A Model-Driven Method for Fast Building Consistent Web Services in

Keywords:

Abstract:

David Sferruzza'-, Jérome Rocheteau!2, Christian Attiogbé1 and Arnaud Lanoix

Practice

1

L1.S2N - UMR CNRS 6004 / F-44322 Nantes Cedex 3, France
2i1cAM / 35, avenue du Champ de Manceuvres, 44470 Carquefou, France
3Startup Palace / 18, rue Scribe, 44000 Nantes, France

Software Engineering, Web Applications, Web Services, Model-driven Engineering, Formal Verifications.

Nowadays, lots of software companies rely on web technologies to test market hypothesis and develop viable
businesses. They often need to quickly build web services that are at the core of their Minimum Viable Pro-
ducts (MVPs). MVPs must be reliable and are based on specifications and hypothesis that are likely to change.
Model Driven Engineering approaches have been proposed and used to develop and evolve web services. Ho-
wever, these approaches lack the ability to be suitable for both (i) rapid prototyping, (ii) model verification
and (iii) compatibility with common programming languages. Here we propose a meta-model to express web
services and the related tool to verify models consistency. We adopt a shallow verification process to allow
rapid prototyping by developers who are not formal methods experts, while still offering design-time gua-
rantees that improve product quality and development efficiency. Web services are defined using parametric
components which enable to express and formally verify web service patterns and to safely reuse them in other
contexts. We built a tool to check consistency of models and associated components implementations in order
to generate corresponding web services. This allows us to give flexibility to developers, as well as verification

support and an easier onboarding for new developers.

1 INTRODUCTION

Context. Web agencies are software companies that
often work with their customers to help them develop
new projects involving the web. Most of these cus-
tomers need web applications to bring value to their
own customers. These web applications are built ite-
ratively to limit their cost while allowing startups to
converge toward a viable market. This approach be-
gins by building a Minimum Viable Product (MVP).
In this context, it is a web application with a high level
of quality but a limited set of features. MVPs (among
other kinds of web applications) need to be functio-
nal, reliable, usable and designed with users’ emoti-
ons in mind, with only the features required to test
market hypotheses. In this domain, it is very com-
mon for agencies and IT companies to be paid a lump
sum which is negotiated with customers before pro-
jects begin. Startup Palace, a web agency that evol-
ves in this context, is investigating new ways of buil-
ding web applications for several years.

Sferruzza, D., Rocheteau, J., Attiogbé, C. and Lanoix, A.
A Model-Driven Method for Fast Building Consistent Web Services in Practice.
DOI: 10.5220/0006531900150024

Motivation. Software companies, and more specifi-
cally web agencies, are always in need of new approa-
ches to reduce time-to-market while ensuring quality
of web applications and profits. When developing a
MVP it is important to focus on features that really
bring value to users, also called game-changers. Ot-
her features, called show-stoppers, do not bring va-
lue directly but are required to make the application
functional, reliable or usable. With that in mind, lump
sum payments imply that if a project takes too much
time to reach the expected (and sold) level of quality
and features, companies will have to reduce their pro-
fits. Show-stopper features are often tedious to im-
plement and so error-prone. Furthermore, because of
the iterative process and the purpose of MVPs, spe-
cifications are likely to evolve, which can introduce
bugs. This means that developers need abstractions
to be able to safely express, isolate, reuse and evolve
behaviors. Some programming languages do provide
such abstractions, along with modern type checkers
that are able to statically verify consistency of pro-
grams. But this is not practicable in our context be-

15

In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 15-24

ISBN: 978-989-758-283-7

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

cause we would like to leverage existing expertises
of developers instead of forcing them to learn a new
programming language and its ecosystem from scra-
tch. While these motivations relate to web applicati-
ons, they also apply to web services development that
is addressed in this article. Web services are appli-
cations provided by a server, which are communica-
ting with other applications using the HTTP protocol
through the network. Lots of web applications rely on
web services as they allow to separate Ul from core
features and data management, which is useful, for
example, when having several Uls (like in mobile ap-
plications).

Contribution. This work is an attempt to solve the
problem of building web services using safe abstracti-
ons on top of an existing programming language in
order to ease development and reuse of show-stopper
features.

We introduce a meta-model to express web ser-
vices and a corresponding semantics for verification.
This leverages existing theory in Model Driven En-
gineering (MDE) (Bernardi, Cimitile, Di Lucca, et
al. 2012; Rocheteau and Sferruzza 2016; Scheid-
gen, Efftinge, and Marticke 2016) and a component-
based approach in order to provide an expressive
and language-agnostic solution to build web services.
This meta-model does not allow to completely specify
web services but is rather limited to a high-level repre-
sentation in order to provide support while keeping
models simple.

We propose a tool (Sferruzza 2017) (i) to check
models consistency, (ii) to generate working web ser-
vices from a given valid model. For example, every
component preconditions must be fulfilled in their in-
stance contexts in order for a model to be consis-
tent. This mechanism, coupled with the consistency
checking, gives developers the ability to quickly and
safely write and use components. But above all they
can reuse existing components in a reliable way. This
mechanism, coupled with the consistency checking,
gives developers means to quickly and safely write
and use components, and to reuse them in a reliable
way.

The article is structured as follows. Section 2 des-
cribes the meta-model of web services. Section 3
defines consistency of compliant models and shows
how they can be checked. Section 4 introduces a
tool to generate actual implementations from models.
Section 5 shows a case study that illustrates our ap-
proach. Section 6 presents related work. Finally,
Section 7 concludes the article with some lessons and
future work.

16

2 A META-MODEL TO EXPRESS
WEB SERVICES

We introduce a meta-model of web services. This
meta-model is voluntarily simple in order to provide
two advantages: (i) to give developers good abstracti-
ons to write reusable code while giving them a good
flexibility and (ii) to allow tools to provide support to
developers, such as design-time consistency verifica-
tion (see Section 3).

2.1 Notations

The union or sum type of two types T and 75 is de-
noted 771 W T5.

A tuple T is a product type between n types 7] to
T,, withn>2.Itisdenoted T =T} x ... x T,. A value
t of type T is written as t = (¢1,...,,) where t; € Ty,
..., 1, € T,. The notation #(x) is also used to designate
ty, where x € {1,...,n}.

A record R is a tuple with labeled elements. It is
denoted R = (label; : Ty,...,label, : T,). It is syn-
tactic sugar over a tuple 77 X ... x T,, and n functi-
ons label; : R — Ty, ..., label, : R — T,. As for tu-
ples, a value r of type R is written as r = (t1,...,,)
where t, € T, ..., t, € T,. Associated functi-
ons can also be written r.labely, ..., r.label,. For
example, for a record person = ("Batman”,35) €
(name : String,age : Int) we have name(person) =
person.name = "Batman” € String.

A set whose elements are all of type T has the type
P(T).

A sequence or list of type T is a set of elements
of type T which are listed in a specific order. It is de-
noted List(T). It is similar to a function from indexes
I to values of T, that is List(T) : I — T where I is a
1..N and N = card(List(T)). It can also be written as
List(T) = [t1,...,tn) where f,...,t, € T.

The projection of a set or list of tuples S on the
i"™ element of a tuple is written Prj;(S). Similarly, the
projection of a set or list of records S on one of the ele-
ments of a record label; is written Pr jiqper, (S). For ex-
ample, for a set of records S € & ((name : String,age :
Int)) where S = {("Batman”,35),(”"Robin”,26)},
P jname(S) = {’Batman”,”Robin”} € P (String).

2.2 The Meta-model

A meta-model of web services is defined by the UML
class diagram in Figure 1. It does not aim to replace
existing standard meta-models like for instance the
OpenAPI Specification (Open API Initiative and The
Linux Foundation 2017) or RAML (RAML Work-
group 2017), but rather to be compatible and com-

A Model-Driven Method for Fast Building Consistent Web Services in Practice

plementary with them. These models allow to de-
fine programming language-agnostic interface des-
criptions for HTTP APIs (i.e. informal contracts) in
order to be able for both humans and computers to
discover and understand their capabilities, while our
meta-model allows to express actual implementati-
ons of such HTTP APIs. It is designed in order
to match needs and requirements about verification
(see Section 3), generation and ease of writing (see
Section 4). For this reason, and to be more acces-
sible to practitioners, our approach does not rely on
existing standards such as BPEL (Fu, Bultan, and Su
2004) or WSDL (Gronmo et al. 2004).

A model of web services m; € M is specified as a
record of three elements: a set of entities of type E
that stands for the data model, a set of components of
type C that stands for the process model and an orde-
red list of services of type S that exposes component
to the outer world (see Formula (1)).

M = (entities : P (E),components : Z(C),
services : List(S)) (1)

Entities are non-primitive data types. An entity
e; € E is represented by a record of two elements: a
name and a set of variables that represent attributes:
E = (name : String, attributes : &(V)). A variable
v; € V is defined by a record composed of a name and
a type: V = (name : String,type : T). An attribute of
an entity can be another entity, making it a recursive
type.

Components are units of processes and compu-
tations that occur inside web services. Their exe-
cution happens in an isolated context, that can con-
tain variables. They can mutate this context by ad-
ding and removing variables. A component ¢; € C
is defined as the union type of atomic components
AC and composite components CC: C £ AC & CC.
Both types of components are defined by a name
and a set of variables that express components’ pa-
rameters. Because they have parameters, we call
them parametric components. An atomic compo-
nent ac; € AC is represented by a record of the fol-
lowing elements: name, parameters, preconditions
(a set of variables that might be needed in the exe-
cution context), additions (a set of variables that
will be added to the execution context) and remo-
vals (a set of variables that will be removed from
the execution context): AC = (name : String, params
P(V),pre : P(V),add : P(V),rem : P(V)). A
composite component cc; € CC is represented by
a record of the following elements: name, para-
meters and an ordered list of component instances:
CC = (name : String, params : & (V),components :

List(CI)). A component instance ci; € CI is repre-
sented by a record of two elements: a component
and a set of bindings used to instantiate the compo-
nent by associating arguments to its parameters: CI =
(component : C,bindings : P ({param :V argument :
Term))). Terms can be variables or literal values:
Term 2V W Value. Atomic components are meant to
be along with an implementation written using a pro-
gramming language whereas composite components
are not. Components can be seen as an abstraction to
encourage separation of concerns and reusability by
leveraging two mechanisms: composition and para-
metrization.

Services are the entry points of web services. A
service s; € S is represented by a record of four ele-
ments: a HTTP method, a URL pattern, a set of va-
riables that represent expected input parameters and
a component instance: S = (method : String,url :
String, params : P(V),component : CI). URL pat-
terns are regular expressions with named capturing
groups. It is easy to use one of these regular expres-
sions to check if it matches the URL part of an inco-
ming HTTP request, or to do a projection to get a set
of expected parameters (corresponding to the named
capturing groups). In a model of web services, servi-
ces are gathered in an ordered list. This abstraction is
very common in web frameworks and is often called
router. Instead of considering a web application as a
huge function of HTTP requests to HTTP responses,
a router allows to dispatch HTTP requests to several
such functions by filtering them declaratively by met-
hod and by URL pattern. That is to reduce complexity
of the whole application by encouraging separation of
concerns.

2.3 Concrete Syntax for Models of Web
Services

We presented a mathematical definition of our meta-
model in Section 2.2 and an equivalent class diagram
in Figure 1. These notations are meant to introduce
formal definitions that are used to define properties
on the meta-model, which we do in Section 3. But
they are cumbersome to read or write actual models.

We introduce a concrete syntax that is more com-
pact and readable. Because it is equivalent to diagram
in Figure 1, we won’t define it formally here but only
provide some intuition on it.

A model is represented, with respect to its formal
definition, as an unordered list of definitions, each
on its own lines. A definition starts with an element
identifier: e for entity, s for service, ac for atomic
component and cc for composite component. Ele-
ment’s properties are placed on their own indented

17

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

. Model

components *

@ Component

component 1 «ordered»

name : Identifier

services *

@ Service

method : method

@ CompositeComponent

entities *

url : url

«ordered»

components * component 1

@ ComponentInstance

bindings *

@ Binding

name : Identifier

@ Entity
@ AtomicComponent

@

pre *

add[* rej

param

@ Variable params * @ Constant

name : Identifier value : object

Type

i

@ String @ Boolean @ Integer

@ Float @ Date @ DateTime

Figure 1: Meta-model diagram.

line and prefixed with the property name (or a short For readability reasons, every item of a composite

alias). Here is an example of a service declaration.

component list of component instances can be written

method POST
url \/getName\/ (?<email>["\/]+)
params (email: St J)

ci GetName

on its own line (see examples in Section 5). The con-
crete syntax of the other structures of the meta-model
is defined in a similar way.

18

A Model-Driven Method for Fast Building Consistent Web Services in Practice

2.4 Evaluating a Model of Web Services

Our meta-model gives helpful abstractions to develop
web services but the built models need a rigorous eva-
luation semantics. Here is how web services based on
an instance of this meta-model could handle incoming
HTTP requests.

Routing. First, the application receives a HTTP re-
quest. Its list of services is sequentially scanned until
a service matches the request; that is, the HTTP met-
hod is the same and the URL matches the pattern. If
no service matches, then a static 404 HTTP response
is sent back.

Flattening. Then, the component instance contai-
ned in the service is reduced to a flattened ordered
list of instances of atomic components: instances of
composite components are recursively replaced by
their subcomponents. We define by cases a function
flatten(c) that flattens a given component:

if c € AC, then flatten(c) = c]
if ¢ € CC, then flatten(c) = U
cicc.components

if ¢ € CI, then flatten(c) = flatten(c.component)
(2)

[latten(ci)

Evaluating Components. An initial evaluation
context is created by extracting parameters (if pre-
sent) from the request URL and putting them into an
empty context. This flattened list is then evaluated:
every atomic component is executed given the previ-
ous context as an input and produces a new context
as an output. This behavior is very similar to state
monads (see § 2.5 in (Wadler 1992)).

Responding. Finally, a HTTP response is built.
There are two cases to consider. If one of the eva-
luated components returned a HTTP response instead
of a new context, the following components are not
evaluated and this response is returned to the client.
Otherwise, the context is serialized and encapsulated
into a HTTP response of code 200.

3 CONSISTENCY OF WEB
SERVICES

Section 2 showed that our web services meta-model
uses components as an abstraction to improve sepa-
ration of concerns and reusability. In order to allow

developers to safely use this abstraction we propose
a way to do verification of models. This verifica-
tion checks if a model is consistent. It can happen
at design-time — outside any evaluation context — so
that inconsistent models won’t be run in production.

Definition. A model of web services m € M is con-
sistent if it verifies the following properties identified
by Formulas (3) to (13).

Component Name Uniqueness. Every component
in a model has a unique name:

V¢ € m.components,Nc' € m.components-

(c.name = ¢’ .name = c=c") (3)

Entity Name Uniqueness. Every entity in a model
has a unique name:

Ve € m.entities,Ve' € m.entities-
b

(e.name = ¢ .name = e=¢') (4)

Same Entity’s Attributes Name Uniqueness.
Every attribute of an entity has a unique name:

Ve € m.entities,Va € e.attributes,Ya' € e.attributes.

(a.name = d’ .name = a=ad) (5)

Composite Components Flattenability. When re-
cursively resolving component references from a
composite component’s subcomponents, there can’t
be a reference to this component:

Ve € m.components-(c ¢ flatten(c)) 6)

Context Variable Name Uniqueness. Variables in
atomic components cannot have the same name if
they are not identical:

Ve € m.components,Vv € (c.preUc.addUc.del),
W € (c.preUc.add Uc.del)-

(v.name =V .name =v =1v') (7)

Composite Component Nonemptiness. Compo-
site components must have subcomponents:

V¢ € m.components, -
(¢ € CC = c.subcomponents #0) (8)

19

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

Context Immutability. Components don’t override
existing variables of the context. Every atomic com-
ponent does not add a new variable to its output con-
text if there is already a variable with the same name
in its input context:

V¢ € m.components-

(c€e AC = c.addNc.pre=0) (9)

Component’s Precondition Exhaustivity. Com-
ponents depend on the variables they remove. Every
atomic component has every variable it will remove
from the context in its preconditions:

V¢ € m.components-
(c € AC = ac.rem Cac.pre) (10)

Component Instances’ Parameters Exhaustivity.
Component instances provide values for every para-
meter of the instantiated component. Every compo-
nent instance provides exactly as much arguments as
the component it instantiates needs parameters. Na-

mes and types of the arguments match those of the
parameters:

Ve € m.components-(c € CC = Vci € c.components-
(P jparam(ci.bindings) = ci.component .params))

(In

Vs € services-(Pr jparam(s.component .bindings) =

s.component.params) (12)

Context Validity. Components are instantiated in
contexts that fulfill their preconditions. When buil-
ding flat ordered lists of atomic components for each
service (see Section 2.4), every atomic component of
these lists has its preconditions fulfilled by its input
context:

Vs € S-(flatten(s.component) < s.params) (13)

We introduce <« as a function of List(C) x
(V) — Boolean in infix notation'. This function is
true when applied to a component and a context that
satisfies the component’s preconditions. It is defined
by the following semantic rules:

ctxg € 2(V)
SR LOUVEE (14)
[] «ctxg
ctxp € Z(V) ctx) = ctxg Ucp.add \ co.rem
Vi € [0,n],c; €CI QS [c1y...,cn] Actx) (15)

[co,---,cn] A ctxy

The point of these properties is not to ensure that
a model is consistent with functional specification of
web services; it would be too intrusive in the deve-
lopment process and the cost would not be worth the
gain in our context. It is rather to guarantee a structu-
ral consistency of a model at a very small cost, so that
developers can use abstractions offered by our meta-
model while having a certain level of confidence on
the result. This cannot prevent all bugs from happe-
ning at runtime; this is the price of the flexibility of
our approach. But this can catch bugs related to the
misuse of abstractions offered by our meta-model at
design-time, thus reducing the footprint in terms of
added complexity and unreliability of our approach.

Ics < ctx means that the context ctx satisfies the compo-
nent list cs

20

4 A TOOL TO GENERATE
CONSISTENT WEB SERVICES

The meta-model we introduced in Section 2 allows
to write web services models whose consistency can
be verified by the properties introduced in Section 3.
We propose a tool (Sferruzza 2017) to build actual
web services from models that conform to the meta-
model, after performing consistency verifications on
them (see Section 3). This tool takes two inputs: a
model file containing a serialized representation of an
instance of our meta-model, and a path to a direc-
tory which contains implementations of atomic com-
ponents.

As shown in Figure 2, our tool follows three se-
quential steps:

Model Parsing. Input model is parsed as concrete
syntax of the meta-model (see Section 2.3).

A Model-Driven Method for Fast Building Consistent Web Services in Practice

m Input model H Model parsing

/ AC implementations /

‘Web services

o

Generation

‘ yes

|

Figure 2: Tool process.

Model Consistency Verification. The model is
checked in order to establish its consistency (see
Section 3).

Web Services Generation. The model is used to ge-
nerate an implementation of the web services that
it represents.

This process is generic: it can be implemen-
ted using different technologies. For example, we
choose to specialize our implementation by adding
two hypotheses: atomic components’ implementati-
ons uses the PHP programming language (The PHP
Group 2016) and the generated web services relies
on the Laravel web framework (Otwel 2016). This
choice is made because PHP and Laravel are well
known and used by our first end-users: Startup Pa-
lace’s developers.

To be able to conclude about consistency of
web services generated from a consistent model (see
Section 3), we need to assume or manually verify that
atomic component implementations and their specifi-
cations in the model are compliant. This is currently
a limitation that will be removed in a future work by
automating the compliance verification.

The last step of our tool is the generation step.
Many similar tools (see Section 6) take the approach
to generate and output a standalone web application
that includes everything necessary to operate it. We
took another approach by generating code that should
never be manually edited; the generated code does not
override any existing files in a Laravel’s architecture
and can be easily hooked to an existing web applica-
tion through configuration.

Currently, developers still have to handle secu-
rity aspects outside of the scope of our solution, for
instance when writing atomic components, because
they have control on implementation details.

S EXPERIMENTATIONS

In order to validate our approach, that is to show that
the meta-model defined in Section 2 is able to express
real web services, we illustrate it here with a volun-
tarily minimalistic case study, for the sake of bre-

vity. Further case studies focus on comparison with
other approaches or technologies. This section spe-
cifies web services we want to build, shows how we
implement them and discusses advantages of our ap-
proach such as flexibility, reusability and safety.

Problem Statement. In order to maintain a digital
registration list for an event named “Mastering cURL
and cheese”, we would like to create and expose web
services that would, on one hand, allow people to re-
gister themselves, and allow organizers to check re-
gistered people, on the other hand.

Informal Specification. To register, a user would
use cURL to send a POST HTTP request to the
endpoint /register/[name]/[email] where
[name] is her name and [email] her email ad-
dress. If this user is already registered, the service
would return an error message with a 403 HTTP
code. If the given email address is invalid, the ser-
vice would return an error message with a 422 HTTP
code. If both conditions are fulfilled, the registration
would be persisted in a relational database along with
the registration datetime, and the service would re-
turn the input information with a 200 HTTP code.
To see registered people, an organizer would use
cURL to send a GET HTTP request to the endpoint
/attendees/ [key] where [key] is a string that
needs to be the same as the one hardcoded in the ser-
vice in order to authenticate the request. If the given
key is invalid, the service would return an error mes-
sage with a 401 HTTP code. If it is valid, it would
fetch registrations from the database, serialize them
and return them with a 200 HTTP code.

Implementation. In the following examples, we
use the concrete syntax introduced in Section 2.3. We
show a possible implementation of this informal spe-
cification into a model and explain the different steps
to build it.

First, we define our data model, that is the
entities element of our model. We have only one
entity: Registration.

21

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

name Registration
attributes (name: , email: , date:

)

Then, we define two services that are linked to two
composite component instances that we will define af-
terwards. These services will be the interfaces bet-
ween our application and the outer world, as defined
in the informal specification.

method POST

url \/register\/ (2<name>["\/]+)\/ (?<email
>[™\/1+)

params (name: , email:)

ci Registration

method GET
url \/attendees\/ (?2<key>["\/1+)
params (key:)

ci GetAttendees (apiKey = "mykey")

Then, we define the two composite components
linked to the services. As they are composite compo-
nents, they are defined in terms of other components.
This step is important because here we choose how
to split the features into several components, to max-
imize separation of concerns and reusability.

cc
name Registration
ci ValidateEmail
ci CheckDupRegistration
ci CreateRegistration
ci SaveRegistration
ci RegistrationSerializer
cc
name GetAttendees
params (apiKey:)
ci CheckKey (correctKey = apiKey)
ci FetchRegistrations

ci RegistrationsSerializer

The last modeling step is to define the atomic
components used in our composite components.

ac
name ValidateEmail
pre (email:)
ac
name CheckDupRegistration
pre (name: , email:)
ac
name CreateRegistration
pre (name: , email:)
add (registration: Registration)
ac

22

name SaveRegistration

pre (registration: Registration)
ac

name RegistrationSerializer

pre (registration: Registration)
ac

name CheckKey

params (correctKey:)

pre (key:)
ac

name FetchRegistrations

add (registrations: (Registration)
ac

name RegistrationsSerializer

pre (registrations: (Registration))

Finally, we can implement these atomic compo-
nents using PHP. As an example, here is the imple-
mentation of the CheckKey component.

<?php
CheckKey Component
{
static execute (Params S$params,
Ctx $ctx)
{
ScorrectKey = Sparams->get (' correctKey’);

Skey = Sctx->get (‘key’);
(ScorrectKey === Skey) Sctx;

response (' Invalid_key’, 401);

Consistency. We use our tool to check whether the
model verifies the properties defined in Section 3
in order to prove its consistency. As a par-
tial example, we show that the CheckKey ato-
mic component is well defined. It verifies For-
mula (9) because @ N {("key”,String)} = 0. Tt ve-
rifies Formula (10) because @ C {("key”,String)}.
We also show that the CheckKey atomic com-
ponent is well used. It has one instance in
the definition of the GetAttendees composite
components. This instance verifies Formula (11)
because it reduces to {(“correctKey”,String)} =
{("correctKey”,String)}. ~ The GetAttendees
component is instantiated by a service that provides
{("key”,String)} as an initial context (according to
its parameters). The CheckKey instance is well
used in the context of this service because it reduces
to {("key”,String)} C {("key”,String)} (see Formu-
las (13) to (15)).

Generating Web Services. The next step is to ge-
nerate a consistent and working implementation of the
web services. First, PHP implementations for each
atomic component of the model are written. We as-
sume that these implementations are in adequation

A Model-Driven Method for Fast Building Consistent Web Services in Practice

with both the model and the informal specification.
Next, our tool generates working web services that in-
tegrate easily in a Laravel application (see Section 4).
Finally, we setup other parts of the Laravel applica-
tion to benefit from helper features such as external
dependencies management, database schema migrati-
ons or end-to-end tests.

Discussion. This case study is a first step to show
that our meta-model is flexible enough to express mi-
nimalistic yet realistic web services. Components of-
fer a first-class system to split computations into se-
veral smaller parts. Because assemblies of compo-
nents are checked to ensure their consistency, deve-
lopers can see them as black boxes which helps a
lot when designing, implementing and testing these
components. Implementing atomic components in the
same language and environment as the generation tar-
get allows to have a fine control on what is generated
without losing the advantages of building using high-
level constructions. Because generated code integra-
tes easily in a Laravel application, the result can be
deployed like any Laravel application thus benefiting
from good practices such as those described in (Wig-
gins 2012). Apart from generating code, our appro-
ach makes it easy to generate diagrams from models
that allow easy visualization of how services are im-
plemented or what are components dependencies, for
example. This might be a game changer for new deve-
lopers onboarding. Finally, MDE approach improves
maintainability. For example, if we want to make an
evolution and allow attendees to modify their registra-
tion information and status by adding a new service, it
is easy to implement it while reusing existing compo-
nents and still be confident about consistency, thanks
to the verification step.

Yet, we performed preliminary experiments with
the approach; developers of Startup Palace have
been involved in these experiments. However we plan
to implement systematic evaluation tools in order to
support more realistic (by nature and by size) case
studies.

6 RELATED WORK

The use of MDE for development and automatic ge-
neration of web services or web applications is not a
new topic (Bernardi, Cimitile, Di Lucca, et al. 2012;
Bernardi, Cimitile, and Maggi 2016; Rocheteau and
Sferruzza 2016; Scheidgen, Efftinge, and Marticke
2016).

This work is built on the approach of REIFIER,
presented in (Rocheteau and Sferruzza 2016). As in

REIFIER, we use a meta-model approach instead of a
meta-programming one, as recommended for server-
side code generation in (Scheidgen, Efftinge, and
Marticke 2016). We also share the meta-modeling
approach with the M3D tool introduced in (Bernardi,
Cimitile, Di Lucca, et al. 2012) and extended in (Ber-
nardi, Cimitile, and Maggi 2016), which is itself ba-
sed on Declare (see (van der Aalst, Pesic, and Scho-
nenberg 2009)). M3D uses as an input a 4-layers
meta-model: information layer by means of UML
class diagram, service layer by means of BPMN,
presentation layer by means of (Spring/Android)-like
meta-model and a process layer by means of Declare.
M3D is evaluated on a case study to show that 90% of
the time spent developing the application is spent on
modeling. This is advantageous as modeling is often
faster, produces more stable applications and models
are easier to maintain than code.

Our approach was developed with this idea in
mind, thus focusing on design-time support. But it
differs from existing tools in several different ways,
related to both flexibility and support. First, as REI-
FIER but not M3D, it is built to allow property verifi-
cation at design-time. This verification takes the form
of a set of rules that ensure structural consistency of
models. This ensures confidence in the resulting sy-
stems without the drawbacks of heavy formal met-
hods. Second, because our components are specified
in terms of preconditions and effects, instead of inputs
and outputs in REIFIER, we can ease their reusability
by minimizing the coupling to their instantiation con-
text while providing the same level of verification.

To avoid shortcomings such as described
in (Gronmo et al. 2004), that is WSDL models
contain too much technical details and are difficult to
understand for humans, our method makes it possible
to express technical details in components’ imple-
mentation that are not captured in the model. This
is an attempt to ease onboarding of new developers
by both offering lots of MDE-related advantages and
at the same time giving full flexibility on technology
and implementation details.

Our approach is more related to Eiffel (Meyer
1992), than to BPEL (Fu, Bultan, and Su 2004)
or to Join Calculus (Fournet and Gonthier 2002).
As BPEL, we acknowledge that programming-in-the-
large and programming-in-the-small require different
types of languages (DeRemer and Kron 1975); but
our meta-model is simpler than BPEL, thus relevant
for developing web services. Join Calculus is devo-
ted to the design or semantics of distributed langua-
ges, which is out of our scope. We share with Eif-
fel the principle of using contracts, of being exten-
sible, reusable, and reliable. However, because our

23

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

contracts are simpler (a subset of first-order logic),
our approach is suitable for being used by non for-
mal methods experts while providing useful support
for them to build safe and reusable components.

7 CONCLUSION

We proposed a method to build web services. It is
fast, simple, robust and flexible. It is based on a meta-
model that makes it possible to describe web servi-
ces using high-level constructions (such as parame-
tric components) which enables verifying their con-
sistency using an axiomatic semantics as well as ge-
nerating working web services. We also built a tool
that leverages this process in the technological con-
text of a web company, Startup Palace. The whole
approach was illustrated on a case study to show its
advantages. Even if one of the motivations was to de-
velop MVPs applications, the approach is not limited
to this scope and is suitable to most applications based
on web services.

Several main prospects are here sketched. First,
the type system used to describe component parame-
ters, preconditions and model’s entities (among ot-
hers) is at the core of the consistency verification,
yet it is not flexible enough. Making it more expres-
sive, by allowing subtyping in component preconditi-
ons for example, while keeping at least the same le-
vel of verification might be necessary to reach a good
reusability on bigger projects. Another perspective is
to allow and ease safe model composition, to allow
developers to reuse concepts between projects when
it makes sense. Finally, the whole approach needs to
be evaluated on more realistic (by nature and by size)
case studies. This evaluation must rely on metrics that
have a good correlation with the benefits of our ap-
proach, such as easing new developers to onboard on
projects and reuse of exisiting code.

REFERENCES

Bernardi, Mario Luca, Marta Cimitile, Giuseppe Di Lucca,
et al. (2012). “M3D: A Tool for the Model Driven De-
velopment of Web Applications”. In: Proceedings of
the Twelfth International Workshop on Web Informa-
tion and Data Management, WIDM 2012, Maui, HI,
USA, November 02, 2012, pp. 73-80.

Bernardi, Mario Luca, Marta Cimitile, and Fabrizio Ma-
ria Maggi (2016). “Automated Development of
Constraint-Driven Web Applications”. In: Procee-
dings of the 31st Annual ACM Symposium on Applied
Computing. ACM, pp. 1196-1203.

24

DeRemer, Frank and Hans Kron (1975). “Programming-
in-the Large versus Programming-in-the-Small”. In:
ACM Sigplan Notices. Vol. 10. ACM, pp. 114-121.

Fournet, Cédric and Georges Gonthier (2002). “The Join
Calculus: A Language for Distributed Mobile Pro-
gramming”. In: Applied Semantics. Springer, pp.
268-332.

Fu, Xiang, Tevfik Bultan, and Jianwen Su (2004). “Analysis
of Interacting BPEL Web Services”. In: In Proc. 13th
Int. World Wide Web Conf. Citeseer.

Gronmo, Roy et al. (2004). “Model-Driven Web Services
Development”. In: E-Technology, e-Commerce and
e-Service, 2004. EEE’04. 2004 IEEE International
Conference On. IEEE, pp. 42-45.

Meyer, Bertrand (1992). Eiffel: The Language. Prentice-
Hall, Inc.

Open API [Initiative and The Linux Foundation
(2017). OpenAPI Specification. ~ URL: https://
www.openapis.org (visited on 07/25/2017).

Otwel, Taylor (2016). Laravel. URL: https://laravel.com/
(visited on 07/25/2017).

RAML Workgroup (2017). RAML. URL: https://raml.org/
(visited on 07/25/2017).

Rocheteau, Jérome and David Sferruzza (2016). “Reifier:
Model-Driven Engineering of Component-Based and
Service-Oriented JEE Applications”. In: ACM/IEEE
19th International Conference on Model Driven Engi-
neering Languages and Systems. Saint-Malo, France.

Scheidgen, Markus, Sven Efftinge, and Frederik Marticke
(2016). “Metamodeling vs Metaprogramming: A
Case Study on Developing Client Libraries for REST
APIs”. In: European Conference on Modelling Foun-
dations and Applications. Springer, pp. 205-216.

Sferruzza, David (2017). Safe Web Services Generator.
URL: https://gitlab.startuppalace.com/research/swsg.

The PHP Group (2016). PHP. URL: https://php.net/ (visited
on 07/25/2017).

Van der Aalst, Wil M. P., Maja Pesic, and Helen Schonen-
berg (2009). “Declarative Workflows: Balancing bet-
ween Flexibility and Support”. In: Computer Science-
Research and Development 23.2, pp. 99-113.

Wadler, Philip (1992). “The Essence of Functional Pro-
gramming”. In: Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. ACM, pp. 1-14.

Wiggins, Adam (2012). The Twelve-Factor App. URL:
https://12factor.net/ (visited on 07/25/2017).

