Virtual Extension of Meta-models with Facet Tools

Jonathan Pepin'2, Pascal André', Christian Attioghé' and Erwan Breton?
LAeLoS Team LS2N CNRS UMR 6004, University of Nantes, France
2Mia—Software - Nantes, 44324 Nantes cedex 3, France

Keywords: Meta-model, Weaving, Mapping, EMF, Facet, Transformation Tools.

Abstract: MDE emphasizes the use of models and meta-models to improve the software productivity and some aspects
of the software quality such as maintainability or interoperability. In the software industry, Model Driven
Engineering (MDE) techniques have proven useful not only for developing new software applications but for
re-engineering legacy systems. However the stakeholders have to face costly maintenance operations due to
frequent new standards and upgraded releases of software modules they depend on. Therefore, due to the
limitations of existing techniques, solutions ensuring a better adaptability and flexibility of model evolution
tools are needed. We propose an improved technique of virtual extension of meta-models with Facets that
enables one to modify meta-models already in use without rebuilding completely the software product. This
technique has been implemented and experimented for model alignment and evolution.

1 INTRODUCTION

The importance of modelling in software engineer-
ing and the popularity of the UML notation result
in the dissemination of model-based tools and the
emergence of a modelling language industry based
on the model-driven approach (MDA). The Meta-
Object Facility (MOF) language is then the foun-
dation for an ecosystem of Domain Specific Lan-
guages (DSL) (Brambilla et al., 2012). Some of them
are standards like BPMN, BMM, SoaML, SysML,
UPDM while others are specific. Model Driven En-
gineering (MDE) emphasizes the use of models and
meta-models to improve the software productivity
and some aspects of the software quality such as
maintainability or interoperability. MDE techniques
have proven useful not only for developing new
software applications but for re-engineering legacy
systems and dynamically configuring running sys-
tems (Cuadrado et al., 2014).

In the context of software maintenance, includ-
ing model-driven reverse engineering of a legacy
system, we face challenges related to model evo-
lution, model composition, multi-generation models
and multi-layered models.

e Meta-models are essential in MDE since many
model processing are described at the meta-model
level through transformation rules or operations.
However this is also a pitfall since both models
and meta-models evolve separately. In particu-

Pepin, J., André, P., Attiogbé, C. and Breton, E.
Virtual Extension of Meta-models with Facet Tools.
DOI: 10.5220/0006547100590070

lar, the modelling languages depend on standards
that evolve continuously and the related models
must also evolve: there is a dependency chain to
maintain. Model evolution is even more complex
when (meta-)models are parts of larger models.
As mentioned by El Kouhen in (El Kouhen,
2016), MDE promotes the separation of concerns
to deal with the complexity and maintainability of
software design. This current practice implies the
creation of several heterogeneous models using
different notations (and therefore meta-models).
Since the semantics of each individual model is
limited, the consistency and completeness of the
individual models are easier to prove but the diffi-
culty is delegated to the composition of these in-
dividual models. Model composition is the sym-
metric paradigm of separation of concerns (Atlee
etal., 2007). It is then necessary to compose mod-
els to reason on the overall designed system for
many purposes such as: checking the global con-
sistency of the models, understanding the inter-
actions between models, generating code, etc. In
particular, we are interested in compositions that
do not interfere with the individual models.
Multi-generation occurs when different releases
of one model (or meta-model) are maintained e.g.
for different customers or different branches of a
company. This may occur also in software prod-
uct lines or software customization.

59

In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 59-70

ISBN: 978-989-758-283-7

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

e Multi-layering occurs when we need to maintain
links between models at different levels of ab-
straction (traceability, refinement...). Examples
are the CIM-PIM-PSM stack or the enterprise ar-
chitecture alignment stack (Clark et al., 2011).

A typical scenario for a software provider is to deliver
customised release to some customers but customisa-
tion leads to a tricky maintenance problem when mod-
els and meta-models evolve. This includes the case of
legacy code built using various DSL with various de-
velopment methods at different levels of abstraction
(from implementation code up to business processes).
In order to represent specific (or customised) aspects
we extend meta-models with new concepts, attributes
and relations. It is always possible to create the new
meta-model with references to the initial meta-model
but any modification requires to rebuild the delivery
product. This is also the case when the modelling
language evolves; the new release requires tool adap-
tation.

In all these cases of software maintenance, includ-
ing model-driven reverse engineering of a legacy sys-
tem, it is a primary requirement to have techniques
to build new models without modifying the source
models (to preserve source property), we call it non-
intrusive model mapping. The existing approaches
are not fully satisfying because they are either intru-
sive, volatile or too generic. Paige et al. mentioned
several challenges of evolving models in MDE (Paige
et al., 2016). The work presented in this paper is a
practical contribution to the dependency heterogene-
ity challenge. We focus on model mappings that sup-
port several semantic links, models (or meta-models)
evolution and persistence, while staying non-intrusive
by preserving their parts. More precisely our contri-
bution is threefold:

e A mapping definition that enables to connect
models without breaking their legacy semantics
and without rebuilding the associated software
tool support.

e A mapping technique which is compliant with the
existing MDA tools. Taking an industrial point
of view, the question is not only to find a map-
ping meta-model, which is usually depending on
the context (the models we work with), but also to
implement mapping techniques which are compli-
ant with the existing MDA tools and efficient for
large-scale applications.

e A mapping tool that can be reused by others
and customised to similar model transformation
in practice. At the implementation level, main-
taining a link between model elements can also be
seen as an object relation mapping (ORM) prob-
lem (Ambler, 1997) preserving the link multiplici-

60

ties and a bi-directional navigation. This problem

needs a robust algorithm engine to maintain the

constraints imposed by the multiplicities.

The paper mainly targets a tool set; it is struc-
tured as follows. In Section 2 we review model map-
ping techniques and motivate our choices. Section 3
overviews EMF Facet and introduces our improve-
ments. Persistence, navigation and testing issues are
discussed in Section 4. New user interface facilities
are presented on the illustrating example in Section 5.
The application field is detailed in Section 6 includ-
ing a tutorial, user stories and a return on experience
of larger case studies. Finally, Section 7 summarises
the contribution and draws open perspectives.

2 BACKGROUND AND
REQUIREMENTS

In this section we overview the basic requirements,
define the core concepts and compare with related
works to set the contribution requirements.

2.1 Background and Core Concepts

A software system sustains several releases that can
even co-exist for different users with different hard-
ware. The definition of models needs enhancements:
new attributes, new entities, new classifications, new
links,--- Thus the real life systems generally handle
more than one model that may co-exist with different
semantics i.e. as defined by their meta-models. To
capture this reality, we need a particular model map-
ping technique that owns the following criteria:
1. Non-intrusiveness: the mapping must not mod-
ify the individual models because they evolve in-
dependently.
2. Semantics: the mapping is not simply a set of
links, it supports a semantic relation to connect
differently the concepts with an equivalence class
of interpretation (an ontology of the concepts and
links).
3. Link Resolution: the mapping techniques must
provide a mechanism to navigate by mapping
links directly from the source model to the target
model and reciprocally.
4. Serialization: the mapping links must be persis-
tent to store the working environment.
These properties come from lessons learned during
model maintenance activities. This was the basis for
finding an adequate "mapping semantics".

Model mapping is one of the "Model manipulation
and management challenges" of (France and Rumpe,

2007) and in particular to the points (2) and (3) men-
tioned by its authors: (2) maintaining traceability
links among model elements to support model evolu-
tion and round trip engineering and (3) maintaining
consistency among viewpoints. Model mapping tech-
niques are useful for model composition, decomposi-
tion or synchronization (France and Rumpe, 2007). In
fact there are many "similar" operations and our first
goal was to find the adequate semantics and an asso-
ciated operational technique. Clavreul identified 88
model composition techniques for different purposes
in his systematic review (Clavreul, 2011). Model
Mapping is a model composition that preserves the
components. It is called the "model-based correspon-
dence" by Clavreul. Considering our requirements,
we reduce the field to model mapping and we retain
five mapping techniques: extension, merging, annota-
tion, weaving and facets.

Model Extension or Merging. In the first ap-
proach, the meta-model of one layer is extended
with the concepts of another one. In the second
approach, the meta-models are merged in a single
big model. In both case, the meta-models loose
their consistency and they can hardly evolve (flexi-
bility loss). Clavreul’s mapping language is a merg-
ing approach and the architects must learn a DSL.
We opted for a mechanized approach by providing
a simple tool which applies at both compile and run
time. El Kouhen (El Kouhen, 2016) proposed an
unified methodology to compose models based on
meta-model extensions. The composition operators
are symmetric (commutative e.g. merge, parallel)
or asymmetric (weaving in the meaning of AOP, se-
quential integration). His work is largely inspired
by (Marchand et al., 2012) who gave a formal seman-
tics for weaving and merging through morphisms of
a category theory. Our approach can be seen as an
ad hoc model composition in their classification since
our mapping uses semantic information of the source
models while their approach is a model mapping in
our classification. Their mapping approaches enable
the separation of concerns, but the merging and weav-
ing do not preserve the legacy models (and the ex-
isting related tool support) because their result is a
new model. Model merging or extension are intru-
sive techniques because the source models disappear
in the target model.

Model Annotation and Weaving. Model mapping
is close to model weaving as defined by (Jouault et al.,
2010) which was inspired by Aspect Oriented Mod-
elling. "Model weaving operations are performed be-
tween two or more meta-models, or between mod-

Virtual Extension of Meta-models with Facet Tools

els. They aim to specify the links, and their associ-
ated semantics, between elements of source and tar-
get models" (Jouault et al., 2010). Models are woven
by establishing different kinds of links denoting the
semantics of weaving: merge operations, traceabil-
ity links, data translation mappings, text to graphical
representation, etc. Atlas Model Weaver (AMW) in-
cludes a transformation mechanism with ATL! to cre-
ate an automatic weaving. Virtual EMF (Bruneliere
and Dupé, 2011) provides a visual assistant to edit
two models from different meta-models and to cre-
ate links between concepts with drag and drop. Un-
fortunately, editors are not supported since the 4.x
versions of Eclipse. The existing tools did not suit
to our requirements but we got inspired by them
to create our own weaving assistant, including im-
provements and new features (see Section 5.3). Di-
donet et al. (Del Fabro and Valduriez, 2007) propose
an approach that uses matching transformations and
weaving models to semi-automate the development of
transformations, which is not our goal. In that case,
weaving can implement transformations but cannot
map models, which is our goal. Our automated map-
pings implementation has been inspired by this work.

Model mapping has also been explored in the con-
text of Domain Specific Languages (DSL) to define
new languages from existing ones in a non-invasive
way without re-creating the tool support. Bruneliere
et al. (Bruneliere et al., 2015) define a textual DSL
with extension operators to extend meta-model se-
mantics. It is independent from modelling tooling.
Similarly, Greifenberg et al. propose DSL-specific
tag language (Greifenberg et al., 2016). Kolovos et
al. (Kolovos et al., 2010) propose decorator extrac-
tion and injection operators based on GMF notes to
ensure the non-invasive property but it requires man-
ual transformations and conflicting specializations of
GMF notes may appear. Langer et al. (Langer et al.,
2012) propose EMF profiles, a lightweight adaptation
of UML profiles to extend meta-models with anno-
tations, constraints and stereotypes. These DSL ex-
tension approaches have in common to work on the
(binary) inheritance relation (one model is more spe-
cialised than another) while we target any kind of
n-ary relations between models such as aggregation,
composition, inheritance, dependency e.g. traceabil-
ity... However they are complementary.

In a previous work (Pepin et al., 2016), we com-
pared different model mapping techniques such as
merging, weaving, and annotation between meta-
models and we showed that they do not support prop-
erly the four above mentioned mandatory criteria for
model maintenance and evolution.

Thttp://eclipse.org/atl/

61

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

EMF Facet. In MDA, it’s common to use tools
based on the Eclipse EMF Frameworks. EMF enables
to define meta-models, load, persist and manipulate
the compliant models. The EMF Facet tool is based
on EMF to extend virtually a meta-model. This solu-
tion answers to the non-intrusiveness and the seman-
tics criteria. However the existing EMF Facet tools
do not fulfil all requirements: they have no persis-
tence support for the mapping links (the values are
computed by queries only) and few navigation and
semantics support. However this was the closest ap-
proach conforming to our requirements so we decided
to improve EMF Facet to draw links between models
and manage them in conformance to the defined car-
dinalities.

2.2 Requirements for Meta-model
Extension

We can now revisit the criteria of the beginning of
this section to describe the requirements for a Non-
intrusive but Persistent Model Mapping technique
(NIP-MM).

e Mapping meta-models in a unique meta-model
usually breaks the evolution lifecycle: when the
individual models change, the mapping becomes
inconsistent and the associated tools obsolete. We
need a technique to map meta-models without in-
trusion and without version dependency.

e The weaving and annotation techniques are non-
intrusive but they use only generic links while the
end-user model transformation tools require spe-
cific information to proceed adequate transforma-
tions according to the meta-model relations and
cardinalities. The mapping technique must in-
clude semantic information for these relations.

e Last, the technique must serialize the mapping
links to support persistence in a way that loading
model mappings enables the navigation between
the original model elements and the new one with-
out disturbing the end-user experience. Behind
these properties we find the ascending compati-
bility and the version preservation of existing tool
suites which are industrial concerns. Only the
Facet approach covered these requirements, ex-
cept persistence and navigation facilities which
are not supported.

In summary, we require an equipped Non-intrusive
Model Mapping technique supporting semantic links
and persistence.

62

3 REVISITING THE FACET
APPROACH

In this section we overview the EMF Facet features,
its interest and limitations and we introduce improve-
ments.

3.1 The Basic EMF Facet

Eclipse EMF Facet is a runtime meta-model exten-
sion framework composed of four parts: Facet, Cus-
tomization, Widgets and Query. The Facet part offers
the possibility to virtually extend (at runtime) exist-
ing meta-models and models. The Customization part
adds Ul enhancements on a meta-model. The Widgets
part can be used to apply customizations to model ed-
itors. The Query part enables to compute attribute,
reference and operation value. The queries are written
in Java or OCL. With Facet one can extend models
by adding virtual features to existing models and also
weave models by linking their concepts (Figure 1).
This paper is mainly concerned with the Facet part;
we dealt with customizations when handling specific
meta-models editors in (Pepin et al., 2016).

H Eclass [

(from ecore

extendedMetaclass
0.1 extendedFacets
0.*
B Facet IEd)

i T
customizedFacet

‘E EClassCustomization

‘ H FacetCustomization

Figure 1: Facet and Customization.

A Facet provides a new viewpoint on a model
which is helpful to categorize model elements with
new classifications, to add information on model el-
ements, to navigate easily between model elements
with new derived links. A facet provides a virtual
mechanism to add new attributes, references or oper-
ations on a model without modifying the initial meta-
model. Several facets can co-exist and be loaded/un-
loaded on demand without re-opening the model in-
stance. Under the hood, the Facet meta-model ex-
tends the meta-class (EClass) from the EMF Ecore
meta-model. Facet applicability is checked by op-
tional conformance rules.

As illustrated in Figure 2, the meta-model of a
Facet may contain FacetAttribute (extend EAttribute
in Ecore), FacetReference (extend EReference in

E EPackage L

S

Q FacetSet E Category

0. categouas

[0.1] guery —_—

S e

5 Facettlement
[0.4 categolies
[D 1] override
@
el
‘ H quey rg DerivedTypede! ‘EQ Srrucrwa'Fearu@

| [

E EReference L]

Q EQperation Ll

Ij E FacetReference | E Facetattribute ‘ | E FacetOperation

Virtual Extension of Meta-models with Facet Tools

‘ E ET) ypedf!’ementm
Fiy

[0..1] conformanceTypedElement

‘ EQ EClassifier i

[0..2] eContainingClass

E EClass 5]

[U M eStructuralFeatures|

.*] FacetElement:

0..1] extendedMetaclass|

Q Facet

T T |

[0.*] extendedFacets

[0.1] fOpposite

[0..*] facetOperations

Figure 2: eFacet class Diagram.

Ecore) and FacetOperation (extend EOperation in
Ecore) which return values based on query evaluation.
Facets are contained in a FacetSet (extend EPackage
in Ecore, and FacetSet can be contained in an another
FacetSet hierarchically.

3.2 Common Use of Facets

Facet is an answer to different use cases in MDA prac-
tice. We illustrate with three situations.

e Facet can be used to implement UML derived fea-
tures i.e. attributes or associations that are not im-
plemented but computed from other features (also
called daemons in programming). For example,
the age is computed from the date of birth. Facet
enables one to represent them as attributes or ref-
erences” without storing redundant informations.

e Facet can be used to customise instances of a
meta-model for GUI (user interface) facilities (la-
bels, icons, color...). Facet enables to customize
Eclipse SWT components like trees, arrays, lists,
etc. As an example, Figure 3 shows a software
component classification (components and appli-
cations). We modify the GUI by separating com-
ponents and application types and the associated
icons in Figure 4.

e A third case is to add new data in a model; new
features (attributes or references) which are not
computed but stored as standard features.

These examples improve the practice of model
(and meta-model) maintenance and evolution but also
model transformation. New information can be added

ZReferences are the way to represent associations at the
implementation level.

. &] Application Component SAFIG

.] Application Component ASPHERIA

.] Application Component MIKROS

. &] Application Component PN_ContratsIARD

. 8] Application Component 128 Consultation RAQVAM 1ere Generation

Figure 3: Before the GUI modification.

» 2] Component SAFIG

. =] Component ASPHERIA

- =1 Application MIKROS

- =] Application PN_ContratsIARD

. [=] &pplication 128 Consultation RAQVAM lere Generation

Figure 4: After the GUI modification.

without breaking the source meta-models and without
requiring a migration to a new meta-model.

This paper is a core contribution to that problem
because the basic Facet does not allow this case. We
call it Non-intrusive but Persistent Model Mapping
technique (NIP-MM).

Limitations. We remind the limitations of the Facet
approach for NIP-MM:

- A new feature of the Facet systematically calls a
query. However the queries cannot access to the
model to map and it is necessary to store the val-
ues. Also queries must be executed during the
model loading; if the model is voluminous, the
computation times can impact the response time.

- New features cannot be valued manually, as the at-
tributes or references of an ordinary meta-model.

- In independent model composition, the mapping
links must be persistent, consequently the values
of the features is to be serializable.

63

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

3.3 Facet Improvements

To fix the above limitations, we first improve the
meta-model, then we modify the existing Facet man-
ager and serialization mechanisms.

Facet Manager. We improve the meta-model by al-
lowing dynamic structures instead of the static one.
We add FacetAttribute and FacetReference getters
and setters instead of recomputing systematically the
attached query (Figure 5). Since the meta-model con-
straints have an impact on the behaviour of the cur-
rent Facet manager, we upgraded its implementation
to support the new behaviour.

IEd| —_—
M EE DerivedTypedElement

[0..1] query

| EReference (7] H EAttribute L
[0..1] fOpposite Zf ﬁk

,— E FacetReference | [E FacetAttribute]
.. l

Figure 5: EMF Facet meta-model modifications.

Technically, enabling the access of values turns
to weakening the multiplicity of FacetAttribute and
FacetReference which extend DerivedTypeElement.
Thus the multiplicity of the query eReference on De-
rivedTypedElement is changed from 1..1 to 0..1.
This feature will permit to get the values of FacetRef-
erence and FacetAttribute without using a query. Fur-
thermore we add a new eReference named fOpposite
to create a reflexive reference mechanism like eOp-
posite on EReference in the Ecore meta-model. The
improved EMF Facet enables now to manually extend
and weave models. As a matter of fact, we fulfil the
criterion of Section 2.1: the serialization makes the
improved Facet be the most effective approach among
all the mapping techniques of Section 2. We submit-
ted our proposal of extended EMF meta-model as a
contribution to the open-source Eclipse EMF Facet?;
this has been approved.

Serialization Mechanisms. After the modification
of the meta-model, we turned to the Java imple-
mentation of the new behaviour of the Facet engine
called FacetManager. At first, we supported the two

3 Available since version 1.0: https://bugs.eclipse.org/
bugs/ show_bug.cgi?id=463898

64

simplest multiplicities of the bi-directional references
type: one-to-one and many-to-many. But, this was in-
sufficient to cover all the cases so we proceeded with
all the possible cases. In the next section, we present
the cases and their implementation in order to obtain
a complete weaving engine.

4 PERSISTENCE AND
NAVIGATION

At this stage, one can create FacetReference links to
map concepts from different meta-models. In this
section, we describe the mechanism that supports bi-
directional mappings and a two-way navigation.

Mappings are represented here by UML associa-
tions, which are bi-directional by default. An associ-
ation end multiplicity (or cardinality) is an interval of
value represented by a lower and an upper bound. An
association between classes is represented by a set of
links at the instance level.

At the implementation level, maintain a link be-
tween elements is an object relation mapping (ORM)
problem (Ambler, 1997) where the link multiplici-
ties and bi-directional navigation are ensured. This
problem needs a robust algorithm engine to maintain
the constraints imposed by the multiplicities. A (bi-
directional) association is represented by a pair of uni-
directional (one-way) associations as shown in the
Library example of Figure 6. Thus any (instance)

Book Author
prefaces prefacedBy
l.u Ib..ub
transforlmation
Book prefacedBy ™A uthor
{reverse} Ib..ub
prefaces

l.u

Figure 6: Bi-directionnal link example.

link modification must be propagated to the opposite
link. Depending on the multiplicity values, four cases
are distinguished: one to one (an instance is linked to
one instance only), one to many (an instance can be
linked to several instances), many to one (several in-
stances can be linked to one instance), many to many
(several instances can be linked to several instances).
Note that one to many and many to one cases are
not symmetric because the relation is oriented. Then,
these two cases have different algorithms to preserve

the multiplicity.
The core issue is to preserve the symmetry constraint
(prefacedBy.reverse() = prefaces) of the op-

posite association ends. Updating only one side usu-

ally leads to a symmetry constraint violation. In the
following, we illustrate each case by giving a figure
and the algorithm we implemented in FacetManager*.
One to One. In Figure 7, a book is prefaced by one
author and an author prefaces only one book. To
check the multiplicity consistency, the implementa-
tion in the FacetManager involves to keep only one
opposite link during the set operation.

Book prefacedBy 0..1 Author

0..1 prefaces
Asimov 1984 X
Barjavel 2001
set

step 1 step 2

Figure 7: One to one relation.

delete old reference
delete old opposite reference
create new opposite reference
create new reference

ENERRNT

One to Many. In Figure 8, a book is prefaced by
many authors and author prefaces one book. To check
the multiplicity consistency, the implementation in
the FacetManager involves to replace the opposite
link during the set operation.

Book N Author

p
0..1 prefaces

Asimov } { 1984

Barjavel} { 2001]
+
DR N Sy

step 1 step 2

Figure 8: One to many relation.

remove old reference from existings
delete old opposite reference
create new opposite reference

add new reference into existing

AW -

Many to One. In Figure 9, a book is prefaced by one
author and author prefaces many books. To check the
multiplicity consistency, the implementation in the
FacetManager involves to delete the old and to add
the new opposite link during the set operation.
1 delete old reference
2 remove old opposite reference from existings
3 add new opposite reference into existing
4 create new reference
Many to Many. In Figure 10, a book is prefaced by
many authors and author prefaces many books. To
check the multiplicity consistency, the implementa-
tion in the FacetManager involves to delete the old
and to add the new opposite link during the set oper-
ation.

4Available since version 1.1: https:/bugs.eclipse.org/
bugs/show_bug.cgi?id=510039

Virtual Extension of Meta-models with Facet Tools

Book Author

p
0..* prefaces

-1984 : Asimov] [1984 Asimov

[Barjavel] [2001 Barjavel

i

Clarke] [451 Clarke

step 1 step 2

Figure 9: Many to one relation.

Book . Author

p
0..* prefaces

Asimov] [1984 ¥ Asimov
Barjavel] [2001 Barjavel
Clarke] [451 Set Clarke

step 1 step 2

Figure 10: Many to many relation.

remove old reference from existings

remove old opposite reference from existings
add new opposite reference into existing
add new reference into existing

N S

Thanks to the automatic management of bi-
directional links, the instance mapping is transparent
for users. Our implementation allows one to weave
the instances without a slave-master semantics. The
user can draw a link in any order: from the source to
the target or reverse.

Testing New Implementations

According to the Test-Driven Development approach,
JUnit tests have been written to check our implemen-
tation and its code coverage before adding it to the
FacetManager. We illustrate this with two simple ex-
amples of the Library. For each multiplicity case,
we set facetReference between different instances of
books and writers, then we check if the reference set-
ting conforms to the reference and its opposite.

Example 1. In the many-to-one case, writerl and
writer2 write the preface of bookl. The test case of
Listing 1 assigns the value, establishes the mapping
and checks the reverse link. It succeeds.

Listing 1: Many-to-one: the direct preface reference

final FacetReference preface = getFacetRef(
MANY_TO_ONE, WRITER_EXT, PREFACE)
final Book booklwriterl = this.facetMgr.

getOrInvoke (writerl , preface, Book.class);
Assert.assertEquals (msg(WRITERI, BOOKI), bookl,
booklwriterl);
final Book booklwriter2 = this.facetMgr.
getOrInvoke (writer2 , preface, Book.class);

65

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

Assert.assertEquals (msg(WRITER2, BOOKI), bookl,
booklwriter2);

Example 2. The test case of Listing 2 checks the
automatic setting of the opposite reference prefaced:
bookl1 is prefaced by writerl and writer2. Its exe-
cution also led to success.

Listing 2: Many-to-one opposite: the prefaced reference

final FacetReference prefaced = getFacetRef(
MANY_TO_ONE, BOOK_EXT, PREFACED)

final List<Writer> writersland2 = this.facetMgr.
getOrInvokeMultiValued (bookl, prefaced, Writer
.class);

Assert.assertEquals (msg(BOOKI1, "writerl and_writer
.2"), Arrays.asList(writerl , writer2),
writersland2);

The above examples are specific to the Library
case study but generic tests, written at the meta-model
level, can be shared by all applications. Henceforth
EMF Facet enables one to create links between any
models following a definition at the meta-model level.
Section 5 presents additional tools to handle the links
at the instance level.

S END-USER RUNNING THE
MAPPING

The mapping API and the tests have been presented
in Section 3 and Section 4. In this section, we il-
lustrate the implemented industrial tools associated to
the mapping framework with the Library example.

We extend Book and Writer meta-classes by cre-
ating new FacetSet for each link mapping cases con-
taining all facets which define the new virtual ref-
erences with the specific multiplicity: prefaces and
prefaced. A mapping process includes the follow-
ing activities: facet mapping definition, instance valu-
ation, instance linking, mapping navigation and eval-
uation.

5.1 Mapping Definition

Each facet defines at least a name and the meta-class
type. A facet optionally extends an existing Facet.
The facet refers to the original meta-class by its ab-
solute Universal Resource Identifier (URI). The facet
defines three kinds of features: FacetAttribute, Face-
tReference and FacetOperation. We can create as
many new features as required. A FacetReference
defines at least a name, a multiplicity, a type and an
opposite reference if the association is bidirectional.
The type is a meta-class from any Ecore reachable

66

meta-model or another predefined FacetReference in
the current FacetSet. A FacetAttribute defines at least
a name, a multiplicity and the meta-class type as in
FacetReference.

Example. Assume a Book meta-model describing
the books and a Writer describing authors. In Fig-
ure 11, we create four FacetSets, one for each map-
ping multiplicity: many to many (MToM), many to
one (MToO), one to many (OToM), and one to one
(OTo0). For each case, a new reference preface links
"writers to books’ and the opposite reference pref-
aced links *books to writers’. The multiplicity differs
through the upper and lower bound. In the example
of Figure 11, -1 represents the 'many’ upper bound
value. The purpose of this new definition is to extend
the existing classification of a library of books and
authors to obtain an enriched catalogue.
4 [ﬁg ExtendedLibrary.efacet
4 é‘-‘ Facet Set ExtendedLibrary
4 g Facet Set MToM
a ﬁ}-‘ Facet BookExt
o % prefaced
4 ﬁ}-‘ Facet Writerbxt

- o preface
» ﬁ]‘-‘ Facet Set MToO
» g Facet Set OToM
. g Facet Set OToO

[T] Properties 52

Property Value
EType E Book
FOpposite 4 prefaced
Lower Bound 0
Many e true
MName '= preface
Upper Bound -1

Figure 11: FacetSet definition example.
5.2 Setting Links by Property Value

Property editors set the value of the attributes and ref-
erences that will be used by queries.

Example. To experiment the different multiplicity
links, we create a library with books and writers. We
apply a specific FacetSet at a time: MToM, MToO,
OToM, or OToO. In Figure 12 the FacetSet OToM
is applied, the book "2001 Space Odyssey" have
two prefaced writers "Isaac Asimov" and "Arthur C.
Clarke". The property field varies according to the
multiplicity: a pop-up menu selector (one) or a dou-
ble selector (many). We can check that the opposite
link is correctly set in Figure 13: "Isaac Asimov" pref-
ace "2001 Space Odyssey", and "Arthur C. Clarke"
preface "2001 Space Odyssey".

Virtual Extension of Meta-models with Facet Tools

Facet Set MToQ =
ﬁ}; Facet BookExt B ' prefaced -- Writer [saac Asimov, Writer Arthur C. Clarke l 5 [eS-
4 Book 1934
% Book 2001 space odyssey Filter Available Choices
4 Book Fahrenheit 451 Choice Pattern (* or 7}
4 Book 1984
4 Book 2001 space odyssey Choices Feature
4 Baok Fahrenheit 451 <4 Writer Arthur C. Clarke % Whiter Isaac Asimov

ﬁ}’ Facet WriterExt
<+ Writer Ray Bradbury

< Writer George Orwell
<4+ Writer Isaac Asimov

Remove

<+ Writer Arthur C. Clarke

ﬁ}’ Facet WriterExt
< Writer Ray Bradbury
<+ Writer George Orwell
<+ Writer René Barjavel
<= Writer Isaac Asimov

+ Wr?ter Geor’ge 9""’2” < Writer Ray Bradbury
+ Wr!ter René Bapavel <+ Writer René Barjavel
< Writer saac Asimov Up

< Writer Arthur C. Clarke

II Ip
o
=4

< Writer Arthur C. Clarke

£l Properties 53

Down
Property Value
E Properties & j Mame U= Arthur C. Clarke
Property Value oK l [fancel preface 4 Book 2001 space odyssey
Isbn -1 451457994 \ Book 1984
MName = 2001 space odyssey Book 2001 space odyssey
prefaced Writer Isaac Asimaov, Writer Arthur C. Clarke) Book Fahrenheit 451
Writer

Figure 12: Editing multi-valued reference.

5.3 Setting Links by Model Weaver

Setting many links between instances with the prop-
erty values is quite fastidious and editors are really
useless in this case. We developed a specific weaving
editor with multiple views (drag-and-drop).

Example. On the right part of Figure 14, an outline
displays the different models to weave i.e. a first
model ’library with books’ and a second model
’library with writer’. On the left, a specific view
organizes the weaving result by facets. The MToM
facet is loaded. This design allows us to drag and
drop elements from right to left to link elements by
references corresponding to the FacetSet definition.
In this example, we drag and drop two writers
"Ray Bradbury" and "George Orwell" on reference
prefaced of the book "Fahrenheit 451".

[*EA ViewPoint Editor 5% = 0(2= Qutline &3 =5
5 Facet Set MToM platfor..Jibrary 451
[5F Facet BookExt 4 Library
4 Book1984 1, books

< Book 2001 space odyssey
< Book Fahrenheit 451
% prefaced

4 Writer Ray Bradbury
4 Writer Gearge Orwell

4 Book1984

4 Book 2001 space odyssey

4 Book Fahrenheit 451

[E* Facet Writerfxt

4 Writer Ray Bradbury

4 Writer Gearge Orwell

4 Writer René Barjavel

4 WriterIsaac Asimov

4 Writer Arthur C. Clarke

< Book 2001 space odyssey
© ishn = 451457994

< Book Fahrenheit 451
© name = Fahrenheit 451

platfor..library type filter text

4 4 Library

© name = null
4 b, writers

% Writer Ray Bradbury
+ % Writer George Orwell
> % Writer Arthur C. Clarke
> 4 Writer Isaac Asimov
4 Writer René Barjavel

mn

Figure 14: Model weaver editor.

5.4 Exploring Links with OCL Query

Using a model mapping by FacetReferences makes
possible the navigation through the models, from one

Figure 13: Editing mono-valued
references.

FacetReference to another. The TreeEditor is com-
patible with EMF Facet and enables one to browse
hierarchically the models by the FacetReference, but
it is still not very convenient; architects would like to
get some statistics to measure which elements from
models are mapped or not. Since EMF offers OCL ex-
pressions parser on Ecore models, we have produced
an engine extension in order to make Facet compati-
ble with virtual features and used as property in OCL
statements. This extension is also integrated in a plug-
in to EMF Facet project.

Example. In Figure 15, we use the previous model
weaving result. We open the model ’library with
books’ and write an OCL query on the console
to know all writers who have prefaced the books:

[Tree Resource Editor 3

<= Library
o name = null
1, writers
t. books
< Book1984
< Book 2001 space odyssey
<4 Book Fahrenheit 451

Bl Console 52
EMF Facet OCL Console

Evaluating:
gelf.books.prefaced
Result:
Writer Rene Barjavel
Izaac R=zimov
Arthur C. Clarke

Eené Barjawel

Writer
Writer
Writer

4

self.writers.p

| preface : Book

Figure 15: OCL Facet Console.

67

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

"self.books.prefaced". The query writing is assisted
with auto-completion, and the result appears on the
console.

Section 6 draws experimentations of the above
tools and wizards.

= Install 5 |
Install Details |

6 EXPERIMENTATIONS R Ea
’\ia";; EMIF Facet Starter Kit Feature ;J:’;‘.EEITIDBGMG wlj jpep.emf facet.

The above tools and wizards (and others) have _

been integrated in the EMF Facet open-source et

project. ~ The improved Facet tooling is avail-

able at the open-source Eclipse EMF Facet

https://wiki.eclipse.org/EMF_Facet. ? -

6.1 Starter Kit Example

EMF Facet remains a framework with components to
be integrated by developers in their applications. This
Eclipse project has no introductory examples to show
how to integrate the components to make an applica-
tion, to handle models compatible with facet extensi-
bility or to create a facet set (or facet customization)
to extend an existing meta-model.

To illustrate the wusability and availability
of the contribution of this paper, we pushed
some source codes and model examples in a
public and open source Starter Kit project at:
https://gitlab.com/jpepin/EmfFacet_StarterKit/.

Eclipse users can build the Update Site to install
easily the example in Eclipse installation (compatible
with the Kepler and more recent versions).

l{ Project Explorer 82 ¥ = H
] example.human
V =% models.example & P L

e data.efs

4 example.city
i example.human
|iZ] example.mset

Vv <> People
<+ Human Jean
< Human Marie

<= Human John

<+ Human Nathalie

<+ Human Isabelle

] Properties 32

< Human Philippe
< Human Mohamed

1. In Eclipse *Help > Install New Software’, enter
the update site url https:/gitlab.com/jpepin/
EmfFacet_StarterKit/raw/master/in.jpep.emf.
facet.starterkit.updatesite/.

2. As illustrated by Figure 17, select EMF Facet
Starter Kit Feature and next...

Figure 17: EMF Facet Starter Kit.

3. After the plugin installation, create the example
project with 'File > New > Example’ and

4. choose Models Example from the EMF Facet
Starter Kit category.
The tiny example is given in Figure 16. Two mod-

els are proposed: human and city.
Three testing scenarios are proposed, as follows.

Intra Model Facet Extension. You can open and
compare the files example.human and exam-
ple.mset. This mset is opened with an editor com-
patible with Facet and the facet definitions are en-
abled at the beginning. You can see through the
Properties view, that the facet extension adds a
new attribute ’Surname’ and a new bidirectional
reference ’parent’ / ’children’ of John. The values
of the two new features can be assigned and stored

|l EMF Facet Starter Kit Editor 3

¥ <+ People
v %, population

P 7 men Jean

> % women Marie
P = men Philippe

» =7 men Mohamed
b =7 men John

> 5 women Nathalie

Property Value
Age 1131
children
Gender '=men

» live < City Nantes

Name '= John
parent men William
Surname Smith

Figure 16: EMF Facet starter kit models example.

68

in the data file.

Inter Models Facet Extension. The human and city
models are clearly independent. This example
shows a new facet extension to add bi-directional
reference ’live’ / *habitants’ between the models.
Similarly to the ’intra’ scenario, the values can be
updated with the Properties view, and saved with
result serialized in data.efs.

Customization. By default the human meta-model
does not distinguish the gender man and woman.
To add the visual distinction of Figure 16, open
the file example.mset, press the button "Load / Un-

load Customizations’ from the tool bar &~ and

choose Family Custo definition. Now, men and

women are displayed with different prefix label
and icon.

If you are software developer, the sources of
the example can be download from the EMF Facet
Starter Kit Git repository. It demonstrates how to im-
plement an editor with facet compatibility integration:
extended property view, load / unload facet and cus-
tomization buttons, set / load facet serialization file.
Facet and customization definitions for meta-models
Human and City are available too for example and
can be widen. Two examples of query are in the cus-
tomization definition: one in Java, the other in OCL.

This tiny example shows that the facet persistence
and navigation contribution is already available in the
Eclipse open source project for developers to create
simple tools without complex configuration for end-
user. Moreover, the example demonstrates that EMF
Facet is adapted to different use cases: to add at-
tributes and association in a model; to link two differ-
ent and independent models; or to customize the user
interface. This example can be adapted and extended
for largest and real use cases.

6.2 User Stories

We illustrate here two situations of software main-
tenance and reverse-engineering where the non-
intrusive but persistent model mapping is pertinent.

In legacy modernization, the architects need to
establish the as-is state of the information systems
(from business processes to deployed applications).
We need to enrich the models with additional in-
formation without modifying the meta-models just
like source code annotations: deprecated, renaming...
These information are useful to develop the to-be state
of the next generation information systems but must
not interfere with the existing programs. Conversely
to code annotation, the improved Facets enables to en-
rich with more than one layer (one layer by aspect we
are interested in).

Virtual Extension of Meta-models with Facet Tools

When standard meta-models (UML, BPMN....)
do not fit the requirements of one organisation, one
can customize the meta-models and create a family
of extensions that is consistent with the standard re-
leases, as far as a new release of one standard did
not impact too many concepts (like the transition from
UML 1.x to UML 2.x). The maintenance of the cus-
tomizations follow their own life cycles.

6.3 Large Scale Experimentations

The Library example was a toy example for illustrat-
ing this paper. We experimented our improved Facet
in the context of Business-IT alignment in Enterprise
Architecture. This context covers a wider field than
the scope of this paper. We briefly report here this
experimentation but the reader will find more details
in (Pepin et al., 2016).

The general problem was to align models from
different points of view, in the context of Informa-
tion System maintenance. We defined different meta-
models (business process, functional, application) and
we implemented techniques to feed the corresponding
models from legacy information (source code, data
and models when they exist).

The mapping support, as defined in this paper, was
the core technique to establish the alignment links be-
tween the models. We experimented real size case
studies provided by insurance companies with het-
erogeneous information supports: lots of java source
files, MEGA repositories, databases,... The experi-
ments showed that big mappings are hardly manage-
able by humans and tool assistance is mandatory. Our
tool support handled efficiently big models. Even in
bulky case with manual mapping, our Weaving Editor
(cf. figure 14) provides an optimized user interface
with search engine to find concepts and highlight con-
cepts matching. However additional tool is needed to
visualize big mappings, to evaluate the mapping prop-
erties (consistency, completeness) and quality (mis-
alignment, evolution). Our Facet query engine is a
first step to reach this goal.

7 CONCLUSION

We proposed an improved technique of virtual exten-
sion of meta-models that uses Facets. It enables one
to modify meta-models already in use by software,
without rebuilding completely the legacy tool support.
The extension takes account of the multiplicity of as-
sociations and considers two-way references between
the involved entities.

69

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

e A mapping model We experimented existing tech-
niques for model composition and we propose an
improved version of virtual extension of meta-
models that uses Facets and enables one to mod-
ify meta-models already in use without rebuilding
the software product. The extension is called vir-
tual because it does not directly impact the initial
meta-models.

e A mapping technique which is compliant with the
existing MDA tools. EMF enables to define meta-
models, load, persist and manipulate the compli-
ant models. The EMF Facet tool is based on EMF
to extend virtually a meta-model. This solution is
non intrusive, it supports link semantics but it does
not have a mechanism for persistence (the values
are calculated by queries) and an adequate tech-
nique and tools for mapping models. We have im-
plemented this technique which is now integrated
to the open-source Eclipse EMF Facet project.

e A mapping tool We overcome this limitation by
improving the EMF Facet technique, by modi-
fying the meta-model and implementing several
tools to manage model mapping in practice. Our
implementation preserves the link multiplicities
and a bi-directional navigation.

The proposed technique has been implemented, then
experimented on various case studies and integrated
in the open-source Eclipse EMF Facet project. We
have then contributed to solve an important model and
software evolution issue.

The next step will provide more assistance to the
user; we target the implementation of heuristics to
propose a list of possible model mappings to the mod-
eller: he can then choose the desired ones. These
heuristics will depend on the nature and the seman-
tics of the mappings. For example, when mapping
two releases of the same model, it is usually easier to
detect equality mapping. In specific cases, one can
detect patterns or naming conventions.

REFERENCES

Ambler, S. W. (1997). Building Object Applications That
Work: Your Step-by-Step Handbook for Developing
Robust Systems with Object Technology. Cambridge
University Press.

Atlee, J. M., France, R., Georg, G., Moreira, A., Rumpe,
B., and Zschaler, S. (2007). Modeling in software en-
gineering. In Companion to the Proceedings of the
29th International Conference on Software Engineer-
ing, ICSE COMPANION °07, pages 113114, Wash-
ington, DC, USA. IEEE Computer Society.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
Driven Software Engineering in Practice. Morgan &
Claypool Publishers.

70

Bruneliere, H., Garcia, J., Desfray, P, Khelladi, D. E.,
Hebig, R., Bendraou, R., and Cabot, J. (2015). On
lightweight metamodel extension to support modeling
tools agility. In Modelling Foundations and Applica-
tions - 11th European Conference, ECMFA.

Bruneliere, H. and Dupé, G. (2011). Virtual EMF - trans-
parent composition, weaving and linking of models.
In EclipseCon Europe 2011.

Clark, T., Barn, B. S., and Oussena, S. (2011). Leap: A
precise lightweight framework for enterprise architec-
ture. In Proceedings of the 4th India Software En-
gineering Conference, ISEC ’11, pages 85-94, New
York, NY, USA. ACM.

Clavreul, M. (2011). Model and Metamodel Composition:
Separation of Mapping and Interpretation for Unify-
ing Existing Model Composition Techniques. PhD the-
sis, Université Rennes 1.

Cuadrado, J. S., Izquierdo, J. L. C., and Molina, J. G.
(2014). Applying model-driven engineering in small
software enterprises. Sci. Comput. Program.

Del Fabro, M. D. and Valduriez, P. (2007). Semi-automatic
model integration using matching transformations and
weaving models. In Proceedings of the 2007 ACM
symposium on Applied computing.

El Kouhen, A. (2016). Panorama : A Unified Framework
for Model Composition. In /5th International Confer-
ence on Modularity, malaga, Spain. MODULARITY
2016.

France, R. and Rumpe, B. (2007). Model-driven develop-
ment of complex software: A research roadmap. In
2007 Future of Software Engineering, FOSE *07.

Greifenberg, T., Look, M., Roidl, S., and Rumpe, B. (2016).
Engineering tagging languages for dsls. CoRR.

Jouault, E., Vanhooff, B., Bruneliere, H., Doux, G., Berbers,
Y., and Bezivin, J. (2010). Inter-DSL Coordina-
tion Support by Combining Megamodeling and Model
Weaving. In Proceedings of the SAC 2010.

Kolovos, D. S., Rose, L. M., Drivalos Matragkas, N., Paige,
R. F, Polack, F. A. C., and Fernandes, K. J. (2010).
Constructing and navigating non-invasive model dec-
orations. In Tratt, L. and Gogolla, M., editors, The-
ory and Practice of Model Transformations: Third In-
ternational Conference, ICMT 2010, Malaga, Spain,
June 28-July 2, 2010. Proceedings.

Langer, P., Wieland, K., Wimmer, M., and Cabot, J. (2012).
EMF profiles: A lightweight extension approach for
EMF models. Journal of Object Technology.

Marchand, J. Y., Combemale, B., and Baudry, B. (2012).
A categorical model of model merging and weaving.
In Proceedings of the 4th International Workshop on
Modeling in Software Engineering, MiSE *12.

Paige, R. F.,, Matragkas, N., and Rose, L. M. (2016). Evolv-
ing models in model-driven engineering: State-of-the-
art and future challenges. Journal of Systems and Soft-
ware.

Pepin, J., André, P., Attiogbé, C., and Breton, E. (2016). Us-
ing ontologies for enterprise architecture integration
and analysis. CSIMQ, 9.

