Generating Multi-Variant Java Source Code Using Generic Aspects

Sandra Greiner and Bernhard Westfechtel

Chair of Applied Computer Science I, University of Bayreuth, Universitdtsstrasse 30, 95440 Bayreuth, Germany

Keywords:

Abstract:

Model-Driven Software Engineering, Model-to-Text, Model Transformations, Software Product Line Engi-
neering, Feature Annotations, Negative Variability, Feature Propagation.

Model-driven product line engineering (MDPLE) aims at increasing productivity when realizing a family
of related products. Relying on model-driven software engineering (MDSE) seeks to support this effect by
using models raising the level of abstraction. In MDSE model transformations are successfully applied to
transform in between different (model) representations. During MDPLE models based on negative variability
are augmented with variability information, we refer to as annotations. To derive products, source code is
generated in model-to-text (M2T) transformations. However, applying single-variant model transformations
(SVMT) to annotated models, typically loses the information in the output as SVMTs are not capable to process
annotations. This work contributes a solution which reuses existing SVMTs without changing them and which
transfers annotations to the output orthogonally to the reused transformation. In particular, we contribute
generic aspects, supporting any kind of input metamodel, to augment the outcome of (M2T) SVMTs with
annotations. Producing multi-variant source code (MVSC) is advantageous because all variants are reflected
in the output. Thus, changes made inside the MVSC can be integrated easily in all concerned products upon
their derivation. Otherwise, this needs to be done manually in a cumbersome process contradicting the purpose

of MDPLE, to raise productivity.

1 INTRODUCTION

Model-driven software engineering (MDSE) is a dis-
cipline aiming to increase productivity by generating
source code from models residing on a higher le-
vel of abstraction than the pure text (Volter et al.,
2006). Different kinds of models with well-defined
syntax and semantics come into play during the pro-
cess of establishing a software system. A metamo-
del defines the abstract syntax to which a model con-
forms. The Eclipse Modeling Framework (EMF)
(Steinberg et al., 2009) is the de facto standard to re-
alize domain specific metamodels based on the Ecore
(meta-metamodel).

Furthermore, a whole set of similar software sy-
stems can be summarized in a software product line
(SPL). Based on the principles of organized reuse and
variability, the discipline of SPL engineering (SPLE),
too, seeks to increase productivity when realizing a
family of related products. A well-known process
in SPLE (Pohl et al., 2005) is divided into two pha-
ses: domain engineering, where common parts of the
software are defined in a platform, and application
engineering, where products are (automatically) de-
rived from the platform. A platform holding all va-

36

Greiner, S. and Westfechtel, B.
Generating Multi-Variant Java Source Code Using Generic Aspects.
DOI: 10.5220/0006536700360047

riants is said to rely on negative variability whereas
with positive variability a base version for all pro-
ducts is extended with different fragments realizing
the specifics of single features. Combining both dis-
ciplines, MDSE and SPL (model-driven product line
engineering (MDPLE)) is meant to further raise the
level of abstraction and productivity. In MDPLE ty-
pically products are derived from models, which are
used to design the platform during domain engineer-
ing. These domain models usually capture all variants
without explicitly being aware of the variability. An
MDPLE tool based on negative variability is FAMILE
(Buchmann and Schwigerl, 2012). It uses feature mo-
dels (Kang et al., 1990) to define the variability where
a feature configuration selecting the features needed
in one variant allows to derive customized products
from the domain models. A mapping, denoted as an-
notation in the sequel, can be associated with each
model element to declare to which feature(s) the ele-
ment belongs and is necessary for automatically deri-
ving products.

On the other hand, model transformations play a
key role to automate the creation or evolution of mo-
dels from models residing on different levels of ab-

In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 36-47

ISBN: 978-989-758-283-7

Copyright © 2018 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

stractions. While model-to-model (M2M) transforma-
tions allow to transform in between two (or more)
models, model-to-text (M2T) transformations gene-
rate plain text (output) from a given model (input).
M2T transformations are often used to automatically
generate source code for a given model. A transfor-
mation considering only one direction is called uni-
directional whereas languages which not only spe-
cify the forward direction but also treat the backward
transformation are called bidirectional. While in in-
place transformations the input model serves as out-
put model as well, a separate output is created (ba-
tch) or modified (incremental) in out-place transfor-
mations. Incremental transformations usually rely on
keeping track of the link between in- and output ele-
ment in traces.

A frequently used M2M language is the At-
las Transformation Language (ATL) (Jouault et al.,
2008). Acceleo', is a M2T language implementing
the Mof2Text standard proposed by the Object Mana-
gement Group (OMG) (Object Management Group,
2008). Likewise, Xpand (Efftinge et al., 2004) is anot-
her M2T language originating from the open Archi-
tecture Ware (0AW) project with the special feature to
support aspect-oriented programming (Kiczales et al.,
1997) which allows to extend already existing trans-
formations without modifying the original one.

By now, model transformations in various forms
are mature and frequently applied in MDSE. In MD-
PLE, however, multi-variant models are associated
with annotations which are not covered by aforemen-
tioned single-variant model transformation (SVMT).
Having a multi-variant input insofar as all variants are
visible in the model, the outcome also includes all va-
riants but the annotations are lost. If the multi-variant
output should be annotated as well, usually the anno-
tations have to be manually transferred in a laborious
and error-prone process.

Recently, the problem of this kind of multi-variant
model transformations (MVMT) was addressed in re-
search: In (Salay et al.,, 2014) the authors change
the execution semantics of single-variant graph-based
M2M transformations to conform to annotated multi-
variant input and produce annotated multi-variant
output. Contrastingly, an a posteriori approach to
automatically apply annotations after executing the
SVMT is proposed in (Greiner et al., 2017). Still, this
work only supports the reuse of specific ATL trans-
formations. Other research rather regards variability
in the rules (Striiber and Schulz, 2016) sometimes re-
sulting in the need to learn new language constructs
(Sijtema, 2010).

The enumerated proposals, however, only cover

Uhttp://www.eclipse.org/acceleo

Generating Multi-Variant Java Source Code Using Generic Aspects

M2M transformations: source code is usually only
derived for single products by providing a set of fe-
atures. If manual changes, e.g., implementing a met-
hod body, are performed in the product, these modi-
fications need to be applied to every single product
separately. This in turn is laborious and might lead
to diverging or erroneous realizations of the same fe-
ature.

Therefore, the present work contributes a solution
which successfully (1) reuses SVMTs and augments
the outcome (2) orthogonally to the existing transfor-
mation with annotations. Technically, the language
Xpand? is chosen since it leaves existing SVMTSs un-
touched and allows to alter them with aspects. In
contrast to aspect-oriented approaches, e.g., written
in Xpand (Voelter and Groher, 2007), we do not im-
plement one aspect for each feature which are ad-
ded on demand to the final product (positive variabi-
lity). Rather annotations are propagated to the source
code, reflecting all variants, by using one single ge-
neric Xpand aspect. The annotations are integrated in
form of preprocessor comments resulting in annota-
ted multi-variant source code (MVSC). Consequently,
manual changes can be added to the MVSC and are
included in the concerned products when being deri-
ved by providing a set of features to the preprocessor.

The remainder is structured in the following way:
At first, we motivate the need for MVSC based on a
concrete example. Then, the paper provides an over-
view on the contribution and, next, a description of the
technical realization. Finally, it shows example trans-
formations. In the end, related work is discussed and
a conclusion is drawn including an outlook on future
work.

2 MOTIVATION

This section stresses the importance of MVMT, in ge-
neral, and of annotations inside source code, in par-
ticular. By looking at a simplified form of the well-
known SPL for Graph libraries as example from lite-
rature (Lopez-Herrejon and Batory, 2001), we deduce
some properties and requirements an (M2T) MVMT
should fulfill.

2We used the Xpand2 implementation which we refer to
as Xpand in the sequel.

37

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

v s GraphProductLine

v Nodes —
O Color El Graph
? @ getMode(name EString) : Mod)|
O weighted @ getEdae(name EString) - Eda
O Directed
]
Nodes Edges
0..*] nodes q
[0..1] color Directed [0.*] edges
¥ [0.1] source [0.*] outEdg ¥
| H Color | | H Node E Edge
= name : EString not Directed =1 name : EString
[2..2] nodes [0.*] edges = weight : Elnt wdghted
Color
[0..1] target T Directed [0.*] inEdges

Figure 1: Graph domain model annotated with features from the feature model seen in the upper left corner.

2.1 Necessity for Annotated
Multi-Variant Source Code

The example is based on an annotated Ecore model
for the Graph SPL. As depicted in Figure 1, the Graph
consists of Egdes and Nodes which are mandatory
features of the feature model placed in the upper left
corner of the figure. Edges might be Directed and/or
Weighted. Moreover, nodes might be Colored.

With state-of-the art MDPLE tools based on ne-
gative variability, so far, products are derived by
providing a feature configuration, first, and by filte-
ring the annotated multi-variant domain model after-
wards. Based on the filtered model, (Java) source
code is generated resulting in single-variant source
code (SVSC). Having, for instance, only the featu-
res Edges and Nodes selected results in three classes.
The class Node contains a field edges and a corre-
sponding field nodes is included in the class Edge.
For both fields respective accessor methods are ge-
nerated. Since for the omnipresent Graph class only
the method stubs for the operations getNode() and
getEdge() are created, the engineer implements their
method bodies manually in the final product. The
whole code, however, is completely unaware of fea-
tures and the manual modifications are unique to this
single product.

In the meantime, more products are derived, all
missing the two method bodies implemented in the
first derived product. As the manual implementation
should be present in all products, the developer copy-
and-pastes the manual modifications to all other de-
rived products. Despite the increased effort — con-
tradicting the promise of increased productivity when

38

using MDPLE —, a high risk to forget one product or
to slightly modify the implementations inadvertently
remains.

This problem could be solved by generating the
MVSC first and adding manual implementations
there. Although it is possible to generate the source
code including all variants from elements present in
the domain model, the default Ecore code generation
is not able to integrate annotations in the generated
text. A link to the feature(s) a single source code frag-
ment is realizing is missing. As a consequence, it is
not possible to derive products from this code base au-
tomatically. To do so, it would be necessary to have
the annotation belonging to a source code fragment
associated with the corresponding fragment. Please
note: This kind of problem can hardly be solved by
designing more detailed domain or feature models.
Even if behavior was modeled and source code for
method bodies was automatically derived, still typi-
cally manual extensions are required. If such exten-
sion was associated with a feature, it would be best
having it in all corresponding products automatically
upon derivation.

As deducted from this scenario, having annotated
MYVSC, hence, provides the following benefits:

e Products can be derived automatically from the
MVSC without generating a single-variant model
first.

e Derived products may include manually added
source code fragments concerning them, increa-
sing the degree of automation and productivity.

2.2 Consequences

In order to be beneficial, we postulate some require-
ments on (text producing) MVMTs:

Reuse. Existing SVMT should not be meaningless
but integrated and ideally be reused as they are. This
is achieved by propagating annotations separately and
automatically. This approach offers the following ad-
vantages: First, the programmer does not have to le-
arn any new language construct. Second, the cog-
nitive level of the transformation does not increase.
Third, already achieved realizations are not meaning-
less but are integrated seamlessly.

Tracelink. The kind of annotations realized in the
input must be translated into a form understood by
the output which should happen orthogonally to the
reused SVMT. Having the links transferred in an ort-
hogonal step, strictly separates the concerns of trans-
forming the model and propagating the annotations.

Commutativity. The source code generated for a
model which was derived from a multi-variant dom-
ain model by specifying a feature configuration
should be the same as the source code which results
from preprocessing the annotated MVSC by the same
configuration. Deriving the source code from the
MVSC achieves the same goal but based on a higher
degree of automation (see Section 2.1).

Transformation Engine. Furthermore, an MVMT
engine is needed that fulfills the following criteria:

e Generic: support any kind of variability represen-
tation as input and produce generic output based
on the reused transformation

e Reuse of: already present SVMTs.

On the whole, we postulate MVMTs which are
automatically executed based on the reuse of unchan-
ged SVMTs. Supporting commutativity is achieved
by propagating tracelinks orthogonally to the reused
SVMTs.

3 OVERVIEW

This section provides an overview on our solution to-
wards generating MVSC: SVMTs should be executed
as they are and augmented with annotations orthogo-
nally to the SVMT. In this work the source code pro-
duced by an M2T transformation should be annotated

Generating Multi-Variant Java Source Code Using Generic Aspects

 (single-variant) (
Xpand M2T-

Transformation

Multi-variant
domain model

<<calls>>

—————

Multi-variant
Java
@ Preprocessor

N Directives

Figure 2: Realization approach to an orthogonal variability
integration.

F2DMM
annotations

Xpand advice
templates

generic

without changing the SVMT allowing to derive pro-
ducts from the multi-variant code base.

Figure 2 depicts our approach schematically: An
SVMT should be reused (step 1) and annotations
should be translated separately (step 2) into prepro-
cessor directives. Since the SVMT should not have to
be altered, the approach demands for an M2T trans-
formation language that generates artifacts or provi-
des mechanisms to work with orthogonally to the exe-
cuted base transformation. We have picked the M2T
language Xpand to serve this purpose because it al-
lows to adapt the behavior of existing model trans-
formations with an aspect-oriented approach. More
details on the language are given in the remainder of
this section.

As shown in the aforementioned figure, the an-
notation transfer relies on a generic implementa-
tion supporting arbitrary model transformations writ-
ten in Xpand: F2DMM annotations (explained in
Section 3.3) are transferred to the resulting source
code in form of preprocessor directives. As Java does
not support a preprocessor, the directives are transla-
ted into JavaDoc comments and will be processed by a
separate Eclipse plugin, which is roughly explained in
Section 3.2. Thus, source code fragments belonging
to a specific feature are embraced with comments in
the multi-variant Java source code resulting from the
SVMT.

Please note: The reused SVMT is single-variant
as it does not cover any variability information at all,
being unaware of the variability. Nevertheless, the in-
put domain model is multi-variant as it may reflect the
complete platform including all variants, based on the
principle of negative variability. However, the dom-
ain model elements are likewise unaware of the vari-
ants they correspond with. This information is cap-
tured orthogonally to the domain model in a sepa-
rate model, e.g., in form of F2DMM annotations (see
Section 3.3). Nevertheless, generating source code
from the multi-variant domain model in the SVMT re-
sults in MVSC including all modeled variants of the
input. The MVSC is unaware of the corresponding

39

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

features, too.

Altogether, with the provided solution it is possi-
ble to support the automatic MVSC generation for a
single-variant Xpand code generation written for an
Ecore-compliant metamodel. With the present solu-
tion the input models must store the annotations in
the F2DMM. However, for a different annotation re-
presentation a new advice could be written to support
other SPL tools.

3.1 Xpand

Xpand stems from the openArchitectureWare (0AW)
project where it serves as template-based M2T trans-
formation language. Extensive documentation can be
found in (Efftinge et al., 2004).

Xpand projects typically consist of templates, ex-
tensions and an MWE(2) workflow. In the templates
a DEFINE block specifies how a metamodel element
is converted into text. In these blocks plain text can
be intermingled with other Xpand directives, e.g., the
FILE or EXPAND directives, where the first one crea-
tes a file with the given path and the latter one calls
another DEFINE block. Moreover, complex instructi-
ons can be written in extensions which provide a sub-
set of the Xtend language. Additionally, extensions
may call Java methods that could be used for any in-
struction which is not (or only restrictively) expressi-
ble with Xtend.

A basic example of a text producing template is
shown in Listing 3.1: For all eClassifiers (1. 2) contai-
ned in an EPackage (1. 1) a file is created with the path
name returned from an extension call (1. 5). The text
in line 6 is written verbatim to the output except for
the extension call inside the French quotation marks.
The call returns a String containing the fully qualified
name of the respective package.

«DEFINE main FOR ecore::EPackage»
«EXPAND cl FOREACH eClassifiers»

«ENDDEF INE»

«DEFINE cl FOR ecore::EClassifier»
«FILE packagePath() + "/" + name +

".Jjava"»

6 package «packageName () »;

7 «ENDFILE»

¢ «ENDDEFINE»

L S

Listing 1: Example transformation generating files for
eClassifiers.

Most importantly for the present work, the lan-
guage allows to extend or rewrite template definiti-
ons with an aspect-oriented component: advice tem-
plates define AROUND blocks specifying a genera-
ted element that they might (almost) arbitrarily al-

40

ter. Quite like a DEFINE statement, they first state
a fully qualified element that should be modified and
second the type of this element. Wildcards (*) inside
the fully qualified name allow to scan different direc-
tories and/or to match arbitrary element types of DE-
FINE blocks.

Finally, MWE(2) workflows® are used to execute
the transformation. Workflows are given a name and
consist of different components. They are interpre-
ted as normal Java classes. When executing model
transformations, a workflow usually specifies a rea-
der component which receives the path to the input
model/s and its/their metamodel/s and an Xpand ge-
nerator component. The latter expects the entry point
at the transformation (corresponding with the root ele-
ment of the input) and a path to which the output is
written. The generator component may receive advi-
ces which can be realized for templates and extensi-
ons alike.

In addition, Xpand allows to realize incremental
behavior with protected blocks in the templates and
by specifying the respective files in the workflow. Ho-
wever, this functionality was not examined in our pre-
sent contribution.

3.2 Java Preprocessor

In order to properly handle source code annotated
with preprocessor directives, some facility supporting
this task is needed. In the past, some approaches
have been proposed but they are mostly not compa-
tible with current Eclipse projects, e.g., Prebop*, or
require a manual adaptation of the build process, e.g.,
when using the Java Comment Preprocessor’. Thus,
we introduce a different preprocessor, which we de-
veloped in a model-driven way, realized as Eclipse
plugin. As Java does not support preprocessor directi-
ves, they are included in a non-invasive way into the
source code in the form of comments. The preproces-
sor is configurable with respect to

o the files that should be preprocessed by their file-
ending,

o the kind of comment signs that open and close the
directives inside these files,

o the names/signs for the opening, closing and pos-
sible branching directives.

Furthermore, the preprocessor expects a set of flags
with boolean values which resemble a feature confi-
guration. All source code fragments surrounded with

3http://www.eclipse.org/Xtext/documentation/
306_mwe2.html

“http://prebop.sourceforge.net/
Shttps://github.com/raydac/java-comment-preprocessor

directives evaluating to false are turned into com-
ments by the preprocessor.

3.3 Feature to Domain Mapping Model

Last but not least, a representation for the variability
of models is needed. We choose the form provided by
the tool FAMILE (Buchmann and Schwigerl, 2012),
which is based on negative variability and relies on
the Eclipse Modeling Framework (EMF) (Steinberg
et al.,, 2009). While feature models capture the va-
riability, a single product is associated with one fea-
ture configuration which sets the features to true or
false. Moreover, annotations are boolean expressions
over the features, called feature expressions(FE), and
can be assigned to arbitrary domain model elements.
They are stored in a separate model, the feature to
domain mapping model (F2DMM) which resembles
the structure of the domain model it belongs to and,
thus, stores an object mapping (OM) for all EObjects
contained in the domain-model. For example, every
instance of an EClass or an EOperation, etc., is refe-
renced by an OM and may be visible just for specific
features. Based on feature configurations, final pro-
ducts are derived by filtering all objects the FEs of
which evaluate to false.

4 REALIZING THE
MULTI-VARIANT SOURCE
CODE GENERATION

As mentioned before, this work aims at providing a
mechanism to augment the result of a single-variant
M2T transformation — in the present approach written
in Xpand — with annotations. Particularly, we pro-
pagate FEs stored in the separate mapping model of
the tool FAMILE (F2DMM) resulting in annotated
MVSC. We assume the Xpand SVMTs already exist.
They should be reused without any modifications.

For the solution two components are decisive: A
template containing the advice to modify the existing
SVMT and a second MWE(2) workflow executing the
workflow of the SVMT augmented with the provided
advice. Now details on both are illuminated.

4.1 Advice Template

First of all, the automatic transfer of annotations re-
quires a generic instruction to annotate source code
fragments related with an annotated model element.
The generated text should be surrounded with a com-
ment opening the IF preprocessor directive stating the

Generating Multi-Variant Java Source Code Using Generic Aspects

respective annotation and a second comment closing
the preprocessor directive after the generated text is
written to the output.

First, in order to regard any model element text
is generated for, the provided AROUND statement ex-
pects an arbitrary Object. Next, it searches the re-
spective object mapping in the F2DMM referencing
the domain model in which the given EObject is con-
tained. If the OM stores an FE, an opening and a
closing comment need to encompass the actual text
production of the SVMT.

Listing 4.1 depicts a simplification of the re-
spective advice: By using wildcards in the AROUND
statement (1. 1), the following procedure is executed
for any Object text is generated for inside a file lo-
cated in a templates® folder. As FAMILE only sup-
ports Ecore-compliant domain models, EObjects are
the only elements, text is generated for. Thus, firstly,
the algorithm searches the corresponding OM (1. 2)
with the help of an extension call. The respective
function getOM examines the F2DMM, which is lo-
aded in the background upon the first call of getOM.
It, then, returns the matching mapping. If the OM
contains an FE (1. 3), the actual text production is sur-
rounded by comments containing the FE (1. 4 - 7).
The comment is constructed in another function pro-
vided in the extensions (1. 4 and 7) and depends on the
fact whether the container of the object also owns an
FE. The instruction targetDef.proceed() (1. 6 and 10)
executes the original text production of the SVMT.

«AROUND templates::*::* FOR Object»

1
2 «LET getOM ((EObject)this) AS om»
3 «IF om.isSetFeatureExprStr ()»
4 «getOpeningComment () »

5 // QID: «getID ()»

6 «targetDef .proceed () »

7 «getClosingComment () »

8 «ELSE»

9 // QID: «getID()»

10 «targetDef .proceed () »

11 «ENDIF»

12 «ENDLET »
13 «ENDAROUND »

Listing 2: Simplification of the advice encompassing an ac-
tual text genreation.

By adding the comments, it is possible to relate
the text surrounded with comments to a specific fea-
ture and, hence, to inject the variability information
in the pure text. Note, that each element receives only
the FE it is associated with in the F2DMM. As there

SPer convention, Xpand projects store all the text gene-

rating templates in a folder femplates and extensions in a
folder extensions.

41

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

are no nested preprocessor directives by construction,
transitive dependencies are not reflected in the created
comment style. Up to now, we assume a valid feature
model and, moreover, prefer to put only the concrete
FE. In that way, the information remains which con-
crete feature a single element realizes.

Furthermore, in any case a unique ID is generated
for the EObject (1. 5 and 9) and put before the gene-
rated text. This way we keep a unique trace informa-
tion, which might be used to support later evolution
processes.

Listing 4.1 illustrates the comment style, for in-
stance for the field weight of the class Edge from the
example shown in Section 2. First, the container ex-
pression (Edges) is closed (1. 1) and the actual expres-
sion Weighted is opened (l. 2) in the opening com-
ment. In the closing comment the actual preprocessor
directive is closed (I. 6) and the one of the container
is opened again (1. 7).

Closing and opening container expressions is ne-
cessary as nested directives are not supported with
the present approach: One closing JavaDoc comment
always closes all comments that were opened be-
fore. Hence, closing the comment originally associa-
ted with the EObject would also close the one of any
container, if it was still open. Therefore, if the con-
tainer owns an FE, its statement must be opened after
closing the one associated with the EObject. Addi-
tionally, it must be closed before opening the actual
comment because the preprocessor does not support
nested comments.

/*+ #ENDIF Edges */

/*+ #IFDEF Weighted # x/

// @ID: _TACGEFc3Eeetfr4BhVYAxQ
protected int weight;

[N N

6 /*+ #ENDIF Weightedx/
7 /+% #IFDEF Edges # */

Listing 3: Example of a field annotated with JavaDoc com-
ments generated by our advice.

4.2 Workflow

The second necessary part to realize the annotations
is the workflows. As depicted in Figure 2, the Xpand
project providing the advice template calls the reused
SVMT. Thereby it adds the generic advice template
to the Xpand generator executed in the single-variant
workflow. Accordingly, the advice project provides a
workflow that executes the SVMT and adds the pre-
viously presented advice. Without the loss of gener-

42

ality’, technically, we assume that the single-variant
code generation is initiated by an MWE2 workflow
providing a slot to add an advice template. This slot
is filled with the generic Xpand advice project which,
finally, executes the single-variant workflow augmen-
ted with advices.

Summing it up, in order to execute the MVSC ge-
nerations, the source domain model must be provided
as input to the reused MWE2 workflow which is exe-
cuting the single-variant code generation. Alongside
for any EObiject, text is generated for, the advice is
being called surrounding the text with the correspon-
ding comment.

S EXAMPLES

To demonstrate the feasibility of the contributed ad-
vice, we present two independent transformations re-
spectively. The first one produces Java source code
for annotated Ecore models, the second one produces
Java source code for annotated instances of the Java
MoDisco metamodel. MoDisco (Bruneliere et al.,
2010) is an extensible model-driven framework sup-
porting different use cases of software modernization.
It provides an Ecore-compliant metamodel that re-
sembles the Java AST and offers discoverers that, e.g.,
translate Java source code into valid instances of this
metamodel. The framework also includes an M2T en-
gine that converts such models back into Java source
code.

The transformations were partially reimplemen-
ted in Xpand for the purpose of this evaluation be-
cause the EMF and MoDisco code generators are im-
plemented in different template languages (JET and
Acceleo, respectively, both do not natively support
aspect-orientation). In addition, since we do not exa-
mine the incremental behavior of Xpand yet, the M2T
templates focus on the structural parts of the metamo-
dels and neglect, e.g., method bodies.

Below, we present how the outcome of the afo-
rementioned transformations is enriched with annota-
tions by our provided generic aspect. We pick one
Ecore class as example and illustrate the transforma-
tion process: Remember the class Edge, depicted in
Figure 3 on the left hand side which is visible when
the feature Edges is selected and which may have an
attribute weight (Weighted) and a source and target
node when feature Directed is selected or exactly two
nodes if it is not. We only show the generated inter-
face for space and simplicity reasons.

"The procedure is quite similar for a simple MWE work-
flow.

Generating Multi-Variant Java Source Code Using Generic Aspects

i public interface Edge {
java,util.ArraylList<Node> getNodes();

void setName(java.lang.String name);
java.lang.String getName();

java.lang.String getName();
*+ #ENDIF *

void setHEJ.gh (int J‘?l(’ht]
int getweight();
**#ENDIF *

-+ Edges ~-——-_____] void setWeight(int weight);
P T ——] int getWeight();
” "~
LB Edge void setSource(Node source);
d = name : EString Node getSource();
€ 9“ . o Weighted
=] I Ing~
weight : Elnt 1 void setTarget(Node target);
outEdges Node getTarget();
inEdges . .
0., 0.* | edges }
Directed Not Directed Directed T e [E 2
virected + SIFDEF Edges # *
0.1 source ¢ fEee6phR]nbkvyg /¥* #IFDEF Edges # -
2.2 nodes puhlu: mterfa:e Edge { #ENDIF */
target [pgge 0.1 * ¥IFDEF Directed # */
d = name : EString FDEF !Dir / @ID: B9t5YGCfEeedpNRjnbky
sl I0: BIpnd NRj void setSource(Node source);
\ ! java.util. Arrﬂyllﬁt<NudP> gPtNudP‘.H; Node getSource();
“UFENDIE - /**4ENDIF */
It BeqPRGCTEschominbieen /** KIFDEF Edges # */
veid setName(java. L.:lng Strlng name) ; ** #ENDIF */

/** RIFDEF Directed # */

aID: B9ugcGCTEee@pNRjnbky
voxd setTarget (Node target);
Node getTarget();
/**#ENDIF */

* #IFDEF Edges #

B--mmr

Figure 3: Generated interface when applying the Xpand transformation without (1) and with (2) advices on the Edge class.

Ecore to Java Source Code. The first transforma-
tion receives as input an annotated Ecore model of
the Graph SPL (Lopez-Herrejon and Batory, 2001).
The plain Xpand transformation creates source code
which partially resembles the default Ecore code ge-
neration: For instance, for every EClass an interface
and a class are created. Additionally, for the structural
features fields are included in the containing classes
and set- and get-method stubs in both, the interfaces
and classes.

Figure 3 shows the different outcome when ap-
plying the Xpand transformation without (1) and with
(2) advices. Applying the SVMT (1) on the multi-
variant edge class results in a class and an interface
where all modeled elements — independent of the as-
sociated features — are visible. The connection to the
features is lost.

Executing the same transformation with advices
(2), i.e., our provided second workflow, generates the
same source code but adds the annotations in form
of preprocessor directives. For instance, the methods
setWeight and getWeight are embraced with the "# IF-
DEF Weighted #" comment and the closing "# ENDIF"
comment.

In general, each element created in a DEFINE
block receives the ID corresponding with the EObject
it was created from. Moreover, if its associated OM

contains an FE, it is embraced with a preprocessor di-
rective mentioning the FE. Accordingly, while the at-
tribute name inside the edge class only receives its
corresponding ID, the other methods are additionally
embraced by preprocessor directives. Consequently,
the resulting source code is aware of all possible va-
riants and allows to associate manual modifications
with a feature.

Finally, products can be derived from the MVSC.
Figure 4 depicts the edge interface after the preproces-
sor was run on a configuration that consists of nodes
with weighted edges: All code with deselected featu-
res is moved into JavaDoc comments, hence, making
it invisible in the resulting product®.

MoDisco to Java Source Code. In order to illus-
trate the same advice is able to annotate source code
generated for instances of different metamodels, we
additionally investigated an annotated Java MoDisco
model of the Graph SPL. The model discovered from
the source code resulting from the default Ecore code
generation serves as input to the second scenario. It

8till, the complete MVSC is part of a product to al-
low working in continuing steps with different configurati-
ons and possible modifications. To export only the visible
source code into a new project as standalone product would
not cause a problem.

43

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

Edges = true

pﬁblic interface Eage {
" Nodes = true

S SENDIF
* FIFDEF Weighted = true
/ BID: . r _
java.util ArrayListeNode> getNodes() DlrECted - false
/**#ENDIF */ L.
* #IFDEF

ID: BBOPREE : 3 . /** #IFDEF Directed #
I0: _BIGRAGL TEEBpNRINY v B915YGC fEee@phR) nbkvyg
void setName(java.lang.Stri :e:l:lo'le s<:u"c*l' .”'

vold sets

java.lang.5tring getMame(); c el
/**4ENDIF */ Node getSource(}:
#ENDIF =/

* SIFDEF We d # */ o .
/ @ID: BItSUGCTEceBpNRjnbl f** SIFOEF Pdges & +/
void setWeight(int weight); /**#ENDT
int getweight();
_.--.,,E.,m-, g y J** FIFDES ected #

B9

TEee@pNRjnbkvyg

* FIFDEF Edges # */ void setT e target);
J**HENDIF */ Node getTarget();
#ENDIF =/

* #IFDEF Edges # */
}
[HFENDIF */

Figure 4: The Edge interface after running the preprocessor
on the feature configuration.

was annotated with an F2DMM containing similar
presence conditions as could be inferred from the an-
notated Ecore elements. A snippet of the annotated
Edge interface in the F2DMM tree perspective is dis-
played in Figure 5 respectively for the other elements.
Annotations associated with one element are written
verbatim behind the respective element in grey color.
In contrast to the Ecore model, in the Java model re-
sulting from discovering the source code, for exam-
ple, the accessor methods created for a field are sepa-
rate model elements. Accordingly, they are associated
with distinct OMs, that, however, carry the same FEs
in the F2DMM.

On the left of Figure 6, the annotated source code
resulting from executing the SVMT with our provi-

¥+ Interface Declaration Edge : Edges

P <5 Type Access
b <y Method Declaration getNodes : not Directed
P <4 Method Declaration getName

P <5 Method Declaration setName

» <y Method Declaration getWeight : Weighted

» <4 Method Decla /

onse ght : Weighted

» <a Method Declaration getSource : Directed
» <y Method Declaration setSource : Directed
» <@ Method Decl: on getTarget : Directed
» <a Method Declaration setTarget : Directed
Javadoc f**
* <l- begin-user-doc —> A representation of tt
* @see de.ubt.ai1.famile.example.graph.Gra
P 4y * @model
* @generated

*f

b <3 Line Comment // Edge
P <4x Modifier public
Figure 5: Annotated MoDisco Edge interface.

44

whblic interface Edge extends [blic Interface Edge extends

ff @ID: YUTrYGFkEeenn / alD YUTrYGFkEeennPH
EObject EObject
* #ENDIF */ [**FENDIF */

j=% STFDEF !Directed & = * #IFDEF 'Directed # =/

/ BID: _YUpCKGFkEeennPH_0tYoG f/ @ID: YUpCkGFkEeennPH (QtYoGg
EList<Node> getNodes(); EList<Node> getNodes();
/**#ENDIF */ f*#ENDIF =/

f*+ ¥IFDEF Edges # */ /*+ #IFDEF Edges # */
/f ®ID: YVAOBGFkEeennPH QtYoG f/ @ID YVADBGFkEeennPH QtYoGg
string getMame(); String getName();

/f @ID: YVYpcGFkEeennPH QtYoG f/ @ID: YVYpcGFkEeennPH QtYoGg

void setName(
/ @ID: YVunsGFkEeenn
String value);

void setName(
// @ID: _YVunsGFkEeennPH
String value);

/** #ENDIF f**FENDIF
* #IFDEF wWeighted # =/ * #IFDEF Weighted # =/
// BID: YWKFgGFkEeennPH QtYoG _'.-t_:Iﬂt"e\:u‘;\;;?[}u?kreﬁ".'ﬂ-'l\ OtYoGg
i i f int getweig :
int getweight(); Edges = true e

f*HIENDIF */ Nodes = true

Weighted = true
Directed = false

/** #IFDEF wWeighteq
// @ID: YWpBwGFkE(
void setWeight(.

// BID: YXC2UGFK product

int value); —
J**#ENDIF */ derivation

/** #IFDEF Weighted # */
// @ID: YwWpewGFkEeennPH QtYoGg
oid setweight(

// @ID: YXC
int value);
*#ENDIF =/

GFkEeennPH

* #IFDEF Directed #

// @ID YXjzsGFkEeennPH_QtYoGg
Node getSource();

#ENDIF

* #IFDEF Directed # =
/f BID: _YXjzsGFkEeennPH_QtYol
Node getSource();
/*+#ENDIF */

* #IFDEF Directed #
[/ @I YYJIpkGFkEeennPH O0tYoGg
void setSource(
/4 @1 TYwGQGFKEeennPH
Node value);
#ENDIF */

* #IFDEF Directed # */
/f @ID YYJpkGFkEeennPH QtYoG
void setSource(
// @ID: YYWGQGFKEeenn
Node value];
/**#ENDIF */
* #IFDEF Directed #
f/ @ID YZY sGFkEeennPH QtYoGg
Node getTarget();
#ENDIF */

f** #IFDEF Directed # =/

/f BID: YZY sGFkEeennPH QtYoG

Node getTarget();

/= *#ENDIF */

* #IFDEF Directed #

/{ BID: YaDuEGFkEeennPH QtYoGg

void setTarget(
// @ID: _Yai20GFkEeennPH
Node value);

#ENDLF =/

/** #IFDEF Directed # =/
J/ @ID YaDuEGFkEeennPH QtYoG
void setTarget(
[/ BID: Yail2QGFkEeenn
Node value);
/**#ENDIF +/

sad) i resdielT o/ /** WIFDEF Edges # */

Figure 6: The annotated Edge interface after the MVMT
(left) and after running the preprocessor (right).

ded Xpand advice is placed. The source code almost
equals the one generated with the Xpand Ecore code
generation (bottom of Figure 3). However, the Xpand
implementation generating Java from Ecore in the
first scenario does not include all details of the Ecore
standard code generation. Rather it uses the standard
Java libraries (e.g., using an ArrayList instead of the
EList). As a consequence, the discovered model re-
sulting from the default Ecore code generation (which
is input to this scenario) includes EMF-specific types
which are, thus, included in the text produced with the
MoDisco to Java Xpand transformation.

Comparing the Outcome. As the examples above
demonstrate, one and the same advice presented in
Section 4 is sufficient to correctly translate FEs into
preprocessor directives and to place them around the
corresponding generated text. Thus, the methods cre-
ated for the field weight in the interface Edge are gi-
ven the corresponding comment. Similarly, the met-

hods for source and target are only present in Directed
graphs. Some small differences are visible. For in-
stance, with the MoDisco model as input, each acces-
sor method receives a separate comment instead of
commenting them pairwise. In addition, their para-
meters are given own comments. This is due to the
fact, that the MoDisco model contains a MethodDe-
claration for each operation and handles the parame-
ters as unique EObjects. As they are all considered as
EObjects, the F2DMM foresees a mapping for each
of these elements and, accordingly, they may contain
separate FEs that are added with the contributed ad-
vice. In contrast, in Ecore the corresponding mapped
object is a structural feature (one EObject) for which
two methods with a fixed style are created in one DE-
FINE block.

Finally, we like to stress that applying the same
feature configuration results in (almost) the same pro-
duct. Some differences remain, like having an EList
instead of an ArrayList as container for multi-valued
structural features. Nonetheless, the same functiona-
lity is achieved.

Conclusion. The examples showed that it is possi-
ble to automatically annotate source code with our
multi-variant M2T Xpand transformation by reusing
SVMTs. Our contribution aims at providing a gene-
ric mechanism to propagate annotations into source
code, which was demonstrated for two transformati-
ons based on considerably different metamodels. The
success of transferring the annotations, however, de-
pends on whether the text for some EObject is cre-
ated in a separate DEFINE statement. If this is the
case, we can deduce that all metamodels annotated
with FEs could be supported. Accordingly, the reused
SVMT must adhere to some (standard) Xpand coding
conventions. On the whole, our contributed generic
advice allows to generate multi-variant source code
from which different products can be derived.

6 RELATED WORK

The present work realizes an M2T MVMT automati-
cally propagating annotations from models based on
negative variability to source code. Regarding such
transformations, the field of comparable work is po-
pulated rather sparsely.

In (Greiner et al., 2017) the authors reuse exis-
ting single-variant M2M transformations and transfer
annotations automatically, based on evaluating a per-
sisted trace and the execution model, in a second step
orthogonally to the reused model transformation. We

Generating Multi-Variant Java Source Code Using Generic Aspects

take up the idea of reusing existing model transfor-
mations but add annotations with the help of aspects.
Thus, we do not have to evaluate the transformation
artifacts a posteriori and do not rely on a persisted
trace. Rather we integrate annotations based on the
capabilities of the transformation language and pro-
vide a generic implementation that, however, also al-
lows to reuse existing transformations without modi-
fying them.

Another approach to realize MVMTs lifts the
transformation (Salay et al., 2014). This work pro-
poses an algorithm for graph-based transformations
which generates an MVMT where the single-variant
rules, e.g., their application conditions, are interpre-
ted with variability semantics. The approach was not
only successfully applied to in-place graph transfor-
mations but also to out-place M2M transformations
with a graph-oriented DSL that had to be slightly mo-
dified for this purpose (Famelis et al., 2015). Instead
of changing the execution semantics of the SVMT,
our approach executes the single-variant transforma-
tion without adaptations. We rather exploit the exis-
ting capabilities of the engine without changing the
SVMT to propagate annotations seamlessly. Further-
more, we produce source code instead of models as
it increases the degree of automation to deliver a final
product. Manual modifications required in the anno-
tated MVSC may be automatically integrated in all
products in that way.

In contrast, in (Striilber and Schulz, 2016) the
transformation rules themselves are variability-aware.
Although the proposed tool allows filtered editing on
the rules which reduces the cognitive complexity, it is
necessary to consider variability in the transformation
rules themselves. Moreover, the tool solves different
problems, e.g., allowing to transform in between plat-
form independent and platform specific models in the
context of Model-Driven Architecture (MDA) (Mellor
et al., 2004).

In (Sijtema, 2010) the authors are, likewise, chan-
ging the transformation rules by introducing new syn-
tax to ATL transformations. The new language con-
structs are maintained in higher-order transformati-
ons. Again, this approach addresses variability in
transformations rather than in models.

Technically, Xpand has already been used to en-
rich existing transformations with source code frag-
ments belonging to different features (Voelter and
Groher, 2007). In contrast to our contribution, a diffe-
rent approach is applied. As with aspect-oriented ap-
proaches, each feature that could be added to a com-
mon code base is realized in a separate aspect and pro-
vided in a second workflow. We, instead, provide only
one single aspect that annotates source code contai-

45

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

ning realizations for all features. Thus, our approach
is tailored for negative rather than for positive varia-
bility.

On the whole, our approach is unique with re-
spect to the following aspects: First, it addresses
M2T transformations rather than M2M transformati-
ons. Second, unlike in (Striiber and Schulz, 2016; Si-
jtema, 2010) the approach deals with multi-variant in-
put rather than with multi-variant transformation spe-
cifications. Finally, unlike in (Salay et al., 2014; Grei-
ner et al., 2017), the already existing functionality of
the transformation engine is exploited, relying on as-
pects which extend reused transformation definitions
in a modular way.

7 CONCLUSION AND FUTURE
WORK

Summing it up, the presented approach provides an
automated propagation of variability annotations by
reusing SVMTs. In particular, we transfer FEs to
the MVSC generated from Xpand templates. To the
best of our knowledge, it is the first approach suppor-
ting the automated creation of annotated multi-variant
source code by reusing (existing) single-variant M2T
transformations. Thus, with the present work final
products can be derived from multi-variant source
code instead of from single-variant models. This, in
turn, lays the foundation to automatically integrate
manual modifications to the source code in all deri-
ved products. Previously, this had to be accomplis-
hed with laborious handwork on every single product
which leads to errors and an increased effort that con-
tradicts the paradigm of MDPLE of increased pro-
ductivity.

Future work investigates the incremental behavior
of Xpand transformations when altering it with ad-
vices and considers to propagate manual changes in
a backward transformation to the corresponding mo-
del elements. Moreover, the combination of FEs, es-
pecially when considering backward transformations,
should be examined.

REFERENCES

Bruneliere, H., Cabot, J., Jouault, F., and Madiot, F. (2010).
MoDisco: a generic and extensible framework for mo-
del driven reverse engineering. In Proceedings of
the IEEE/ACM International Conference on Automa-
ted software engineering (ASE 2010), pages 173-174,
Antwerp, Belgium.

46

Buchmann, T. and Schwigerl, F. (2012). FAMILE: tool
support for evolving model-driven product lines. In
Storrle, H., Botterweck, G., Bourdelles, M., Kolovos,
D., Paige, R., Roubtsova, E., Rubin, J., and Tolvanen,
J.-P,, editors, Joint Proceedings of co-located Events
at the 8th ECMFA, CEUR WS, pages 59-62, Building
321, DK-2800 Kongens Lyngby. Technical University
of Denmark (DTU).

Efftinge, S., Friese, P, Hase, A., Hiibner, D., Kadura, C.,
Kolb, B., Kohnlein, J., Moroff, D., Thoms, K., Volter,
M., et al. (2004). Xpand documentation. Technical re-
port, Technical report, 2004-2010.(cited on page 64).

Famelis, M., Licio, L., Selim, G., Di Sandro, A., Salay, R.,
Chechik, M., Cordy, J. R., Dingel, J., Vangheluwe, H.,
and Ramesh, S. (2015). Migrating automotive product
lines: a case study. In International Conference on
Theory and Practice of Model Transformations, pages
82-97. Springer.

Greiner, S., Schwigerl, F., and Westfechtel, B. (2017). Re-
alizing multi-variant model transformations on top of
reused ATL specifications. In Pires, L. F., Ham-
moudi, S., and Selic, B., editors, Proceedings of the
5th International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD
2017), pages 362-373, Porto, Portugal. SCITEPRESS
Science and Technology Publications, Portugal.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, 1. (2008).
ATL: A model transformation tool. Science of Com-
puter Programming, 72:31-39. Special Issue on Ex-
perimental Software and Toolkits (EST).

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented dom-
ain analysis (FODA) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, Carnegie-Mellon Univer-
sity, Software Engineering Institute.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lo-
pes, C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-
oriented programming. ECOOP’97-Object-oriented
programming, pages 220-242.

Lopez-Herrejon, R. E. and Batory, D. S. (2001). A stan-
dard problem for evaluating product-line methodolo-
gies. In Proceedings of the Third International Confe-
rence on Generative and Component-Based Software
Engineering, GCSE ’01, pages 10-24, London, UK.
Springer.

Mellor, S. J., Kendall, S., Uhl, A., and Weise, D. (2004).
MDA Distilled. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA.

Object Management Group (2008). MOF Model to Text
Transformation Language, Version 1.0. Object Mana-
gement Group, Needham, MA, formal/2008-01 edi-
tion.

Pohl, K., Bockle, G., and van der Linden, F. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Springer, Berlin, Germany.

Salay, R., Famelis, M., Rubin, J., Sandro, A. D., and Che-
chik, M. (2014). Lifting model transformations to pro-
duct lines. In 36th International Conference on Soft-
ware Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, pages 117-128.

Sijtema, M. (2010). Introducing variability rules in atl
for managing variability in mde-based product lines.
Proc. of MtATL, 10:39-49.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, Boston, MA, 2nd
edition.

Striiber, D. and Schulz, S. (2016). A Tool Environment
for Managing Families of Model Transformation Ru-
les, pages 89—101. Springer International Publishing,
Cham.

Voelter, M. and Groher, 1. (2007). Handling variability in
model transformations and generators. In 7th OOP-
SLA Workshop on Domain-Specific Modeling.

Volter, M., Stahl, T., Bettin, J., Haase, A., and Hel-
sen, S. (2006). Model-Driven Software Development:
Technology, Engineering, Management. John Wiley
& Sons.

Generating Multi-Variant Java Source Code Using Generic Aspects

47

