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Head detection and localization is a demanding task and a key element for many computer vision applications,

like video surveillance, Human Computer Interaction and face analysis. The stunning amount of work done
for detecting faces on RGB images, together with the availability of huge face datasets, allowed to setup very
effective systems on that domain. However, due to illumination issues, infrared or depth cameras may be
required in real applications. In this paper, we introduce a novel method for head detection on depth images
that exploits the classification ability of deep learning approaches. In addition to reduce the dependency on
the external illumination, depth images implicitly embed useful information to deal with the scale of the target
objects. Two public datasets have been exploited: the first one, called Pandora, is used to train a deep binary
classifier with face and non-face images. The second one, collected by Cornell University, is used to perform
a cross-dataset test during daily activities in unconstrained environments. Experimental results show that the
proposed method overcomes the performance of state-of-art methods working on depth images.

1 INTRODUCTION

Human head detection is a traditional computer vision
research field, and in last decades many efforts have
been conducted to find competitive and accurate met-
hods and solutions. This task is a fundamental step
for many research fields based on faces, such as face
recognition, attention analysis, pedestrian detection,
human tracking, to develop real world applications in
contexts such as video surveillance, autonomous dri-
ving, behavior analysis and so on.

Variations in appearance and pose, the presence
of strong body occlusions, lighting condition changes
and cluttered backgrounds made head detection a very
challenging task in wild contexts. Moreover, the head
could be turned away from the camera or could be
captured in a far-field.

Most of the current research approaches are based
on images taken by conventional visible-lights came-
ras — i.e. RGB or intensity cameras — and only few
works tackle the problem of head detection in other
types of images, like depth images, also known as
depth maps or range images. Recently, the interest on
the exploitation of depth images is increasing, thanks
to the wide spread of low cost, ready-to-use and high
quality depth acquisition devices, e.g. Microsoft Ki-
nect or Intel RealSense devices. Furthermore, these
recent depth acquisition devices are based on infrared
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Figure 1: Head detection results (head center and head
bounding box depicted as a red dot and rectangle, respecti-
vely) on sample depth frames taken from the Watch-n-Patch
dataset, that contains kitchen (first row) and office (second
row) daily activities acquired by a depth sensor (i.e. Micro-
soft Kinect One).

light and not lasers, so they are not dangerous for hu-
mans and can be used in human environment without
particular limitations.

Some real situations, dominated for instance by
even dramatic lighting changes or the absence of the
light source, strictly impose the exploitation of light-
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invariant vision-based systems. An example can be
represented by a driver’s behavior monitoring system,
that is required working during the day and the night,
with different weather conditions and road contexts
(i.e. clouds, tunnels), in which conventional RGB
images could be not available or have a poor quality.
Infrared or depth cameras may help to achieve light
invariance.

Besides, head detection methods based on depth ima-
ges have several advantages over method based on
2D information. In particular, 2D based methods ge-
nerally suffer the complexity of the background and
when subject’s head has not a consistent color or tex-
ture. Finally, depth maps can be exploited to deal with
the scale of the target object in detection tasks, as des-
cribed below in Section 3.2.

In this paper, we present a method that is able to
detect and localize a head, given a single depth image.
To the best of our knowledge, this is one of the first
method that exploits both depth maps and a Convo-
lutional Neural Network for the head detection task.
The proposed system is based on a deep architecture,
created to have good accuracy and to be able to clas-
sify head or non-head images. Our deep classifier is
trained on a recent public dataset, Pandora introdu-
ced in (Borghi et al., 2017b), and the whole system is
tested on an another public dataset, namely Warch-
n-Patch dataset (Wu et al., 2015), collected by the
Cornell University, performing a cross-dataset evalu-
ation.

Results confirm the effectiveness and the feasibi-
lity of the proposed method, also for real world appli-
cations.

The paper is organized as follows. Section 2 pre-
sents an overall description of related literature works,
about head detection and also pedestrian detection. In
Section 3 the presented method is detailed: in par-
ticular, the architecture of the network and the pre-
processing phase for the input data are described. In
Section 4 experimental results are reported and also a
description of datasets exploited to train and test the
presented method. Finally, Section 5 draws some con-
clusions and includes new directions for future work.

2 RELATED WORK

As described above, most of head detection methods
proposed in the literature are based on intensity or
RGB images. This is the case of the well-known
Viola-Jones object detector (Viola and Jones, 2004),
where Haar features and a cascade classifier (Ada-
Boost (Freund and Schapire, 1995)) are exploited to
develop a real time and a robust face detector. A spe-
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cific set of features has to be collected to handle the
variety of head poses. Besides, solutions based on
SVM (Osuna et al., 1997) and Neural Networks (Ro-
wley et al., 1998) have been proposed to tackle the
problem of face or head detection on intensity ima-
ges.

Very few works present approaches for head de-
tection only based on depth images. The recent work
of Chen ef al. (Chen et al., 2016) presents a novel
head descriptor to classify, through a Linear Discrimi-
nant Analysis (LDA) classifier, pixels as head or non-
head. Depth values are exploited to eliminate false
positives of head centers and to cluster pixels for final
head detection. In the work of Nghiem et al. (Nghiem
et al., 2012), head detection is conducted on 3D data
as first step for a fall detection system. This method
detects only moving objects through background sub-
traction and all possible head positions are searched
on contour segments. Then, modified HOG featu-
res (Dalal and Triggs, 2005) are computed directly on
depth data, to recognize people in the image. Finally,
a SVM (Cortes and Vapnik, 1995) is exploited to cre-
ate a head shoulder classifier. Even if the presence
of other recent works that exploit CNNs with depth
data (Venturelli et al., 2017; Frigieri et al., 2017; Bor-
ghi et al., 2017a; Venturelli et al., 2016), we believe
that this paper proposes a novel approach for head de-
tection on only depth maps.

In some works, only head localization task is ad-
dressed, that is the ability to localize the head into the
image, assuming the presence of at least one head in
the input image. In these cases, it is frequently sup-
posed that the subject is frontally placed in respect
to the acquisition device. This is the case of (Fanelli
et al., 2011), where depth image patches are used to
directly estimate head location and orientation at the
same time with a regression forests algorithm. Also
in (Borghi et al., 2017b) the head center is predicted
through a regressive Convolutional Neural Network
(CNN) trained on depth frames, supposing the user’s
head is present and at least partially centered in fra-
mes acquired. In both cases, authors assume also that
head is always visible on the top of the moving human
body.

Head detection shares some common aspects with
face recognition and pedestrian detection tasks and
this is why face detection methods often cover the
case of human or pedestrian detection. Moreover,
most head detector rely on the assumption to find
shoulder joints to locate head into the input image.

Gradient-based features such as HOG (Dalal and
Triggs, 2005), EOH (Levi and Weiss, 2004) are ge-
nerally exploited for pedestrian detection in gray le-
vel images. Techniques to extract scale-invariant in-
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Figure 2: Overall schema of the proposed framework. From the left, depth frames are acquired with a depth device (like
Microsoft Kinect), then patches are extracted and sent to the CNN, a classifier that is able to predict if a candidate patch
contains a head or not. Finally, the position of the head patch is recovered, to find the coordinates into the input frame.
To facilitate the visualization, 16 bit depth images are shown as 8 bit gray level images and only few extracted patches are

reported.

teresting points in images are also exploited (SIFT,
(Lowe, 1999)). Other local features, like edgelets (Wu
and Nevatia, 2005) and poselets (Bourdev and Malik,
2009), are used for highly accurate and fast human
detection.

Recently, due to the great success of deep lear-
ning approaches, several methods based on CNN are
proposed (Zhu and Ramanan, 2012) to perform face
detection, pose estimation and landmark localization,
but only with intensity images.

A deep learning based work is presented in (Vu
et al., 2015), in which a context-aware method based
on local, global and pairwise deep models is used to
detect person heads in RGB images. In (Xia et al.,
2011) a human detector based on depth data and a
2D head contour model and 3D head surface model
is presented. In addition, a segmentation scheme to
extract the entire body and a tracking algorithm based
on detection results are proposed.

A multiple human detection method in depth ima-
ges is presented in (Khan et al., 2016) and is based on
a fast template matching algorithm; results are veri-
fied though a 3D model fitting technique. Then, hu-
man body is extracted exploiting morphological ope-
rators to perform a segmentation scheme. In (Ike-
mura and Fujiyoshi, 2011) a method for detecting hu-
mans by relational depth similarity features based on
depth information is presented: integral depth images
and AdaBoost classifier are exploited to achieve good
accuracy and real time performance.

Shotton et al. proposes in (Shotton et al., 2013) a
method based on randomized decision trees to quickly
and accurately predict the 3D positions of body joints
from a single depth image (also the head is included)
and no temporal information are exploited.

3 FACE DETECTION

A depiction of the overall framework is shown in Fi-
gure 2. Given a single depth image as input, a set of
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square patches, the head candidates, is extracted and
fed to a CNN based classifier, which predicts if the
patch contains a human head or not.

Positively classified patches are further analyzed
to refine the classification and reject non-maxima pro-
posals. The final output of the system are the {x;,y;}
coordinates of the detected face centers and the corre-
sponding bounding box sizes {w;, h;}.

3.1 Depth Camera and Data
Pre-processing

Some features of the presented approach are related
to the acquisition device used to collect depth maps.
Thus, before describing the method, let us provide a
brief introduction to the acquisition devices that are
usually used to collect depth frames.

Both Pandora and Watch-n-Patch datasets exploit
the second generation Microsof Kinect One device, a
Time-of-Flight (ToF) depth camera. Thanks to its in-
frared light, it is able to measure the distance to an
object inside the scene, by measuring the time inter-
val taken for infrared light to be reflected by the object
in the scene. Kinect One is able to acquire data in real
time (30 fps), with a range starting from 0.5 to 8 me-
ters, but best depth information are available only up
to 5 meters. All distance data are reported in millime-
ters. The sensor provides depth information as a two
dimensional array of pixels (depth maps), like a gray-
level image. Since each pixel represents the distance
in millimeters from the camera, depth images are re-
presented in 16 bit. For this reason, in our system we
use 16 bit input images, and depth values are conver-
ted in standard 8 bit values (0 to 255) only for visual
inspection or representation.

Due to the nature of ToF sensors, noise is fre-
quently present in acquired depth images The noise is
visible as dots with zero value (random black spots)
and therefore input depth images are pre-processed to
remove these values through a 3 x 3 median filter. Ki-
nect One is able to simultaneously acquire RGB and



depth images with a spatial resolution of 1920 x 1080
and 512 x 424, respectively. In our approach, we
work only on depth frames with full resolution.

3.2 Patch Extraction

Apart from the pre-processing stage, the extraction
of candidate patches is the first step of the system.
Without any additional information or constraint, a
face can be located everywhere in the image with an
unknown scale. As a result, a complete set of face
candidates can be obtained with a sliding-window ap-
proach performed at different scales. Empirical rules
can be used to reduce the cardinality of the candidate
set, for example by adopting pyramidal procedures or
by reducing the number of tested scales or the over-
lapping between consecutive spatial samples. As a
drawback, the precision of the method will be degra-
ded.

Differently from appearance images, depth maps
embed the distance of the object to the cameras. Ca-
libration parameters can be exploited to estimate the
size of a head in the image given its distance from
the camera and vice versa. Candidate patches can be
early rejected if the above mentioned constraint is not
satisfied.

More precisely, for each candidate head center
p = {x,y} within the image, the distance D), of the
object in that position is recovered by averaging the
depth values over a small square neighborhood of ra-
dius K around {x,y}. Given the average size of a real
human head and the calibration parameters, the corre-
sponding image size is computed and used as the uni-
que tested scale for that center position {x,y}. Analy-
tically, the width and the height of the extracted can-
didate patch (wp,h,) centered in p = {x,y} are com-
putes as follow:

wy =2 g, =1 (1)

where f,, f, are the horizontal and the vertical focal
lengths of the acquisition device (expressed in pixels)
and R is a constant value representing the average
width of a face (200 mm in our experiments). To furt-
her reduce the amount of candidates, the head cen-
ter positions are sampled each K pixels. Thus, given
a input image of width and height (w;,h;), the total
number of extracted patches is computed as follow:

#patches = % 2)

Patches smaller than 15 x 15 pixels are discarded,
since they correspond to background objects.

With this procedure we obtain two major benefits:
we do not need to implement any multiple-scale ap-
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Figure 3: (a) Examples of extracted head patches for the
training phase of our classifier. As shown, turned head,
prescription glasses, hoods and other type of garments and
occlusions can be present. (b) Examples of extracted non-
head patches, including body parts and other details. All
reported candidates are taken from Pandora dataset. For a
better visualization, depth images are contrast-stretched and
resized to the same size.

proach, like in (Viola and Jones, 2004), so the proces-
sing overhead is reduced; the second benefit is that
we are able to extract square candidates that well fit a
person head, if present, and only a minor part of the
background, as depicted in Figure 3 (a).

All the patches are then resized to 64 x 64 pixels.

Supposing the head in a central position in the pa-
tch, even if we include minor parts of the background,
we maintain only foreground, the person head, setting
to 0 all the depth values into the patch greater than
D + 1, where [ is the general amount of space for a
head and D is the same value computed above. Fi-
nal patch values are then normalized to obtain values
between [—1,1]. This normalization is also required
by the specific activation function that is adopted in
the network architecture (see Section 3.3) and it is a
fundamental step to improve CNN performance, as
described in (Krizhevsky et al., 2012).

3.3 Network Architecture

Taking inspiration from (Krizhevsky et al., 2012),
we adopt a shallow network architecture to deal with
computation time and system performance. Another
relevant element is the lack of publicly available an-
notated depth data, that forced us to adopt deep mo-
dels with a limited number of internal parameters as
depicted in Figure 2. The proposed network takes as
input depth images of 64 x 64 pixels. There are 5
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Table 1: Comparison between different baselines of our method. In particular, the pixel area K is varied, influencing the
performance in terms of detection rate and frames per second. True positives, Intersection over Union (IoU) and frames per
second (fps) are reported. We take the best result for the comparison with the state-of-art.

Pixel Area (K) [ True Positives

Intersection over Union

Frames per Second

3x3 0.883
5x5 0.873
9%x9 0.850
13x13 0.837
17x17 0.786
21 x 21 0.748
45 x 45 0.376

0.635 0.103
0.631 0.235
0.618 0.655
0.601 1.273
0.569 2.124
0.528 2.622
0.009 12.986

convolutional layers, where the first four have 32 fil-
ter with size of 5 X 5, 4 x4 and 3 x 3 respectively, and
the last one has 128 filters, with size of 3 x 3. Max-
pooling is conducted only on the first three convolu-
tional layers, due to the limited size of input images.
Three fully connected layers are then added with 128,
84 and 2 neurons respectively. We adopt the hyperbo-
lic tangent (tanh) as activation function in all layers:
2

tanh(x) = = 1 3)
in this way network is able to map input [—co, 4-c0] —
[—1,+1]. In the last fully connected layer we adopt
the softmax activation to perform the classification
task.

We exploit Adam solver (Kingma and Ba, 2014),
with an initial learning rate set to 10~%, to resolve
back-propagation and automatically adjust the lear-
ning rate values during the training phase. We exploit
data augmentation technique to avoid over-fitting phe-
nomena (Krizhevsky et al., 2012) and increase the
number of training data: each input image is flip-
ped, so the final number of input images is doubled.
The categorical cross-entropy function as been used
as loss.

4 RESULTS

In this section, experimental results of the proposed
method are presented. In order to evaluate its perfor-
mance, we use two public and recent datasets, Pan-
dora for the patch extraction and the network training
part and the second dataset, Watch-n-Patch for the tes-
ting phase, the same used in (Chen et al., 2016). Ex-
perimental results for (Nghiem et al., 2012) on Warch-
n-Patch dataset are taken from (Chen et al., 2016).
Generally, head detection task with depth images
task lacks of the availability of publicly datasets, spe-
cifically created for face or head detection in wild
contexts. Several datasets containing both depth data
and visible human heads were collected in this de-
cade, e.g. (Fanelli et al., 2011; Baltrusaitis et al.,
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2012; Bagdanov et al., 2011), but they present some
issues, for example they are not deep learning orien-
ted, due to their very limited number of annotated
samples. Moreover, subjects are often still, perform
too static actions, and frontal face the acquisition de-
vice. Besides, we consider only dataset with Time-of-
Flight data, that contains frames with higher quality
and depth measures accuracy as described in (Sarbo-
landi et al., 2015), in respect with structured-light sen-
sors (like the first version of Kinect).

As mentioned above, we exploit Pandora data-
set to generate patches of head and non-head, based
on skeleton annotations, to train our CNN. Non-head
candidates are extracted randomly sampling depth
frames, excluding head areas. An example of extrac-
ted head patches and non-head patches used for the
training phase is reported in Figure 3. Due to Pandora
dataset features, heads with extreme poses, occlusions
and garments can be present.

4.1 Pandora Dataset

Pandora dataset is introduced in (Borghi et al.,
2017b). It is acquired with Microsoft Kinect One de-
vice and is specifically created for the head pose esti-
mation task. It is deep oriented, since it contains about
250k frames divided in 110 sequences of 22 subjects
(10 males and 12 females). It is a challenging dataset,
subjects can vary their head appearance wearing pres-
cription glasses, sun glasses, scarves, caps and ma-
nipulate smart-phones, tablets and plastic bottles that
can generate head and body occlusions. It is a useful
dataset to extract patches due to the presence of head
with various poses and appearance. Skeleton anno-
tations facilitate the extraction of head and non-head
patches.

4.2 Watch-n-Patch Dataset

Wau et al. introduces this dataset in (Wu et al., 2015).
It is created with the focus on modeling human acti-
vities, comprising multiple actions in a completely
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Table 2: Results on Watch-n-Patch dataset for head detection task, reported as True Positives and False Positives. The proposed

method largely overcomes literature competitors.

Methods [ Classifier Features [ True Positives False Positives
(Nghiem et al., 2012) SVM modified HOG 0.519 0.076
(Chen et al., 2016) LDA depth-based head descriptor 0.709 0.108
Our CNN deep 0.883 0.077

unsupervised setting. Like Pandora, it is collected
with Microsoft Kinect One sensor for a total length
of about 230 minutes, divided in 458 videos. 7 sub-
jects perform human daily activities in 8 offices and 5
kitchens with complex backgrounds, in this way dif-
ferent views and head poses are guaranteed.

Moreover, skeleton data are provided as ground
truth annotations. Even if this dataset is not explicitly
created for head detection task, it is a useful dataset to
test head detection system on depth images, thanks to
its variety in poses, actions, subjects and background
complexity.

4.3 Experimental Results

First, we investigate performance of the proposed sy-
stem varying the size of K, the pixel area used to
compute the average distance D (see. Section 3.2)
between a point in the scene and the acquisition ca-
mera. The size of the pixel area K affects both the
computation time, due to the final number of patches
generated on input images (see Equation 2), and the
head detection rate: a bad or corrupted estimation of
D generate low quality patches and could compromise
CNN classification performance.
In our experiments, for a fair comparison with (Chen
et al., 2016), we report our results as true positives
number of head detected. We consider also Inter-
section over Union (IoU) metric and frames per se-
cond (fps) value to check time performance of the
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Figure 4: Correlation between the pixel area K and speed
performance, in terms of fps, of the proposed method. As
expected, detection rate is low with high speed performance
and vice versa.

proposed system. A head is correctly detected and
localized (True Positive) only if

IoU(A,B) > 1 )

ANB]
ToU(A,B) = — 20 5
oUAB) = B —anB ©)

where A, B are ground truth and predicted head boun-
ding boxes, respectively. According to (Chen et al.,
2016),t=0.5.

If a patch is incorrectly detected as a head by CNN,
it creates one false positive and one false negative.
As above reported, we include also computation time,
that includes the part of patch extraction and the part
of CNN classification. Results are reported in Table
1. As expected, system accuracy decreases and time
computation increases with smaller K size. Thus, the
size of the pixel area K can be set based on the type
of final application in which head detection is neces-
sary, where can be preferred accuracy or speed per-
formance. Tests have been carried on a Intel i7-4790
CPU (3.60 GHz) and with a NVIDIA Quadro k2200.
The deep model has be implemented and tested with
Keras (Chollet et al., 2015) with Theano (Theano De-
velopment Team, 2016) back-end.

Since we proposed a head detection only based on
depth images, we compare our method with two state-
of-art head detection systems based on depth data:
the first one has been introduced by Chen et al. in
(Chen et al., 2016); the second one is a system for fall
detection proposed in (Nghiem et al., 2012). Com-
parisons with methods based on intensity images or
hybrid approaches are out of the scope of this paper.
Evaluations with other depth-based head localization
methods present in the literature reported in Section
2 (Fanelli et al., 2011; Borghi et al., 2017b) are not
feasible, since a specific context for acquired scenes
is strictly required, i.e. a person facing the acquisition
device, with only the upper body part visible.

For the experimental comparison, we exploit as
ground truth the skeleton data provided with the
Watch-n-Patch dataset. Results are reported as the to-
tal number of True Positive and False Positive of head
detection, given a subsequence of the Watch-n-Patch
dataset (2785 images). For the sake of fairness, we
exploited the same subsequences used in (Chen et al.,
2016; Nghiem et al., 2012), as stated by the authors.
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Figure 5: Example outputs of the proposed system. RGB frames are reported in the first and third rows, while in the second
and the last rows are depicted the correspondent depth maps. Our prediction is reported as blue rectangle, also ground truth
(red rectangle) and some other patch candidates (green) are shown. Sample frames are collected from Watch-n-Patch dataset.

[best in colors].

This subset has been chosen by authors due to the pre-
sence of scene with good background quality, requi-
red by (Nghiem et al., 2012), and the presence of pe-
ople, to meet the assumption present in (Chen et al.,
2016) of existing heads in all input images. It is im-
portant to note that our approach do not rely on these
two strong assumptions. All data with wrong ground
truth annotations or missing depth data are discarded.

Table 2 reports the comparison with the state-of-
art. Our method achieves better performance in terms
of true positive number. In particular scenes, we
achieve a 100% of correct head detections and the
cross-dataset evaluation guarantees the generalization
capability of the proposed architecture. Finally, we
note that in (Chen et al., 2016; Nghiem et al., 2012) is
not clearly reported how the number of false positive
is computed.

S CONCLUSIONS

A novel method to detect and localize a head from a
single depth image is presented. The system is ba-
sed on a Convolutional Neural Network designed to
classify, like a binary classifier, candidates as head
or non-head. Results confirm the feasibility and the
accuracy of our method, that can be a key element for
frameworks created for face recognition or behavior
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analysis, in environments in which light invariance is
strictly required.

The flexibility of our approach allows the possi-
bility of future work, that may involve the investiga-
tion of multiple head detection task in depth frames.
Generally, the acquisition of new data is needed, due
to the lack of specific dataset created for single and
multiple head detection with depth maps. Moreover,
future extensions are also related with the reduction
of the computation time.
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