conclusions of the work;

2 BIBLIOGRAPHICAL REVIEW

Before starting this work it was not known the re-
quirements that a software architecture should attend
to contribute to the adaptability of IoT Services, but

Barba, A. and Giorno, F.
A Reference Architecture for the IoT Services’ Adaptability.
DOI: 10.5220/0006577101870194
In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (IoTBDS 2018), pages 187-194
ISBN: 978-989-758-296-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

187



it was already known that for the reconfiguration of
IoT Services at runtime, independent pieces of soft-
ware should allow their replacement without damag-
ing the other parts. This influenced the choice of an
agent-based architecture, since agents do not expose
their internal actions and they interact with the en-
vironment through sensing and acting. The dynamic
changing and the dynamic including of IoT Services
in the system besides being part of the objective of
this work are also considered fundamental require-
ments of this architecture.

The other requirements of the reference architec-
ture proposed by this work arose from the observation
of elements that could contribute with the objective of
this architecture. These elements were selected from
the chosen works. And the chosen works were se-
lected from the works that address the following sub-
jects: Internet of Things, software architecture, multi-
agent systems.

This section lists the main contributions of the
related works for the composition of these require-
ments.

The work of (Mzahm et al., 2014) creates a con-
cept where software agents enable the reasoning, the
negotiation and the delegation of tasks to the devices
which they are associated. This concept is called
Agent of Things. The main contribution of their work
to this one was to make clear the importance of the
interaction between IoT devices in order to perform
services that would not be possible without this inter-
action. These observations gave rise to the require-
ments of decision-making by the IoT Service about
the facts collected from other agents and of acting by
the IoT Service in the environment based on the re-
sults of inferences about these facts.

(Dimakis et al., 2006) propose a middleware ar-
chitecture for the integration of services that recog-
nize the context of the environment they are inserted.
Its proposal also includes a great amount of features
that maximize the autonomy of these services. This
architecture includes components for context acquisi-
tion and components for modeling situations and ser-
vices. Many of these components are implemented
as software agents, which allows for greater auton-
omy to perform services thanks to the advantages of
the multi-agent approach. The main contribution to
this work was to make clear the need for a layer com-
posed of agents to contextualize the data provided by
IoT devices so that other agents can benefit from this
data and perform their assigned actions. By this way,
the act of contextualizing the data provided by other
agents becomes one of the requirements of the IoT
Service in the reference architecture.

(Leppnen and Riekki, 2013) present an architec-

ture based on agents, on the REST principles and
on the Internet Drafts of the IETF CoRE Working
Group. In this proposal software agents describe the
state of a computational task, which is in turn dissem-
inated through messages among the system participat-
ing devices. Their work contributes to the concept of
Resource Directory, an element that exposes the re-
sources and services existing in the system.

(Leppnen et al., 2014) propose an approach in
which objects exposed on the Web offer an internal
architecture that enables the interaction of humans
with mobile software agents. These objects are called
smart objects. In this work the concept of Resource
Directory is also mentioned. The work exposes an in-
terface that users can use to interact with the system.
This highlighted the importance of having an inter-
face so that the system administrator can configure
IoT Services dynamically (at runtime). This is there-
fore another requirement of the reference architecture.

The work of (Kim et al., 2012) shows an architec-
tural approach based on FIPA’s standards, in which
it proposes a repository (Facilitator Directory) of ser-
vices provided by software agents. This repository
incorporates the feature of service context categoriza-
tion. The classification of services into categories as-
sists in the search for IoT Services based on the con-
text of the application or based on the context of the
consumer user. Both the Resource Directory and the
Facilitator Directory concepts contribute to the exis-
tence of an agent (Facilitator Agent) that takes care of
the message routing requirement because they allow
other agents to know who is interested in their data by
consulting an element that has all system information
consolidated in one place.

(Ayala et al., 2012) propose an internal modu-
larization of IoT software agents applying Aspect-
Oriented Software Development concepts that allows
the creation of an agent that works in a lightweight
device capable of interacting with its environment and
with other agents orienting its behavior by goals and
by the recognition of the context which it is inserted.
The agent’s behaviors are encapsulated through com-
ponents and aspects. This modularization makes it
possible to enable, disable, configure, and compose
different agent properties at runtime. The identifi-
cation of contexts of the environment, the decision
based on the acquired contexts and the separation of
the agent’s behavior are concepts that the IoT Ser-
vices proposed by this work will use, since it allows
their reconfiguration. In this work the separation of
IoT Service perception, reasoning and behavior into
agents gives the inherent independence of the concept
of agent to the parts that compose this service, allow-
ing these parts to be manipulated without the others

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

188



parts of the service ceasing work. This separation
contributes, therefore, to the existence of independent
pieces of software.

Another requirement of the reference architecture
is the existence of a message structure common to
all agents for communication to be viable, as this
would establish a communication protocol among the
agents. This requirement is a based in the belief that
even independent software pieces need to know the
composition of the messages that flow over the envi-
ronment if they want to communicate each other.

3 COMPOSITION OF THE
REFERENCE ARCHITECTURE

All the contributions reported in the previous section
were selected based on the benefits that could bring
to the IoT Services’ Adaptability. These reported el-
ements allowed to formulate the requirements for the
construction of an architecture that contributes to this
goal. Table 1 contain these requirements.

Table 1: Reference architecture requeriments.

1. Dynamic IoT Service inclusion
(with system administrator action)
2. Dynamic IoT Service changing
(with system administrator action)

3. Existence of independent software parts
(agents)

4. Existence of an IoT Service
configuration interface

5. Contextualization of the components that
serve the IoT Service (perception)

6. IoT Service decision-making capacity (reasoning)
7. IoT Service acting over environment

capacity (behavior)
8. Existence of a common language structure

9. Routing of messages and middleware

3.1 Development Model

The development method chosen to design the refer-
ence architecture and to implement a prototype based
on it was the MDA (Model Driven Architecture). This
method was created by OMG (Object Management
Group) and puts the modeling at the heart of develop-
ment. One of the reasons for choosing this method is
that it is capable of generating independent platforms
models, thus increasing the possibilities of using the
reference architecture.

(Elammari and Issa, 2013) propose the use of a
model-driven approach to the development of a MAS
(Multi-agent System) architecture. Their work shows

how to apply Use Case Maps diagrams to define the
problem domain illustrating agents and responsibili-
ties. In addition, they make use of tables that define
the roles of the agents and tables that define the rela-
tionship contracts between the agents.

The MDA has three development phases, the first
two was used to design the reference architecture.
The definition of the reference architecture is shown
in the next subsection.

3.2 Reference Architecture Design

The first fase of MDA is called Computational Inde-
pendent Model (CIM). This phase consists of the def-
inition of the problem domain and the description of
the system requirements. In this phase the functions
performed by the system are defined by Use Case
Maps (UCM) diagrams.

Figure 1 shows the definition of the responsibili-
ties and agents that compose an IoT Service and the
definition of the agents that interact with this service.

Figure 1: Conceptual IoT Service Agent.

In the used notation each rectangle corresponds to
an agent. Circles containing X represent the respon-
sibilities of the respective agent. The diamond sym-
bol represents a stub (responsibility that may be more
detailed). The arrows represent the flow of responsi-
bilities activation. It’s possible to notice bifurcations
in this flow by showing alternate paths. In Figure 1 it
is possible to visualize the application of the require-
ments of the reference architecture. The IoT Service

A Reference Architecture for the IoT Services’ Adaptability

189



agent is a conceptual agent composed of at least one
Perceptual Agent, one Rational Agent and one Be-
havioral Agent. This gives flexibility to change a IoT
Service since it is composed of agents that respond or
not to stimuli of the environment in which they are.
Assuming that a service has several behaviors (Be-
havioral Agents), it is possible to replace one without
the perceiving, the reasoning and the other behaviors
of the service being affected.

The interaction of the System Configuration In-
terface with the Facilitator Agent by changing the
system through agent exchanges or through the in-
sertion of new agents is also portrayed in UCM dia-
grams. Once exchange or inclusion occurs, the Facil-
itator Agent informs the agents of the new addresses
of those interested in their data, in addition, the Facil-
itator updates your own database and the interface’s
database. Each agent keeps a address list in a own
database.

The second fase of MDA describes the static and
dynamic models of a system without to worry with
the platform on which the system will be developed.

The static model of the system is composed of
class diagrams that illustrate the composition of the
environment of a MAS that follows the reference ar-
chitecture. In this case, each class represents each
of the types of agents that may exist in the reference
architecture and the environment is represented by a
class that aggregates the agents that are part of this
environment.

To complement the static view of architecture, ta-
bles containing objectives, plans, tasks, and beliefs
describe the role of these agent types.

The dynamic model of the system are described
through sequence diagrams illustrating the interaction
of the IoT Service agents with the agents signed by the
service and with the service signing agents. The dy-
namic model is also described by sequence diagrams
showing the interaction of the Facilitator Agent with
the Configuration Interface and with other agents. Ta-
bles containing a list of authorizations, obligations
and policies between the types of agents, which are
part of the reference architecture, establish the rela-
tionship contract between the agents.

Figure 2 shows one of the sequence diagrams that
was produced. This diagram illustrates the interaction
between the agents in the realization of an IoT Service
according to the reference architecture.

After completion of the reference architecture de-
sign, a list of expected actions for its implementation
was generated. The next lines show these actions, as
well as the contributions and requirements related to
them:

• Configuration interface implementation: It allows

Figure 2: Agents interacting in the realization of an IoT
Service.

the existence of a visual interface for system ad-
ministrator make the IoT Services configurations.
It works as a link between system administrator
and Facilitator Agent. Requirements met: 1, 2 and
4.

• Facilitator Agent implementation: It allows the
adaptability of the system through configurations
changes and guides the communication between
the agents. Requirements met: 1, 2, 3 and 9.

• Perceptual Agent implementation: It enables the
contextualization of the received messages for
the Rational Agents, based on the knowledge ac-
quired about the status of the system. Require-
ments met: 3 and 5.

• Rational Agent implementation: It works as a rule
base and a inference mechanism which can be re-
moved and included dynamically in the system.
Requirements met: 3 and 6.

• Behavioral Agent implementation: It works as a
mechanism in charge of the actions performed by
IoT Service. This mechanism can be removed
and included dynamically in the system. Require-
ments met: 3 and 7.

• Implementation of the agents that represent the
devices: They are the devices themselves, with
the responsibilities defined by the reference archi-
tecture for the agents of the Basic type. These
agents are actived by IoT Services or serve as data
providers for the Perceptual Agents of the IoT
Services. Requirements met: 3.

• Implementation of message structures used by
agents: It contributes to the understanding of the
message thanks to the standardization of attributes

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

190



of messages exchanged between agents. Require-
ments met: 8.

• Middleware implementation: Implementation of
the elements that make possible the communica-
tion between agents (example: sockets infrastruc-
ture). Requirements met: 9

4 COMPOSITION OF THE
RAILWAY MANAGEMENT
SYSTEM ARCHITECTURE

Once the reference architecture has been defined, it
needs to be applied and tested. This section contains
a description of a concrete architecture derived from
the reference architecture. The concrete architecture
defines a prototype of a Railway Management System
that follows the principles of the reference architec-
ture.

4.1 Concrete Architecture Design

The concrete architecture definition follows the same
steps of the MDA (CIM, PIM), that were used for the
definition of the reference architecture, plus the Plat-
form Specific Model (PSM) step, that has the defini-
tions’ details of the platform in which the system will
be implemented.

The definition of the railway management ser-
vices must follow the specification of the IoT Service
agents defined by the reference architecture. For this
purpose, each service defined by the concrete archi-
tecture must have Perceptual Agents, Rational Agents
and Behavioral Agents that fulfill the responsibilities
defined by the reference architecture’s diagrams. In
addition, the concrete architecture must have at least
one Facilitator Agent and one Configuration Inter-
face. And these must also carry out the defined re-
sponsibilities.

In the concrete architecture, agents with specific
system features were defined. Some of these agents
provide the information that feeds the IoT Services
and others consume the data generated by these ser-
vices. The consumption of these data triggers actions
that modify the agents’ environment.

The artifacts generated in the CIM and PIM stages
of the MDA are similar to those generated in the com-
position of the reference architecture. In the PSM
stage were generated class diagrams describing the
basic infrastructure for the creation of agents that fol-
low the reference architecture. This means that the di-
agrams describe the existing attributes and methods of

the classes that represent the agents of Perceptual, Ra-
tional, Behavioral, Facilitator, and Basic types. The
Basic Agent is an agent that is not part of the com-
position of the IoT Service. It can be a service’s sub-
scriber or can be signed by the service.

Details of the structures used for messages and
middleware compositions (in the prototype the mid-
dleware is composed of TCP sockets) are also repre-
sented in the class diagrams.

A component diagram complements the CIM
models by displaying the executables and libraries
produced.

In MDA the transition of PIM to PSM is generally
aided by tools. In this work this approach was not
used. However, in order to guarantee the parity of
the agents’ internal actions with the responsibilities
described by the diagrams of CIM and PIM phases, it
was created a table that relates agent’s methods with
these responsibilities.

4.2 Concrete Architecture Elements

Because of the impossibility of obtaining a real en-
vironment to implement a Railway Management Sys-
tem, all physical elements of the prototype were sim-
ulated.

The agents that are part of the Railway Manage-
ment System are as follow:

• Radio-Frequency Sensors: Basic Agents that re-
ceive signals from the transponders of the rail-
way’s Trains. This information, consisting of
speed, identification and position, is sent to the
Railway Management Services.

• Speed Radars: Basic Agents that determine the
identity, speed, and position of the Trains passing
through them. They forward this data to the Re-
dundant Railway Management Service.

• Trains: Basic Agents that interact with the Rail-
way Management Services and with other Trains.
Each Train has a radio-frequency (RF) sensor,
which receives messages from Railway Transmit-
ters and from other Trains. Each Train also has a
transponder, which sends data to Railway Sensors
and to other Trains.

• Rail Actuators: Basic Agents that are in charge
of changing the railway configuration, redirecting
the Trains that travel through it. They respond to
commands sent by the Railway Management Ser-
vice.

• Radio-Frequency Transmitters: Basic Agents that
receive, through a network connection, messages
from the Railway Management Services, which
are sent to the Trains through RF signals.

A Reference Architecture for the IoT Services’ Adaptability

191



• Railway Management Service (RMS): Concep-
tual Service Agent composed of Perceptual
Agent, Rational Agent and Behavioral Agents.
This agent is aware of the railway situation thanks
to messages received from the RF Sensors that in-
habit it. Its function is to send control messages
to Trains and Rail Actuators, with the intention of
avoiding accidents (collisions). These messages
instruct the Trains to change their speed and trig-
ger the Rail Actuators redirecting the Trains if
necessary.

• Redundant Railway Management Service
(RRMS): Conceptual Service Agent with the
same function as the RMS. However, the RRMS
is aware of the railway situation through Speed
Radars messages. This service comes into action
when it is identified that the RMS is not aware
of one of the Trains that passed through one of
the RF Sensors. This failure may be caused by a
interference with the RF signal sent by the Train,
by a defect in the RF Sensor, or by a defect in the
Train’s own transponder. In order for the RRMS
to reach this conclusion, it must also sign that
it wishes to receive the notifications issued by
the RF Sensors. Thus, it becomes able to know
when a message is no longer sent by one of these
Sensors in the same window of time when a
message arrives from the corresponding Speed
Radar. The RRMS hasn’t the feature of changing
Trains’ direction, since it was only be included in
the RMS so that the exchange of the reasoning
machine and the inclusion of new behaviors can
be tested in an existing IoT Service.

• Facilitator Agent: Agent that gives access to the
information about the other agents of the system,
allowing its reconfiguration through the inclusion
and exclusion of agents and services data in the
system. With the existence of a Configuration In-
terface, the system administrator can be able to ac-
cess the Facilitator and perform these tasks, indi-
cating the agents that should express interest in the
messages sent by other agents. The Interface asso-
ciated with the Facilitator also allows the configu-
ration of the agents that will be part of the services
perception, reasoning and behaviors. The Facili-
tator sends addresses data to the system agents.
By this way, the agents are able to know where to
send their messages.

5 PROTOTYPE
IMPLEMENTATION AND
TESTS

This section shows details of the prototype implemen-
tation and the tests created to verify the reference ar-
chitecture effectiveness and the veracity of reference
architecture requirements.

5.1 Used Tools

The following list shows the tools used for design and
implementation of the Railway Management System
prototype:

• StarUM 5.0.2.1570: used for design of the ab-
stract and concrete architectures.

• Microsoft Visual Studio Community 2015: Inte-
grated Development Environment (IDE).

• Windows 7 and Windows 8: operational systems.

• Mommosoft.ExpertSystem.dll: library for inter-
action with CLIPS (tool for construction of expert
systems - used to manipulate the rules that com-
pose the reasoning of the IoT Services’ Rational
Agents).

• Transfer Control Protocol/Internet Protocol
(TCP/IP): communication protocol used for
exchange messages between agents.

5.2 Test Description

The next topics includes the tests created to validate
the reference architecture effectiveness in the accom-
plishing of IoT Services’ Adaptability:

• Test 1 - Configure the RMS, including the data of
the agents belonging to this service and the data
of Trains, Sensors and Transmitters in the system,
start the simulation and define the trains’ speeds.

• Test 2 - With the RMS configured, manipulate
Trains’ speeds so that one Train arrives at a dis-
tance between 100m and 501m from the other
Train.

• Test 3 - Configure the RRMS including the ser-
vice’s belonging agents and Speed Radar Agents
data in the system.

• Test 4 - With the RRMS configured, proceed
with the deactivation of the RF Sensors Agents
through the simulation interface, and manipulate
the Trains’ speeds so that a Train arrives at a dis-
tance between 100m and 501m from the other
Train.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

192



• Test 5 - Exchange SlowDownBehavioralAgen-
tRMS by SlowDownBehavioralAgentRMS2.

• Test 6 - With the deceleration behavior of the
RMS switched, manipulate the Trains’ speeds so
that a Train arrives at a distance between 100m
and 501m from the other Train.

• Test 7 - Exchange RationalAgentRMS by Ratio-
nalAgentRMS2 and include RailActuatorA and
RailActuatorB as RMS’ behaviors.

• Test 8 - With the exchanging of the RMS reason-
ing and with the including of the Rail Actuators
as RMS’ behaviors, manipulate the Trains’ speeds
so that a Train arrives at a distance between 100m
and 501m from the other Train.

• Test 9 - Use a distributed platform. To do so,
change the IPs of the RF Sensors and the IP of the
Configuration Interface to the IP of another ma-
chine in the same network and run these agents
in this machine. Then reconfigure the agent’s IPs
in the Configuration Interface so that other agents
know about the change.

5.3 Test Results

After the execution of the experiment, it was possi-
ble to know if the requirements raised in Table 1 of
this work really had importance for the IoT Services’
Adaptability.

Only one requirement (Existence of a common
language structure) was classified as unimportant for
the IoT Services’ Adaptability. The belief that the
knowledge of the structures of the messages ex-
changed between the agents was fundamental for
them to communicate was unfounded. This knowl-
edge helps to interpret the messages, but communi-
cation would not be possible without knowing which
are the possible data contained in these structures. So,
even if a message was a unformatted data stream, the
knowledge of the possible contents of this message
would already be sufficient for the receiving agent to
make decisions based on it.

The reference architecture effectiveness corre-
sponds to the quantity of requirements in Table 1 that
were met in the execution of the tests. It was verified
that this effectiveness are 100%, because based on this
architecture it was possible to construct a system that
met all these requirements.

In this experiment, it can be said that the effort
to build a system that has the characteristics of the
reference architecture that contribute to the IoT Ser-
vices’ Adaptability was overestimated. The time and
work expended in design and implementation of the
structures that define attributes and characteristics of

the messages could be avoided, since this effort was
considered as being of no importance for the IoT Ser-
vices’ Adaptability.

Of all actions listed in the research and required
for design and construction of the prototype, 27 ac-
tions were considered necessary for creation of a sys-
tem that minimally performs the reference architec-
ture.

Two of these actions (”Design of the agents mes-
sage structures” and ”Implementation of the agents
message structures”) are related to the requirement
”Existence of a common language structure”, that was
classified as unimportant for the IoT Services’ Adapt-
ability. If we establish the relationship between the
actions that are important for the IoT Services’ Adapt-
ability and the actions that must be carried out to re-
alize the reference architecture, it is possible to verify
the effort that should be applied so that the reference
architecture contributes with the adaptability of IoT
Services:

25
27
×100 = 92.5926%

So, of all listed actions (100%), 7.4074% of these
actions could not be executed.

6 CONCLUSIONS

The tests created to validate the architecture (Test De-
scription subsection) aim to prove that a system built
with this architecture allows the inclusion of a new
IoT Service and the changing of the reasoning and
the behavior of an IoT Service without damaging the
other unchanged services’ behaviors. All the tests re-
lated was executed and the system continued to work
as expected.

The reconfiguration of the system’ services has
proven that the Interface works, that the configura-
tion can be done at runtime without causing system
damage (such as shutdown of a service) and that the
software parts are actually independent.

The correct system operation, decelerating, accel-
erating and changing Trains’ direction, means that the
messages was received by IoT Services, that the Per-
ceptual Agents was successful in contextualizing data
for the Rational Agents, that the Rational Agents was
successful in selecting the correct behaviors and that
the Behavioral Agents was successful in sending data
commands to the Trains.

The two paragraphs above show that IoT Services’
Adaptability was achieved by following the reference
architecture in the design and implementation of the
Railway Management System prototype. However

A Reference Architecture for the IoT Services’ Adaptability

193



there are important observations that must be taken
into account.

The scalability and security requirements were not
addressed. This means that in situations where it is
necessary to create hundreds of agents or situations
where it is necessary to assign agent access control
mechanisms and message encryption, the reference
architecture may need some adaptations.

The research tested the reference architecture
through a prototype where all physical elements, such
as sensors, actuators and trains, were simulated by
software agents. It is important to remember that in
real (non-simulated) systems, devices may have re-
strictions on their memory and processing capacities
and restrictions on the required technology (compil-
ers, programming languages, operating systems, etc.)
for the program to be embedded.

An important characteristic of the architecture
adopted is the division of IoT Service obligations into
agents with well defined functions, thus separating
perception, reasoning and behavior - elements visi-
ble in the BDI (Belief-Desire-Intention) logic. This
gives flexibility so that an IoT Service can be changed
without it all ceasing to work; For example: when the
RMS’ deceleration behavior was changed, the accel-
erate behavior was not impaired. If new reasoning
and new behaviors were included in the system, the
old ones would continue working and coexisting with
the new ones. This is important in cases where is de-
sirable to extend the features of an IoT Service or to
change their characteristics.

One of the resources adopted so that the behav-
ior of the IoT Service can have its independence ex-
tended in relation to the reasoning of a service is the
adoption of the concept of context. In this way, cer-
tain similar behaviors can be created using the same
context allowing its substitution without the necessity
of Rational Agent substitution. For example: assum-
ing that the system’s administrator wants to replace a
behavior that requests the speed reduction of a Train
by 10% of its speed by a behavior that requests the
reduction of that speed in 30%; in this case, it would
be necessary to replace the reasoning of the same ser-
vice if this reasoning would trigger behavior based on
behavior’s name. In the cases that the reasoning trig-
gers a behavior by its context, it would be enough to
disable the current behavior and to include the new
behavior data in the system, since the two behaviors
have the same context that, simply, can be the ”slow-
down” string.

Other element relevant of the architecture is the
Facilitator Agent. It’s plays an important role in es-
tablishing communication between agents by indicat-
ing the addresses of the subscribing agents to the

signed agents. This agent is also important because it
maintains the information of the agents that compose
the system and because it allows the system reconfig-
uration based on the requests of user interface.

REFERENCES

Ayala, I., Amor, M., and Fuentes, L. (2012). Exploiting
dynamic weaving for self-managed agents in the iot.
In Timm and C. Guttmann (Eds.): MATES 2012, LNAI
7598. Springer-Verlag Berlin Heidelberg.

Dimakis, N., Soldatos, J., Polymenakos, L., Schenk, M.,
Pfirmann, U., and Brkle, A. (2006). Perceptive
middleware and intelligent agents enhancing service
autonomy in smart spaces. In Proceedings of the
IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT06). IEEE Computer So-
ciety.

Elammari, M. and Issa, Z. (2013). Using model driven ar-
chitecture to develop multi-agent systems. The Inter-
national Arab Journal of Information Technology, Vol.
10, No. 4.

Kim, D., Lee, G., Lee, K., Heo, S., Choi, K., and Shin,
D. (2012). Design and implementation of efficient di-
rectory facilitator for context-aware service discovery.
In N. T. Nguyen et al. (Eds.): KES-amsta 2007, Lnai
4496. Springer-Verlag Berlin Heidelberg.

Leppnen, T. and Riekki, J. (2013). A lightweight agent-
based architecture for the internet of things. In Tech-
nical Report, 2013. Departamento de Ciłncia da Com-
putao e Engenharia, Universidade de Oulu, Oulu,
Finlndia. IEICE - The Institute of Electronics, Infor-
mation and Communication Engineers.

Leppnen, T., Riekki, J., Liu, M., Harjula, E., and Ojala, T.
(2014). Mobile agents-based smart objects for the in-
ternet of things. In Internet of Things Based on Smart
Objects, Internet of Things, DOI. Springer Interna-
tional Publishing Switzerland.

Mzahm, A., Ahmad, M., and Tang, A. (2014). Enhancing
the internet of things (iot) via the concept of agent of
things (aot). In Journal of Network and Innovative
Computing. MIR Labs.

Vermesan, O., Friess, P., Guillemin, P., Giaffreda, R.,
Grindvoll, H., Eisenhauer, M., Serrano, M., Moessner,
K., Spirito, M., Blystad, L., and Tragos, E. (2015). Pa-
per templates. In Internet of Things beyond the Hype:
Research, Innovation and Deployment. IERC Cluster
SRIA.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

194


