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Abstract: The paper presents a new original technique for the accurate real time measuring of the phase shift between 

two quasi-harmonic optical signals based upon the estimation of amplitudes of the both initial quasi-

harmonic signals and the third signal that is formed by summation the first two ones. The required phase 

difference is then calculated as an angle of a triangle formed by the reconstructed undistorted signals’ 

amplitudes values. An important peculiarity of the proposed technique consists in the fact that the phase 

data are obtained as a result of the amplitude measurements only what significantly decreases the demands 

to the measuring equipment. For the amplitude values estimation the methods of the Rician data analysis are 

proposed to be applied. The paper provides both the mathematical substantiation of the technique and its 

computer simulation results. The elaborated method is meaningful for various applied tasks to be solved in 

numerous ranging and communication systems. 

1 INTRODUCTION 

The accurate measuring of two signals’ phase 

difference is one of the most important problems in 

various fields of science and technology, such as 

radio-physics, optics, radiolocation, radio-

navigation, etc. Such measurements are in the use at 

distance measurements, in ranging systems, at 

determining the object’s geometrical parameters, at 

non-destructive control and in many other applied 

tasks (Kinkulkin, Rubtsov, Fabrik, 1979; Chmykh, 

1993; Smirnov, Kucherov, 2004). 

The problem of measuring the phase difference 

has been investigated for a long time and many 

various methods for its solving have been 

elaborated. These methods include the phase 

compensation technique, the transformation of the 

time interval into the voltage (Chmykh, 1993), the 

digital technique of accounting the number of pulses 

(Webster, 2004; Mahmud, 1989), the phase 

measuring method accompanied by the frequency 

transform (Chmykh, 1993; Webster, 2004), the 

correlation methods (Chmykh, 1993; Webster, 2004; 

Liang, Duan, Yeh, Luo, 2012), the Fourier 

transformation technique with the further extraction 

of the phase component (Webster, 2004; Mahmud, 

1989, Mahmud,1990), the least square adjustment 

method with the data fitting for a sinus-shaped 

signal (Sedlacek, Krumpholc, 2005).   

A number of existing phase measuring methods a-

priori use a harmonic signal model (Kinkulkin, 

Rubtsov, Fabrik, 1979), i.e. imply the constant 

amplitude’s value, what does not correspond to the 

real circumstances. In practice we normally have the 

so-called quasi-harmonic signal that is characterized 

by the random variations of the signal’s amplitude 

due to the Gaussian noise. Such amplitude’s 

variation is a serious obstacle for the accurate phase 

measuring (Chmykh, 1993; Ignat'ev, Nikitin, 

Yushanov, 2010). A number of various parametric 

techniques have been proposed for the signal’s phase 

measurements (Ignat'ev, Nikitin, Yushanov, 2013; 

Ramos, Serra, 2008; Hing, Cheung So, Zhenhua, 

Zhou, 2013), which imply the calculation of rather a 

big number of the signals’ parameters and normally 

demand a significant volume of computational 

resources. 

The original method of the signals’ phase 

difference measuring elaborated in the present paper 

differs in principle from the methods of the prior art 

as it is based entirely upon measuring and 

processing the amplitude values only. 
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2 THE PROBLEM SETTING AND 

BASIC DEFINITIONS 

In order to consider the phase difference between 

two quasi-harmonic signals let us clarify the 

concepts to be used. In practice an inevitable noise 

influence results in the random variations of the 

signal’s amplitude. Therefore the quasi-harmonic, or 

quasi-sinusoidal signal is to be considered instead of 

a sine-shaped signal. In each moment of time t  a 

signal to be analyzed can be presented as follows: 

  
           ( ) ( ) sinx t R t t t     (1) 

  

where   is the common frequency, ( )R t  is the 

signal’s amplitude, or envelope that randomly varies 

due to the Gaussian noise influence, and  t  is the 

phase shift that also changes randomly in time under 

the noise influence. Normally the signal contains 

also the slowly changing additive “white” Gaussian 

noise. It can be filtered and its presence is not 

critical for measuring the phase  t . To ensure 

the convenient graphical representation we’ll 

consider the signal (1) in a complex plane (as a 

complex value) denoting it as  S t :  
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For measuring the signals’ phases we’ll analyze 

the “slow” signal’s component 

 ( ) ( ) exps t R t i t     . Let us denote the 

initial, undistorted complex signal as vector 

 0,A A  . It is characterized by a determined 

amplitude value A  and a phase 
0 . The signal’s 

propagation through any medium is inevitably 

accompanied by its noising, namely – the initial 

signal’s real 
0cosA   and imaginary 

0sinA   

parts are independently varied by a lot of random 

noise components. Let us denote by  ,r r   a 

noise component that is superimposed on the initial 

signal A . The components ,x yr r  of the noise 

vector r  are independent and obey the normal 

distribution:  0x yr r   ,   
2 2 2

x yr r   , where 

2  is a noise dispersion value. Obviously the 

amplitude r  and the phase   are distributed as 

follows: amplitude r  obeys the Rayleigh 

distribution, while the noise components’ phase   

is distributed uniformly in interval (0, 2 ).  

We’ll denote by vector  ,R R   the resulting 

signal that is formed by summing the initial signal 

A  and noise r : R A r  . The real and 

imaginary parts of R  can be written as follows:  
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The statistical distribution of amplitude R and 

phase   of resulting signal R  is determined by 

their joint distribution function (Rytov, 1976) that 

can be calculated from (3).  
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(4) 

As one can see from (4), the distributions of the 

resulting signal’s amplitude R  and its phase  are 

not independent, and phase   as distinct from phase 

  is not a uniformly distributed value.  

Having integrated (4) by   between the limits 

from 0 to 2 one can obtain an expressions for the 

distribution function for amplitude R  of resulting 

signal R A r  : 
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At obtaining (5) an integral representation for the 

modified Bessel function has been used 

(Abramowitz and Stegun, 1964):
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  . From (5) it follows that 
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amplitude R  obeys to the Rice distribution with 

parameters 
2,A  (

2  is the Gaussian noise 

dispersion value). So, the influence of noise can be 

mathematically described as “blurring” the initial 

signal’s vector А  of amplitude A  so that its 

amplitude becomes a random value R R  that 

obeys the Rice distribution. 

3 ESSENCE OF THE PROPOSED 

TECHNIQUE 

The mathematical problem to be solved consists in 

measuring the phase shift between two quasi-

harmonic signals that are propagating in different 

channels. The task consists in measuring these 

signals’ phase difference as an indicator of the 

object or the process to be studied. We can present 

these signals as the following vectors: 

   1 1 1 2 2 2, , ,R R R R   as illustrated in Fig.1.  

The values of quasi-harmonic signals’ 

amplitudes 
1R  and 

2R  obey the Rice distribution 

with parameters (
2

1,A  ), and (
2

2 ,A  ), where 
1A  

and 
2A  are the initial, undistorted signals’ 

amplitudes, 
2  is the Gaussian noise dispersion. It 

is natural to suppose that such a dispersion value is 

the same for the both channels by which the two 

signals are propagating, although the mathematical 

analysis provided below can be easily generalized 

for a case of different dispersion values. In the 

further calculations we’ll use a-priori knowledge 

that the phase difference 
2 1      between 

the considered signals is unambiguously determined 

by the physical properties of the object or the 

process being studied.  

The noised signals to be measured can be put 

down as follows: 1 1 1,R A r  2 2 2R A r  , 

where vectors 1A   and 2A  denote the two initial, 

undistorted signals, 
1 2,r r   - the noise vectors, each 

of them being characteristic for a corresponding 

channel of the signal propagation. The phase 

difference   between the two signals is equal to 

an angle between the corresponding vectors. 

 

 

Figure 1: Illustration of the signals to be analysed. 

Let us introduce the third vector that is equal to 

the sum of the two signals being analyzed. We 

denote it as vector 3 3 3R A r   , where 

3 1 2A A A   - the sum of the first two undistorted 

signals. Vectors 1R , 2R  and 3R  form a triangle, 

and the phase difference between the two signals can 

be determined from this triangle on the basis of the 

triangle sides’ values, i.e. the signals amplitudes’ 

values.  

Obviously, the sought for phase difference 

between 1A  and 2A  could be most precisely 

calculated if we would be able to “freeze” the 

triangle at the undistorted, noise-free state. However, 

the inevitable noise distorts each vector 

independently and the amplitudes measured in each 

moment of time would provide a false, distorted 

value for the sought for phase shift, whereas the 

required phase shift may be correctly found only 

from the triangle formed by the initial, undistorted 

amplitudes: 
1 2 3, ,A A A . As it has been shown above 

the signals’ amplitudes obey the Rice distribution 

with the Rician parameters (
2,iA  ), 1,2i  . As 

for the third signal 3 3 3R A r  , its amplitude can 

be shown to obey the Rice distribution as well. The 

parameters of this distribution are:  2

3 , 2A  , 

where 3 3A A . As the amplitudes measured in 

samples provide the distorted data for the lengths of 

the triangle sides, they need to be processed in such 

a way that would allow getting the undistorted 

values 
1 2 3, ,A A A  . This means that we have to 

determine the corresponding Rician parameters’ 

values.  

The so-called two-parameter methods elaborated 

in (Yakovleva, Kulberg, 2013; Yakovleva, Kulberg, 
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2014; Yakovleva, 2014; Yakovleva, 2015) allow an 

accurate estimating of both the signal 

 , 1, 2,3iA i   and noise (
2 ) parameters based 

upon the sampled measurements. In other words, by 

means of calculating the initial, undistorted values of 

the three signals’ amplitudes we would “freeze” the 

picture as a noise-free one and thus calculate the 

needed phase difference value just on the basis of 

geometrical considerations by the formula: 

 
2 2 2

3 1 2

1 2

arccos
2

A A A

A A


  
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 
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Below some results of the numerical simulation of 

the proposed technique are presented. Table 1 

demonstrates the dependence of the absolute error 

modulus calcerr      at calculating the 

sought for signal’s phase shift upon a number of 

parameters such as the sample length, the signal-to-

noise ratio, etc. The denotations are as follows: 

calc - the phase shift calculated according to the 

above algorithm,   - the real phase shift (at the 

numerical experiment illustrated by Table 1 the 

value of the real phase shift was equal to 1,318), 

1 20,5( ) /SNR A A    - the value that 

characterizes the signal-to-noise ratio, n  - the 

number of measurements in a sample.  

Table 1 presents the results of the technique’s 

numerical simulation, i.e. the calculated values of 

the absolute error modulus are provided, at 

averaging by 
310avN   measurements.  

Table 1: Numerically calculated magnitude of the absolute 

error modulus 
calcerr     as dependent on the 

signal-to-noise ratio SNR and the sample length. n . 

 
SNR=102 SNR=0.25 103 SNR=0.5 103 SNR=103

 

n=8 
44,2 10  41,4 10  55,8 10  51,2 10  

n=16 
41,8 10  40,9 10  54,9 10  51,0 10  

4 CONCLUSIONS 

The paper presents an original technique of 

measuring the phase difference between two quasi-

harmonic optical signals based upon the statistical 

processing of the amplitudes values of the following 

three signals: the two compared signals and their 

sum. The theoretical consideration of the problem is 

provided. The amplitudes of the three signals to be 

analyzed are shown to obey the Rice statistical 

distribution. The algorithm of the proposed 

technique implementation consists in the joint 

reconstruction of the undistorted signals’ amplitudes 

against the noise background. Therefore the sough 

for phase shift is obtained as a result of the 

amplitude measurements only what significantly 

decreases the demands to the equipment and 

simplifies the realization of the proposed method in 

a wide circle of applied tasks to be solved in 

numerous ranging and communication systems. The 

digital experiments confirm the theoretical 

conclusions on the feasibility and efficiency of the 

proposed technique. 

The work was funded by RFBR according to the 

research project № 17-07-00064. 
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