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Abstract: An algorithm for the localization and counting of cells in histopathological images is presented. The algorithm

relies on the presegmentation of an image into a number of superpixels followed by two random forests for

classification. The first random forest determines if there are any cells in the superpixels at its input and the

second random forest provides the number of cells in the respective superpixel. The algorithm is evaluated on

a bone marrow histopathological dataset. We argue that a single random forest is not sufficient to detect all the

cells in the image while a cascade of classifiers achieves higher accuracy. The results compare favorably with

the state of the art but with a lower computational cost.

1 INTRODUCTION

Histopathological image analysis plays an important

role in the diagnosis of numerous pathologies ranging

from infectious diseases to cancer (Oguz et al., 2016).

However, the traditional method for analyzing histo-

pathological images is a tedious and time-consuming

task given the typically large number of cells con-

tained in the image as well as the numerous images

to be analyzed, which can lead to considerable inter-

observer variability as well as irreproducible results

(Andrion et al., 1995; Ismail et al., 1989). There-

fore, the demand for computer-aided analysis is high

(Demir and Yener, 2005; Zhang et al., 2014) and has

seen an increased effort in research during the previ-

ous decades. Among the major difficulties in the ap-

plication of image analysis methods to cell images are

the non-uniform staining, blurring due to defocussing,

and the existence of overlapping cells (Demir and Ye-

ner, 2005).

There are methods designed for estimating the lo-

cation of the cells in the image (Kainz et al., 2015;

Zhang et al., 2014). These algorithms use different

techniques such as a score map with the probability of

location or an arbitrary image segmentation through

correlation clustering. On the other hand, the methods

in (Benali et al., 2003; Sjostrom et al., 1999) quantify

the number of cells; the first method uses a clustering

followed by a binarization of the image and the se-

cond method uses a three layer neural network fed by

structural information. Kainz et al. overcame one of

the main issues in histopathological images, the dif-

ferentiation of cells from background structures, by

using a probability score map to indicate where a cell

is more likely to be located (Kainz et al., 2015). Even

though this method exhibited good results, the inter-

ference of undesired structures is still present. More-

over, the need for defining a threshold for the distance

between a true cell location and the response from a

trained classifier is also an important issue.

In this paper, the SPICE (SuperPIxel classifica-

tion for Cell dEtection and counting) algorthm is

proposed, which is an algorithm for the localization

and quantification (total number) of cells in histo-

logical images. Our method uses a superpixel pre-

segmentation of the image and a sequence of random

forests for classification. The first random forest is a

binary classifier which determines if the superpixel at

its input contains any cells. A second random forest,

which is a multiclass classifier, determines how many

cells are present at the superpixels provided by the

same pre-segmentation of the image. Both classifiers

can work independently. However, the experimental

evaluation indicated that more accurate results can be

obtained if they are applied sequentially. An advan-

tage of SPICE is the use of superpixels in the segmen-

tation, since it provides the extracted features with a

more compact and more representative modeling of

the cells (e.g., using the color and the shape of the su-

perpixels). Also, we demonstrate that for the learning

stage, a low computational cost is capable of giving

a high detection accuracy, which is favorably compa-
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Figure 1: Depiction of SPICE, detailing the training and the testing stages for both cell detection and cell counting.

red with state-of-the-art methods (Kainz et al., 2015)

using the same dataset.

2 CELL DETECTION AND

COUNTING

Histological images are acquired by first obtaining a

tissue sample from the patient, then the sample is de-

hydrated and encased in paraffin in order to preserve

the tissue. Finally, a staining is applied to the sam-

ple in order to highlight the structures of interest. The

most common stain used is Hematoxilin and Eosin

(H&E).

Classification algorithms for cell detection on his-

tological images commonly use a sliding window

over the image in order to extract features from it. Ho-

wever, this can lead to several issues to be addressed

such as the increase in computational cost, the need

for determinate the size of the window and the even-

tual misclassifications at the borders of the image.

The method proposed herein is based on the segmen-

tation of the image into superpixels. Each superpixel

is represented by a feature vector which is then for-

warded to a random forest classifier. The outline of

the proposed method is summarized in Fig. 1.

In the first step of SPICE, the image is divided

into perceptually meaningful regions. This is achie-

ved using the SLIC superpixel segmentation algo-

rithm (Achanta et al., 2010), an algorithm that clus-

ters pixels in the combined five-dimensional color

(CIELAB) and location features to efficiently gene-

rate compact, nearly uniform segments. We decided

to use the SLIC algorithm since it is considered one of

the fastest, state-of-the-art algorithms (Achanta et al.,

2012) and it only needs the number of superpixels as

parameter. The pre-segmentation of the image into

superpixels, reduces significantly the computational

cost and time of SPICE, by eliminating the tedious

process of sliding a window through the image to

obtain the sections for feature extraction. The super-

pixel segments aggregate regions with similar charac-

teristics which facilitates the feature extraction task.

Also, by organizing the image into similar regions

there is a higher probability that an entire cell or a

cluster of cells is contained in a single segment. The

number of superpixel segments is selected according

to the size of the image and the size of the cells. Se-

lecting a large number of segments in a small image

can cause the cells to be partitioned into multiple seg-

ments. On the contrary, selecting a small number of

segments may lead to superpixels containing both cell

and background information.

For the training step, a number of features are ex-

tracted for each superpixel to represent the underlined

segment. The features we used were the following:

RGB intensity channels, magnitude of oriented gra-

dients, first and second oriented gradients, LUV in-

tensity channels and histogram of oriented gradients.

For every superpixel, the mean and the standard devi-

ation of the respective features are computed, except
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Algorithm 1: SPICE: Training for cell detection

and counting.

Input : N Images, Cell center coordinates

Output: Detection and Counting Random

Forests

1 for All Images in Set do

2 Segment the image using the SLIC

superpixel algorithm (Achanta et al.,

2012).

3 Extract a 31-dimensional feature vector

for each superpixel.

4 Train the binary random forest for cell

detection.

5 Train the multiclass random forest for cell

counting.
6 end

for the histogram of oriented gradients, where a 9-

dimensional vector of the gradient orientations weig-

hted by their amplitudes is computed. We decided to

use the mean and standard deviation of the features to

have a more robust representation of the structure and

color of the cell compared to the background or ot-

her undesired structures. The concatenation of these

features yields a 31-dimensional feature vector.

We decided to use the RGB channels for the co-

lor information of the cell, since H&E stains the cell

nucleus with blue color and the cytoplasm with pink

color, therefore it is straightforward to have the blue

color as a feature for the pixels to indicate a high pro-

bability of cell presence. The gradient information

obtained by SPICE is used for the representation of

the shape information of the cell. The LUV channels,

such as the RGB channels, provide information of the

color of cells and the background with the advantage

that these features are device (microscope) indepen-

dent and they may not be modified.

The cell detection algorithm is a binary random

forest classifier that determines if the superpixel at its

input contains any cells or background. At this point,

the number of cells in the segment does not play any

major role, since we are focusing only on the presence

or absence of cells in the image. Therefore, the next

step of the algorithm consists in determining the num-

ber of cells in each superpixel. A multi-class random

forest classifier is employed using the number of cells

present in the segment as the corresponding label. We

decided to limit the number of classes to four, in or-

der to avoid the potential problem of unbalanced data,

since it is relatively rare to have more than three cells

clustered in the same superpixel. The overall proce-

dure for training and testing is summarized in Algo-

rithms 1 and 2, respectively.

Algorithm 2: SPICE: Testing for cell location and

counting.

Input : An image

Output: Locations of cell centers and

number of cells

1 Segment the image using the SLIC superpixel

algorithm (Achanta et al., 2012).

2 Extract a 31-dimensional feature vector for

each superpixel.

3 Apply the feature vectors to the binary

random forest to indicate the presence of

cells in a superpixel.

4 Apply the feature vectors to the multi-class

random forest to obtain the number of cells

in a superpixel.

3 EXPERIMENTAL RESULTS

The algorithm was evaluated on the dataset introdu-

ced in (Kainz et al., 2015). The dataset consists of 11

images of 1,200× 1,200 pixels of healthy bone mar-

row from eight patients and their respective ground

truth image. Based on the size of images of the da-

taset and the expected cell sizes, we segmented the

images into 1,000 superpixels.

We performed a set of experiments to test the im-

pact of the number of superpixels in the image. We

performed a number of experiments with both a small

as well as a large number of segments. The num-

ber of segments plays a crucial role for the quan-

tification of cells, as selecting a small number of

segments would result in increased false positives,

while a large number of segments would reduce con-

siderably the detection of cells in the image. Ba-

sed on the bone marrow cell image dataset (Kainz

et al., 2015), we selected the number of superpixels

by cross-validation and set it to the value of 1,000 as

this pre-segmentation provides a detection rate closer

to the ground truth for the validation set (Fig. 2). Ne-

vertheless, this parameter has to be cross-validated in

the case of a different type of cell images. This is per-

haps the caveat of the method but by performing this

cross validation we can ensure that the number of seg-

ments will give to the classifier the strongest features.

The number of classes in the multi-class random

forest was set to four, which represents the presence

of 0, 1, 2, and 3 or more cells in a superpixel segment.

Using four labels handles the issue of unbalanced data

in the training step of the algorithm as the dataset in

(Kainz et al., 2015) contains too few cell clusters with

more than four cells. Moreover, in the second stage,

we also had a label of zero cells in order to include
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Figure 2: Impact of the number of superpixels in the quan-
tification of cells.
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Figure 3: ROC curves of (a) the binary classifier and (b)
multi-class classifier of SPICE with a single and cascaded
random forest. The curve for the single random forest in
(a) was generated by comparing its final classification result
in a ”hit or miss” sense, without taking into account the
number of cells detected.

background superpixels that could have been missed

by the first classifier. Learning the background label

using this additional random forest improves the ro-

bustness of the algorithm.

In the second set of experiments, we examined the

consistency of the method with respect to the num-

ber of trees in the random forests. In order to com-

pare the classifiers more efficiently the area under the

curve (AUC) is used as a score for their performance

Table 1: Area under the ROC curve.

Classifier SPICE-CRF Kainz et al. SPICE-SRF

Cell Detect. 97.34% 90.5% 97.29%

Cell Count. 93.67% N/A 71.43%

(Fawcett, 2006). A 3-fold cross validation was em-

ployed to determine the number of trees in both clas-

sifiers. The results indicated that varying the number

of trees between 50, 150 and 200 trees yields similar

areas under the ROC curve (AUC), namely 97.21%,

97.27% and 97.27% respectively. From this experi-

ment, we concluded that a relatively low number of

trees is sufficient to obtain a high classification accu-

racy as increasing the number of trees does not have

a significant impact on the outcome of the method.

Therefore, for a faster performance and less compu-

tational power we decided to use 50 trees in the next

experiments.

An important question arising from SPICE is why

one has to apply two random forests sequentially

instead of a single one that would do the same classi-

fication. To clarify this issue, the SPICE algorithm is

compared with its variant which uses a single random

forest that classifies the superpixels directly with re-

spect to the number of cells they contain. The ROC

curves are shown in Fig. 3. Figure 3a shows the ROC

curve for the binary classifier. The blue curve corre-

sponds to the performance of the detection classifier

of SPICE using a cascaded random forest while the

red curve is the same classifier but in a single random

forest configuration. The curve for the single classi-

fier is generated by the cells detected at its output in

a binary (”hit or miss”) sense. Since there is only a

single stage, these curves are relatively similar. Ho-

wever, the difference is clear in Fig. 3b where the

multi-class random forest applied after the first binary

random forest outperforms the straightforward classi-

fication of the image. This happens because classifi-

cation errors from the previous stage are carried over

and affect deeply the multi-class classification.

The experiment proved that SPICE is capable of

rivaling the state-of-the-art method for cell detection.

The algorithm is capable of finding the cells in the su-

perpixel segments of the image with a high accuracy

and creates a window around them to indicate the re-

sults. Figure 4 illustrates representative results of cell

detection using the proposed SPICE algorithm.

In the last set of experiments the SPICE algorithm

is compared with the algorithm developed in (Kainz

et al., 2015) for the localization of cells in the image.

The respective ROC curves are depicted in Fig. 5 and

the overall accuracies are shown in Table 1. Since the

method presented in (Kainz et al., 2015) is only a cell

localization algorithm, this experiment concerns only

the localization and not the number of cells.
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Figure 4: Representative result of SPICE cell detection on
an image of the database presented in (Kainz et al., 2015).
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Figure 5: Comparison between the SPICE algorithm and
the method presented in (Kainz et al., 2015).

Despite its success and good performance, the

proposed approach has one limitation that is related

on how the number of the superpixels for the segmen-

tation of the images are selected. This is now perfor-

med by heuristic cross-validation and typically set to

1,000. Although this has to be adjusted for every new

type of image by performing cross-validation to esti-

mate the number of superpixels, we can ensure that

the different segments will give to the classifier repre-

sentative features.

The goal of the proposed method is to detect iso-

lated cells in an image and obtain their features for

better and stronger classification of bone marrow his-

topathological images. An interesting and possible

extension of this work would be in hematological di-

seases and more particularly in the analysis of 2D im-

munotherapy images (Rosas-Taraco et al., 2011; ?) or

in detecting cells in Pap smear images (Plissiti et al.,

2015), where superpixels can also be used so that each

image can be tessellated into approximately equally

sized subregions, presenting homogeneous intensity

characteristics. However, different types of images

may exhibit different properties because cells may be

highly overlapping or the staining process may be dif-

ferent. This implies that a different set of features may

need to be extracted for these type of images. Regard-

less of the type of the features that may be used for

each image, the SPICE algorithm is general and can

easily be adapted to detect and localize cells in such

types of images.

4 CONCLUSION

A method for cell detection and quantification in his-

tological images that uses a superpixel segmentation

along with a two stage random forest classification is

presented. The method was successfully evaluated in

terms of AUC and favorably compared to a state-of-

the-art algorithm for cell detection. The main advan-

tage of the proposed method is that it provides a flex-

ible way for the simultaneous detection and counting

of cells in histopathological images using a cascade

of classifiers. The results indicated that the proposed

SPICE algorithm ameliorates the classification accu-

racy by approximately 7% with respect to the state of

the art (Kainz et al., 2015). As future work, we plan

to extend the algorithm to detect 3D cells, where the

difficulty consists in determining the appropriate fea-

tures.
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