
CNN Patch–Based Voting for Fingerprint Liveness Detection

Amirhosein Toosi, Sandro Cumani and Andrea Bottino
Department of Control and Computer Engineering of the Politecnico di Torino, Torino, Italy

Keywords: Fingerprint Spoofing, Deep Learning, Fingerprint Segmentation, Patch based Classification.

Abstract: Biometric identification systems based on fingerprints are vulnerable to attacks that use fake replicas of real
fingerprints. One possible countermeasure to this issue consists in developing software modules capable of
telling the liveness of an input image and, thus, of discarding fakes prior to the recognition step. This pa-
per presents a fingerprint liveness detection method founded on a patch–based voting approach. Fingerprint
images are first segmented to discard background information. Then, small–sized foreground patches are
extracted and processed by a well–know Convolutional Neural Network model adapted to the problem at
hand. Finally, the patch scores are combined to draw the final fingerprint label. Experimental results on well–
established benchmarks demonstrate a promising performance of the proposed method compared with several
state-of-the-art algorithms.

1 INTRODUCTION

Nowadays, the use of fingerprints as authentication
system is becoming more and more pervasive (Mal-
toni et al., 2009), as witnessed by the fact that
these sensors are starting to be deployed to un-
lock consumer devices, like notebooks and mobile
phones, and granting access to common facilities, like
schools, health clubs and hospitals. However, the use
of these devices raises several security concerns, since
they are vulnerable to more or less complicated form
of attack, which might result in granting access to
unauthorized persons.

Attacks can be both direct, operating on the sen-
sors by means of fake replica of real fingerprints, and
indirect, targeting one or more of the inner modules
of the whole recognition system. Clearly, direct at-
tacks are the most easy to implement for an intruder.
Fingerprint replicas to be presented to the sensor can
be obtained by creating a mold from a latent or real
fingerprint, and then filling it with materials like La-
tex, gelatin, vinyl or wood glue and so on. It has been
demonstrated that even a high quality digital image of
a fingerprint is sufficient (arsTECHNICA, 2013). The
literature shows the the success rate of such attacks
can be higher than 70% (Matsumoto et al., 2002),
highlighting the need for specific protection methods
capable of identifying live samples and rejecting fake
ones.

System capable of telling the liveness of a finger-

print can be broadly divided in two main categories.
On one side, we have the hardware approaches, which
tries to combine different sensors capable of detecting
the typical liveness signs of a real finger, like temper-
ature, pulse and skin resistance. However, on most
low-cost and commercial devices this is not the most
desirable solution, since it is invasive, it increases the
cost and it cannot easily tackle novel and more so-
phisticated form of attacks. On the contrary, the soft-
ware methods are cost–effective solution that rely on
adding an extra software module to the processing
chain that is capable of telling a live from a fake fin-
gerprint.

Software methods can be further divided into dy-
namic, which analyzes an image stream, and static,
which process a single fingerprint scan. Again, static
methods are usually preferable since they require less
data, less computational resources and can be applied
as well to sensors that cannot output an image stream.

In the literature, the problem of static software
liveness detection has been tackled in different ways.
The initial approaches were based on the observation
that the fakes are usually characterized by a lower
image quality and, thus, they were trying to analyze
some quality indexes based on a plethora of differ-
ent holistic features (Abhyankar and Schuckers, 2006;
Nikam and Agarwal, 2008; Marasco and Sansone,
2010; Galbally et al., 2012).

However, comparisons on public benchmarks
show that the discriminative power of holistic fea-

Toosi A., Cumani S. and Bottino A.
CNN Patch–Based Voting for Fingerprint Liveness Detection.
DOI: 10.5220/0006582101580165
In Proceedings of the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), pages 158-165
ISBN: 978-989-758-274-5
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tures is rather low, and that better performances can
be obtained by local image descriptors (Gragnaniello
et al., 2015a; Gragnaniello et al., 2015b). Initial
attempts exploited various standard descriptors like
Local Binary Pattern (LBP), Weber Local Descrip-
tor (WLD), Binary Statistical Image Features (BSIF)
and Local Phase Quantization (LPQ), Scale-Invariant
Feature Transform (SIFT), DAISY and the Scale-
Invariant Descriptor (SID). Recently, interesting re-
sults have been obtained with the introduction of
descriptors expressly designed for fingerprint live-
ness detection, like the Histogram of Invariant gradi-
ents (HIG) (Gottschlich et al., 2014), the Local Con-
trast Phase Descriptor (LCPD) (Gragnaniello et al.,
2015b), and the Convolutional Comparison Pattern
(CCP) (Gottschlich, 2016).

Other approaches tried to improve the classifica-
tion accuracies by combining in various ways multi-
ple handcrafted features. Examples are SVM classi-
fication of LPQ and LBP (Ghiani et al., 2012), the
integration of various image filters and statistic mea-
sures (Pereira et al., 2012), LPQ+WLD and SVM
classification (Gragnaniello et al., 2013), various local
descriptors combined with SVM or Multi-Task Joint
Sparse Reconstruction (Toosi et al., 2015). These
works demonstrate the effectiveness of feature fusion
approaches compared to the ones based on individual
features.

The recent successes of Convolutional Neural
Networks (CNN) and Deep Learning approaches in
a number of large scale visual recognition and clas-
sification challenges (like MNIST, ImageNet, CIFAR
and so on), stimulated their introduction in the area
of fingerprint liveness detection. The deep learning
approaches to liveness detection can be roughly di-
vided in two classes. The first class includes meth-
ods that create ad–hoc models, such as (Kim et al.,
2016), which proposes a Deep Belief Network (DBN)
with multiple layers of restricted Boltzmann ma-
chine, and (Menotti et al., 2015), which presents
spoofnet, a deep CNN architecture, created by opti-
mizing both the architecture hyperparameters and the
filter weights, which was able to greatly improve the
results of other state–of–the–art approaches.

The second class includes methods based on
Transfer Learning approaches, whose rationale is to
exploit the knowledge learned while solving a prob-
lem and apply it to a similar problem in a different
context. The general approach is to adapt to the prob-
lem at hand models that have demonstrated state–of–
the–art performances in a variety of image recogni-
tion benchmarks. Examples can be found in (Menotti
et al., 2015; Nogueira et al., 2016), where several pre-
trained models, like AlexNet, VGG and CIFAR-10,

were analyzed.
The objective of our work is to further investigate

the effectiveness of CNN based Transfer Learning ap-
proaches in the context of fingerprint liveness detec-
tion. In particular, we focused on AlexNet, which is a
well known model originally designed and trained to
recognize objects in natural images, showing state–
of–the–art results in the ILSVRC-2012 competition.

In contrast with previous TL approaches, after
a preliminary segmentation step aimed at discard-
ing (noisy) background information, we divide fin-
gerprint images into non–overlapping patches, which
are then individually classified by the neural network.
The classification scores computed for each patch are
then combined to obtain the final image label.

The rationale of our approach is twofold. First,
using patches as samples rather than the full images
allow us to increase the size of the training set, thus
(hopefully) making the classifier more robust and in-
creasing its generalization capabilities. Second, since
the dimension of the network input layer is neces-
sarily limited, using small sized patches allows us
to avoid resizing the samples and, thus, to retain the
original resolution and image information.

In the following section, we will detail our ap-
proach. Then, we will introduce the datasets used in
our experiments and we will thoroughly discuss the
results obtained before drawing the conclusions.

2 METHODOLOGY

As we stated in the introduction, our approach is
based on four steps:

(i) segmentation of the input test sample, in order to
divide the fingerprint image into foreground, i.e.
the region of interest (ROI), and background;

(ii) extraction, from the ROI, of a set of small-sized
patches that contain foreground pixels only. The
obtained patches are normalized and fed indi-
vidually to the network;

(iii) classification of each patch with a modified ver-
sion of the AlexNet architecture, adapted to the
problem at hand;

(iv) computation of the final label on the base of the
patch scores.

These steps are summarized in Fig. 1 and detailed
in the following subsections.

2.1 Segmentation

Fingerprint segmentation is based on the method pro-
posed in (Thai et al., 2015), which is built upon the



Segmentation
Fingerprint

Images

ROI

Patch 
extraction

Normalized
patches

Convolutional 
Neural Network
(AlexNet - BN)

Classification

Patch
scores

Figure 1: Outline of the proposed fingerprint liveness de-
tection approach.

a
b

d

c

e f g

Figure 2: Examples of segmented fingerprint images from
different sensors: (a) Sagem 2011 (b) Italdata 2011 (c)
Biometrika 2013 (d) Italdata 2013 (e) Digital 2011 (f)
Biometrika 2011 and (g) Swipe 2013.

preliminary observation that the patterns of finger-
print images have frequencies only in specific bands
of the Fourier spectrum. In order to preserve these fre-
quencies, the Fourier transform of the original image
is first convolved with a directional Hilbert transform
of a Butterworth bandpass filter, obtaining 16 direc-
tional sub-bands. Then, soft-thresholding is applied
to remove spurious patterns. Finally, the feature im-
age is binarized and the final segmentation is obtained
by means of morphological operators. The method is
characterized by a set of hyperparameters that are fine
tuned per benchmark. This is done by optimizing the
segmentation error on a small set of manually seg-
mented images (around 30), which are taken from the
training set to include both live and fake samples cre-
ated with different spoofing materials. Some exam-
ples of the segmentation results can be seen in Fig. 2.

The only exception to this procedure is repre-
sented by one of the benchmarks used in our ex-
periments, the Swipe 2013 dataset (see Section 3.1),
whose images are obtained by swiping the fingerprint
on a linear scanner. In some cases, these images in-
clude other finger parts beyond the pulp (the finger
extremity). When this happens, we noticed that the
segmentation algorithm might be “attracted” by these
parts discarding the pulp. Thus, for Swipe 2013 im-
ages, we adopted a slightly different procedure. First,
we removed the blank rows at the image bottom and
identified beginning and end of the impressed finger-
print by detecting large peaks of the gradient between

Incorrect
Segmented image

Original
image

Cropped
image

Remove
white space

Segmentation
(FDB Algorithm)

Compare top 
ROI boundary
with starting 

row of the
segmented 

image 

Identify
Region of 

interest
boundaries

(top & bottom)

Crop and
Re-segment

(FDB Algorithm)

Figure 3: An example showing the segmentation algorithm
applied to Swipe 2013 images.

Segmentation
algorithm

(FDB)

Fingerprint
image

Segmented
image

Mask image
(ROI)

i

j

i + 64

j + 64

Figure 4: Example of the subdivision in patches of a seg-
mented fingerprint for a patch size w = 64.

consecutive image lines. We then applied the segmen-
tation algorithm to the extracted region. Clearly, a
successful segmentation should start at the beginning
of this region. If, on the contrary, it starts below a
certain line (which we heuristically fixed at the value
300), we take the starting line of the (incorrectly) seg-
mented area as lower boundary of the actual finger-
print region and we apply again the segmentation to
obtain the final foreground mask (see Fig.3 for an ex-
ample).

2.2 Patch Extraction and Normalization

The segmentation mask defines the ROI where the
next computation steps are focused. This region is
divided into patches of size w×w pixels, where w is
a parameter of the method. In order to avoid any in-
fluence of background pixels, we only extract those
patches whose pixels are all labeled as foreground.
The algorithm works in the following way.

We scan line by line the ROI starting from its top–
left corner and treating each (i, j) pixel as the top–left
corner of a candidate patch. If all pixels of this patch
belongs to the ROI and are labeled as foreground,
the patch is stored and the ROI scan restarts at pixel
(i+w, j). When the scan of line j is concluded, if
no patches have been found, the scan restarts at line
j+1, otherwise at line j+w (see Fig. 4).

Finally, we normalize each patch to zero mean and
unit variance before feeding it to AlexNet.



Input

Convolution 1

Convolution 2 Convolution 3 Convolution 4 Convolution 5

Dense 1 Dense 2

Dense 3

55 x 55 x 48

27 x 27 x 128

13 x 13 x 192
13 x 13 x 192 13 x 13 x 128

4096 4096

2

Max pooling

W x W x 1

11 x 11

5 x 5

3 x 3

3 x 3

3 x 3

Batch
 Normalization

Batch
 Normalization

Batch
 Normalization

Batch
 Normalization

Batch 
Normalization

Max pooling
Max pooling

Figure 5: AlexNet-BN Architecture.

2.3 Fine Tuning the Pre–trained
AlexNet Model

The overall AlexNet model, as used in our work,
is substantially equivalent to the one described
in (Krizhevsky et al., 2012) and summarized in Fig. 5.

In brief, the network architecture contains five
convolutional layers, interwoven with three sub sam-
pling layers, followed by three fully–connected lay-
ers. The receptive field of each convolutional layer
is decreased from 11 in first layer to 5 in the second
and 3 in the remaining ones. The network uses Rec-
tified Linear Unit (ReLU) as activation function, in
order to decrease the learning time and induce spar-
sity in the computed features. The size of the input
layer is w×w×1. In our work, we replaced the origi-
nal 1.000–unit soft–max classification layer (designed
to predict 1.000 different classes, (Krizhevsky et al.,
2012)), with a 2–unit soft–max layer, which provides
an estimation of posterior probabilities of live and
fake classes.

As for the network weights, we started from a ver-
sion of AlexNet pre–trained on the ILSVRC–2012
dataset. This model was originally designed to rec-
ognized different categories of objects (like animals,
vehicles, buildings and so on) in natural images. This
is a domain which is substantially different from that
of our work (fingerprint images), and thus the network
weights needs to be “adapted” to the actual context.
This is done by fine–tuning them with a further train-
ing step that exploits the patches extracted from our
fingerprint datasets. As a further detail, since we use
grayscale patches while the original AlexNet accepts
as input RGB color images, we simply picked the first

channel of the weights of the first convolutional lay-
ers. As a note, we also tried to transform our samples
from grayscale to color ones by simply replicating the
image plane three times, with no significant differ-
ences. Stochastic gradient descent is used to fine tune
the network weights.

Both data augmentation (see Section 2.3.1) and
dropout regularization (Srivastava et al., 2014), ap-
plied to the first two fully connected layers with prob-
ability 0.5, have been used to soften the overfitting
issues. As suggested in (Simon et al., 2016), we also
used Batch Normalization (BN) to improve the net-
work performances. BN, first proposed in (Ioffe and
Szegedy, 2015), aims at stabilizing the learning pro-
cess and decreasing the learning rates by reducing the
internal covariance shift.

2.3.1 Data Augmentation

Data Augmentation (DA) is a well–known technique
that consists in creating synthetic training samples by
applying small variations to the original data. In the
case of images, such variations are usually obtained
by applying various combination of affine transforma-
tions and image cropping (Krizhevsky et al., 2012).
The advantage of DA is that it “forces” the classifier
to learn small variations of the input data, thus mak-
ing it (possibly) more robust to unseen data, and it
can also act as a regularizer in preventing overfitting
in deep neural networks (Simard et al., 2003).

In our work, we created five different variations
of each fingerprint image by (i) mirroring the image,
(ii) rotating the image of −22.5 and +22.5 degrees,
and (iii) mirroring the rotated images. Then, after ap-
plying the same transformations to the segmentation



masks, all augmented version of the input samples are
divided in patches according to the process described
in Section 2.2

As a result, the total number of training patches
after the DA step is listed, for each benchmark, in Ta-
ble 1. We underline that the augmentation process is
applied to the training set only and not to the test sam-
ples.

2.4 Patch based Classification

The liveness of an input fingerprint image is deter-
mined by combining the scores of each of the sample
patch, where as patch score we take the difference of
the two outputs of last fully connected layer (before
softmax). These scores are averaged to produce an
image score. The scores can be interpreted as log–
likelihood ratios between live and fake hypotheses,
and the image can be labeled by simply comparing the
score to a threshold τ. Theoretically, the optimal accu-
racy should obtained by setting τ = 0. In practice, we
have observed that the scores are not well calibrated,
i.e., the optimal accuracy is achieved with a differ-
ent value of τ. In order to “recalibrate” the scores,
we adopted a strategy that has been successfully em-
ployed in speaker verification tasks (Brümmer et al.,
2014). The method assumes that the scores for live
and fake images can be modeled by means of Gaus-
sian distributions, whose parameters can be estimated
on a validation set. Given a score s, the calibrated
score scal is obtained by computing the log–likelihood
ratio

scal = log
N (s;µL,σL)

N (s;µF ,σF)
(1)

where µL,σL and µF ,σF denote the mean and standard
deviation for the live and fake uncalibrated scores, re-
spectively. The sample label is then obtain by com-
paring the calibrated score scal with the theoretical
threshold τ = 0.

We underline that if no patches can be extracted
from a test sample, we arbitrarily assign the fake la-
bel to the fingerprint. This choice derives from the
observation that having a false fake is better than a
false live, which could result in granting unauthorized
access to the system.

3 RESULTS AND DISCUSSION

In the following, we describe the results of our exper-
iments. First, we introduce the experimental bench-
marks (Section 3.1). Then, we analyze the effect
of various parameters on the final accuracies (Sec-
tion 3.2) and, finally, we assess our results with a

comparison with the current state–of–the–art (Sec-
tion 3.3).

3.1 LivDet Datasets

The benchmarks used in this work are those made
publicly available for the LivDet 2011 (Yambay et al.,
2012) and LivDet 2013 (Ghiani et al., 2013) compe-
titions. These datasets have been largely used in the
literature and enable a comparison with a great vari-
ety of methods and, in particular, with previous deep
learning based approaches.

Overall, the benchmarks consist in eight sets of
live and fake fingerprints acquired with different de-
vices (Table 1), all of which are equipped with flatbad
scanners, with the exception of Swipe, which has a
linear sensor. Its images are obtained by swiping the
fingerprint and thus include a temporal dimension as
well. Each dataset is divided into separate training
and test sets, and is characterized by a different image
size and resolution, number of individuals, number of
fake and live samples and number and type of mate-
rials used for creating the spoof artifacts. Six out of
the eight fake sets were acquired using a consensual
method, where the subject actively cooperated to cre-
ate a mold of his/her finger, increasing the challenges
related to the analysis of these datasets.

According to the standard LivDet protocols, in the
following, the results are reported in terms of the Av-
erage Classification Error (ACE), which is the av-
erage between the percentage of misclassified live
(ferrlive) and fake (ferrfake) samples, i.e. ACE =
f errlive+ f err f ake

2 .

3.2 Effect of Method Parameters

A first set of experiments aimed at analyzing how the
various method parameters affect the recognition ac-
curacy. In particular, we investigated the contribution
of patch size, data augmentation, Batch Normaliza-
tion, and of the score calibration used in the final clas-
sification step. A summary of these results is available
in Table 2.

The patch size controls the granularity of the
data, and we experimented with two different values,
namely 32×32 and 64×64. In these experiments we
used data augmentation, batch normalization and the
calibrated scores. The results show that, in most of
the cases, using a size of 64× 64 guarantees signifi-
cant improvements of the accuracies.

On the base of the previous results, the contribu-
tion of the other parameters were evaluated with the
“optimal” patch size (i.e., 64× 64) and by deactivat-
ing one parameter at a time. As for the data augmen-



Table 1: Characteristics of the dataset used in the experiments.

Dataset LivDet2011 LivDet2013
Scanner Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe
Image size 312x372 355x391 640x480 352x384 312x372 800x750 480x640 1500x208
Live samples 2000 2004 2000 2009 2000 2500 2000 2500
Fake samples 2000 2000 2000 2037 2000 2000 2000 2000
Total subjects 200 82 92 200 45 64 45 70
Spoof materials 5 5 5 5 5 5 5 5
Co-operative Yes Yes Yes Yes No Yes No Yes
Training slices 106,952 123,659 125,344 132,120 99,272 151,142 112,298 256,472

Table 2: Influence of method parameters on the classification errors.

Dataset LivDet2011 LivDet2013
Parameter Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe
w = 32 7.0 3.1 8.5 5.1 0.8 12.7 0.4 7.2
w = 64 4.0 4.5 6.3 3.7 0.4 5.4 0.5 1.3
No DA (w = 64) 5.4 4.3 7.3 4.1 0.5 6.8 0.4 1.8
No BN (w = 64) 6.3 4.9 6.8 3.1 0.5 8.0 0.5 1.4
No calib. (w = 64) 4.0 5.1 6.8 4.1 0.5 7.0 0.6 2.4

Table 3: Classification errors on the experimental benchmarks.

Dataset LivDet2011 LivDet2013
Method Biom. Digital Italdata Sagem Biom. XMatch Italdata Swipe
CNN-Random 8.2 3.6 9.2 4.6 0.8 3.2 2.4 7.6
DBN – – – – 1.2 7.0 0.6 2.9
Spoofnet – – – – 0.2 1.7 0.1 0.9
CIFAR-10 – – – – 1.5 2.7 2.7 1.3
VGG 5.2 3.2 8 1.7 1.8 3.4 0.4 3.7
AlexNet 5.6 4.6 9.1 3.1 1.9 4.7 0.5 4.3
Our approach (w = 64) 4.0 4.5 6.3 3.7 0.4 5.4 0.5 1.3

tation, in spite of an increase of the training time, the
results show, as expected, that this technique is (in
general) effective in improving the accuracies, with
an average improvement of 0.6% and a maximal 1.4%
one. Similar comments can be made for the effect of
Batch Normalization, which effectively helped to im-
prove the results (average 0.7% and maximum 2.6%
error reduction when combined with data augmenta-
tion). However, it can be seen that, in three cases, the
introduction of either DA (Digital 2011 and Italdata
2013) or BN (Sagem 2011) reduces the accuracies.
Interestingly enough, in two of these cases (Digital
2011 and Italdata 2013) the chosen patch size w = 64
is not the optimal one, which highlights the (obvious)
fact that the complex interplay of the method parame-
ters would certainly benefit from fine tuning them for
each dataset.

Finally, we show the effectiveness of the score cal-
ibration. As it can be seen from Table 2, the difference
between the calibrated and the uncalibrated version of
the method is always positive (or null) and can be up
to 1.6%.

3.3 Assessment of the Proposed
Approach

In order to assess our results, we compared them
with those obtained, on the same datasets1 and with

1We underline that, while all methods have been
tested with LivDet2013, some results are not available for
LivDet2011.

the same experimental protocols, with other deep
learning methods, either based on Transfer Learn-
ing approaches, i.e. CIFAR-10 (Menotti et al.,
2015), AlexNet and VGG (Nogueira et al., 2016),
or not, i.e. Spoofnet (Menotti et al., 2015), CNN–
Random (Nogueira et al., 2016) and DBN (Kim et al.,
2016). These results are summarized in Table 3.

If we compare our results with that of other TL
based approaches, we can see that, on average, our
approach obtains the best results, although VGG
achieves similar accuracies. The datasets where we
obtain lower accuracies are Digital 2011, Sagem 2011
and Xmatch 2013. While the results on Xmatch 2013
can be explained in terms of the well–known gener-
alization problems highlighted by several authors on
this dataset (Ghiani et al., 2013), the others can be
explained in terms of the different DL architectures
used (VGG vs AlexNet). As a matter of facts, if
we compare, on these benchmarks, our results with
the AlexNet version of (Nogueira et al., 2016), we
achieve better results in Digital 2011, smaller differ-
ence on Sagem 2011 and largely higher accuracies on
all other benchmarks.

When compared with other non–TL based ap-
proaches, our method outperforms the CNN–Random
and DBN on almost all the datasets, while spoofnet
remains the baseline for LivDet2013. However, it
should be also noted that, while the relative improve-
ment of spoofnet compared to our best result looks
relevant, if we exclude Xmatch 2013, it actually cor-
responds to a very small difference in terms of abso-



lute number of errors (21, over a total of 6,157 test
samples across 3 datasets).

As a final information, we provide some details
related to the computational complexity of our ap-
proach. The software was implemented in MATLAB
using MatConvNet (Vedaldi and Lenc, 2015) and we
run our experiments on a cluster, equipped with mul-
tiple Xeon E5-2680 @2.50GHz as CPUs, 3TB DDR4
memory, allocating 12 cores for each experiment. The
operating system is CentOS 6.6. Considering a pre-
trained network, with BN and DA, when the patch
size is 32× 32 the system can process an average of
44,000 patches per second (PPS) during training and
115,000 PPS during testing. When the patch size is
increased to 64×64, we have 17,800 PPS in training
and 48,000 PPS in testing.

4 CONCLUSION

In this work we have presented a fingerprint live-
ness detection approach based on the analysis of small
patches extracted from the fingerprint foreground im-
age. These patches are first processed by a modified
version of AlexNet, a well–known model that showed
state–of–the–art accuracies in other image recogni-
tion problems, which is “adapted” to the problem at
hand. Then, the final label of the input sample is
computed by combining the individual scores of its
patches.

Our results suggest that the proposed approach is
effective in most of the cases and, most of all, that it
is capable of improving the results of a similar model
based on the processing of the whole fingerprint im-
age.

On the basis of our results, future works will be
initially focused on applying the same approach to
these CNN models that showed better accuracies with
respect to AlexNet on a variety of image recognition
tasks, such as VGG and ResNet (He et al., 2016).
As another option, we will also investigate fusion ap-
proaches built upon the integration, at different levels
(i.e., fusion at feature level, at decision level or a com-
bination of the two), of various patch–TL–CNN based
approaches.

ACKNOWLEDGEMENTS

Computational resources were provided by
HPC@POLITO, a project of Academic Com-
puting within the Department of Control and
Computer Engineering at the Politecnico di Torino
(http://www.hpc.polito.it).

REFERENCES

Abhyankar, A. and Schuckers, S. (2006). Fingerprint live-
ness detection using local ridge frequencies and mul-
tiresolution texture analysis techniques. In Image
Processing, 2006 IEEE International Conference on,
pages 321–324.

arsTECHNICA (2013). Chaos computer club hackers trick
apples touchid security feature. Online.

Brümmer, N., Swart, A., and Van Leeuwen, D. (2014). A
comparison of linear and non-linear calibrations for
speaker recognition. In Odyssey 2014: The Speaker
and Language Recognition Workshop.

Galbally, J., Alonso-Fernandez, F., Fierrez, J., and Ortega-
Garcia, J. (2012). A high performance fingerprint
liveness detection method based on quality related
features. Future Generation Computer Systems,
28(1):311 – 321.

Ghiani, L., Marcialis, G. L., and Roli, F. (2012). Experi-
mental results on the feature-level fusion of multiple
fingerprint liveness detection algorithms. In Proceed-
ings of the on Multimedia and Security, MM&Sec ’12,
pages 157–164, New York, NY, USA. ACM.

Ghiani, L., Yambay, D., Mura, V., Tocco, S., Marcialis,
G. L., Roli, F., and Schuckcrs, S. (2013). Livdet 2013
fingerprint liveness detection competition 2013. In
Biometrics (ICB), 2013 International Conference on,
pages 1–6.

Gottschlich, C. (2016). Convolution comparison pattern:
An efficient local image descriptor for fingerprint live-
ness detection. PLoS ONE, 11(2):1–12.

Gottschlich, C., Marasco, E., Yang, A. Y., and Cukic, B.
(2014). Fingerprint liveness detection based on his-
tograms of invariant gradients. In Proceeding of IEEE
IJCB 2014, pages 1–7.

Gragnaniello, D., Poggi, G., Sansone, C., and Verdoliva, L.
(2013). Fingerprint liveness detection based on weber
local image descriptor. In IEEE BIOMS 2013, pages
46–50.

Gragnaniello, D., Poggi, G., Sansone, C., and Verdoliva,
L. (2015a). An investigation of local descriptors for
biometric spoofing detection. IEEE Transactions on
Information Forensics and Security, 10(4):849–863.

Gragnaniello, D., Poggi, G., Sansone, C., and Verdo-
liva, L. (2015b). Local contrast phase descriptor for
fingerprint liveness detection. Pattern Recognition,
48(4):1050 – 1058.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In International Conference on Ma-
chine Learning, pages 448–456.

Kim, S., Park, B., Song, B. S., and Yang, S. (2016). Deep
belief network based statistical feature learning for
fingerprint liveness detection. Pattern Recognition
Letters, 77:58 – 65.



Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.

Maltoni, D., Maio, D., Jain, A. K., and Prabhakar, S. (2009).
Handbook of Fingerprint Recognition. Springer Pub-
lishing Company, Incorporated, 2nd edition.

Marasco, E. and Sansone, C. (2010). An anti-spoofing tech-
nique using multiple textural features in fingerprint
scanners. In Biometric Measurements and Systems
for Security and Medical Applications (BIOMS), 2010
IEEE Workshop on, pages 8–14.

Matsumoto, T., Matsumoto, H., Yamada, K., and Hoshino,
S. (2002). Impact of artificial ”gummy” fingers on
fingerprint systems. Proceedings of SPIE Vol. 4677,
4677.

Menotti, D., Chiachia, G., Pinto, A., Schwartz, W. R.,
Pedrini, H., Falcao, A. X., and Rocha, A. (2015).
Deep representations for iris, face, and fingerprint
spoofing detection. IEEE Transactions on Informa-
tion Forensics and Security, 10(4):864–879.

Nikam, S. B. and Agarwal, S. (2008). Fingerprint liveness
detection using curvelet energy and co-occurrence sig-
natures. In Computer Graphics, Imaging and Visual-
isation, 2008. CGIV ’08. Fifth International Confer-
ence on, pages 217–222.

Nogueira, R. F., de Alencar Lotufo, R., and Machado, R. C.
(2016). Fingerprint liveness detection using convolu-
tional neural networks. IEEE Transactions on Infor-
mation Forensics and Security, 11(6):1206–1213.

Pereira, L. F. A., Pinheiro, H. N. B., Silva, J. I. S., Silva,
A. G., Pina, T. M. L., Cavalcanti, G. D. C., Ren,
T. I., and de Oliveira, J. P. N. (2012). A fingerprint
spoof detection based on mlp and svm. In Proceed-
ings IJCNN 2012, pages 1–7.

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best
practices for convolutional neural networks applied to
visual document analysis. In Proceedings of the Sev-
enth International Conference on Document Analysis
and Recognition - Volume 2, ICDAR ’03, pages 958–,
Washington, DC, USA. IEEE Computer Society.

Simon, M., Rodner, E., and Denzler, J. (2016). Imagenet
pre-trained models with batch normalization. arXiv
preprint arXiv:1612.01452.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15(1):1929–1958.

Thai, D. H., Huckemann, S., and Gottschlich, C. (2015).
Filter design and performance evaluation for finger-
print image segmentation. CoRR, abs/1501.02113.

Toosi, A., Cumani, S., and Bottino, A. (2015). On mul-
tiview analysis for fingerprint liveness detection. In
Proceeidngs of CIARP 2015, volume 9423, pages
143–150. Springer.

Vedaldi, A. and Lenc, K. (2015). Matconvnet: Convolu-
tional neural networks for matlab. In Proceedings of
the 23rd ACM International Conference on Multime-
dia, MM ’15, pages 689–692, New York, NY, USA.
ACM.

Yambay, D., Ghiani, L., Denti, P., Marcialis, G., Roli, F.,
and Schuckers, S. (2012). Livdet 2011 - fingerprint
liveness detection competition 2011. In Biometrics
(ICB), 2012 5th IAPR International Conference on,
pages 208–215.


