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Abstract: Over the last decades, evolutionary algorithms have been extensively used to solve multi-objective optimiza-
tion problems. However, the number of required function evaluations is not determined by nature of these
algorithms which is often seen as a drawback. Therefore, a robust and reliable termination criterion is needed
to stop the algorithm. There is a huge amount of knowledge encapsulated in the studies targeting termination
criteria in evolutionary algorithms, but an updated integrated overview of this knowledge is missing. For this
reason, we aim to conduct a systematic research through a comprehensive literature study. We extended the
basic categorization of termination criteria to a more advanced one that takes the most common used termi-
nation criteria into consideration based on their specifications and the way they have been evolved over time.
The survey is concluded by suggesting a road-map for future research directions.

1 INTRODUCTION

Evolutionary Algorithms (EAs) introduce a class of
probabilistic optimization algorithms inspired by the
principles of biological evolution which is known as
one of the main approaches in the computational in-
telligence field (Konar, 2005). In general, the op-
timization process starts with a randomly selected
population and iterates over number of generations
by modifying the start population to obtain a near-
optimal or possibly optimal solution. The optimiza-
tion process runs until a given termination criterion
triggers. Inherently, EAs are not able to decide about
terminate of the optimization process and the ability
of automatic termination is not designed in the orig-
inal versions of EA. Therefore prespecified termina-
tion criteria should be considered either by the end-
user or the application programmer.

Since the termination criteria behave differently
for various EA, it is not possible to formulate a gen-
eral rule for optimal use of a termination criterion
(Jain et al., 2001). Therefore an automated termina-
tion is desired in real-world applications for practical
reasons. The first reason is that the software end-users
are not often aware of the behavior of the EA. The
second reason is the necessity to find a suitable value
for the parameters of the termination criteria to obtain
a proper ending of the EA. In most termination crite-

ria, suitable parameters can only be determined by a
trial-and-error method (Jain et al., 2001).

Recently, the rapid growth of many complex ap-
plications in science, engineering and economics
highlights the need of developing practical versions of
EA. The original versions of EA suffer from two main
weaknesses: unlearned termination and slow conver-
gence. Much of the current literature pays particu-
lar attention to overcome these two issues by iden-
tifying and evaluating a new termination criterion or
by modifying the standard versions of EA to acceler-
ate the convergence. Even though termination crite-
ria is widely used and investigated, but there are few
theoretical guidelines for determining a suitable and
proper point of time to terminate the search algorithm
(Bhandari et al., 2012).

Up to now, two prominent studies have paid par-
ticular attention to integrate the known approaches
used as termination criteria in EA (Jain et al., 2001)
and (Wagner et al., 2011). For the first time in 2001, a
comprehensive study done by Jain to classify termina-
tion criteria into three main categories: direct, derived
and cluster-based termination criteria. Moreover, a
new cluster-based termination criteria proposed and
evaluated by comparing with other termination crite-
ria in terms of reliability and performance (Jain et al.,
2001). Finally, guidelines for the application of ter-
mination criteria provided (Jain et al., 2001). The
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proposed taxonomy of termination criteria is used to
establish formal guidelines and later has been consid-
ered as a basis for MATLAB toolbox implementation
to provide a framework for analysis and evaluation of
existing and new approaches.

The studies presented thus far provide evidence
that selecting an appropriate termination criterion is
a challenging task. Obviously, the new termination
criteria are not necessarily fit to the basic three cat-
egories introduced by (Jain et al., 2001). Also, the
main contributions of the work done by Wagner have
no direct focus on providing an overview on the cur-
rent existing approaches (Wagner et al., 2011). In
this survey, we conducted a systematic research to
identify the most commonly used termination criteria
and grouped them into seven categories by extending
the basic categories proposed by (Jain et al., 2001).
Furthermore, we applied the proposed taxonomy of
termination criteria to discuss more sophisticated ap-
proaches which are proposed so far.

The survey is organized in the following way. In
next section, the study method used for writing the
state-of-the-art is explained. Later, termination cri-
teria are categorized based on different aspects and
discussed in details in section 3. For each category,
an overview on commonly used termination criteria
is presented. In section 4, pros and cons of using each
category of termination criteria are discussed in de-
tails. Section 5 concludes the key important notes in-
vestigated in the survey and propose a road-map for
future research directions.

2 THE STUDY METHOD

The study method we used to review termination
criteria is based on the systematic mapping studies
and literature reviews suggested by(Kitchenham and
Charters, 2007) and (Petersen et al., 2008). As it is
guided in (Petersen et al., 2008) we performed five
main steps in order to find the most relevant works
targeting termination criteria in EA. These are: iden-
tifying the research questions, conduct search, screen-
ing of the papers, key-wording, data extraction and
mapping process. In the following, we discuss each
process step briefly.

2.1 Research Questions

The main goals of doing research on termination cri-
teria are reflected by numbers of research questions.
In our case, we try to answer the main question: How
can we organize an structure based on the existing
contributions of termination criteria in EAs? More

research questions are raised to answer the main re-
search question in different aspects.

• What are the most frequently investigated termi-
nation criteria and what are their main character-
istics?

• How can we categorize them?

• What are the most frequently applied termination
criteria in evolutionary algorithms and how they
have been evolved over time?

2.2 Conduct Search

Two search strategies are suggested for performing a
systematic research, manual and automatic (Kitchen-
ham and Charters, 2007) and (Petersen et al., 2008).
We chose to only use manual search to find the papers
in the most relevant journals and proceedings of the
related conferences in field of Evolutionary Compu-
tations (ECs) and Evolutionary Algorithms (EAs).

2.3 Screening of Papers

All of the papers found in section 2.2 are analyzed ac-
cording to several selection criteria such as: index of
the conference or journal, number of citations, long
or short papers, technical or commercial papers and
whether they are part of a book or conference pro-
ceedings. In this case, we included the materials from
book chapters, the papers with high number of cita-
tions and the technical papers published by high index
conferences and journals in the field of EC and EA.
Screening process continues by two iterations: study-
ing the abstracts and conclusion and a more detailed
review by reading the introduction and methodology
sections of the papers.

2.4 Keywording

In order to search for the right papers, we had to con-
sider most relevant keywords. Three categories of
keywords are used for this purpose. The first cate-
gory is related to the keywords used to describe the
word termination such as termination criterion, stop-
ping criterion and convergence. The second category
refers to performance evaluation of an EA such as
performance indicator and progress indicator. The
third category refers to the problem domain in which
we are looking for termination criteria. They are
mainly evolutionary computation, computational in-
telligent, evolutionary algorithm, multi-objective op-
timization algorithms, multi-objective evolutionary
algorithms and genetic algorithms.



2.5 Data Extraction and Mapping
Process

Data extraction is the last process of the study method
to capture the relevant information from the selected
papers to address the main research questions from
section 2.1. In this step, the bibliography of the se-
lected paper, the contribution, the methodology and
application of the termination criteria are extracted.
Later, extracted data is used to maintain the catego-
rization of termination criteria.

3 TERMINATION CRITERIA IN
EVOLUTIONARY
ALGORITHMS

It is worthwhile to note that the concept of conver-
gence of an EA is different from termination criterion
even though they overlap each other. (Bhandari et al.,
2012) emphasized that the proof of convergence of an
algorithm to an optimal solution is very important as
it guarantees the utility of an algorithm to reach to
the optimal solution in infinite iterations. Different
works have proved the convergence of genetic algo-
rithm to an optimal solution after running for infinite
iterations (Rudolph, 1994), (Suzuki, 1995), (Bhandari
et al., 1996), and (Murthy et al., 1998).

More concisely, once the convergence of an algo-
rithm is assured, then the focus turns into the determi-
nation of stopping criteria of the algorithm. For that
reason, some of the termination criteria are defined
using convergence phenomena. In this case, termina-
tion criterion is fulfilled if the algorithm is converged
to an optimal or near-optimal solution(s). The close-
ness of the found solution and the optimal solution
depends on the accuracy that the user desires. More
details are provided for each termination criterion fur-
ther in this section.

Thus far, one of the major challenges in the imple-
mentation of genetic algorithm is to define a proper
termination criterion or criteria to stop the algorithm
while no a-prior information regarding the objective
function is provided (Bhandari et al., 2012).

In the following of this section, a number of termi-
nation criteria are presented and classified into seven
main categories. For each criterion, description, main
properties and a termination condition is given. For
simplicity, notations and terminologies are introduced
stepwise where needed together with the respective
references.

3.1 Direct Termination Criteria

Direct termination criteria refer to the class of termi-
nation criteria which stop the algorithm if a prede-
fined condition is satisfied without considering any
underlying data from the evolutionary search process
(Jain et al., 2001).

Maximal Time Budget. The maximal time budget
criterion is fulfilled if the given time budget is con-
sumed. The maximal time budget can be measured as
an absolute time or the CPU-time (Jain et al., 2001).
In this case, the algorithm runs for a predetermined
execution time and returns the final solution.

Maximal Number of Generations. The maximal
number of generations/iterations criterion is fulfilled
if the algorithm has been running for a given max-
imum number of generations/iterations (Jain et al.,
2001) and (Bhandari et al., 2012).

Maximal Number of Objective Function Evalua-
tions. In (Jain et al., 2001), the maximal number of
objective function evaluations is defined in the same
way similar to 3.1 where the algorithm stops after
reaching to a specific number of objective function
evaluations.

Hitting a Bound. The hitting a bound termination
criterion is fulfilled if the best value for the objective
function is obtained for a given bound for an objective
function (Jain et al., 2001). In this case, the found
solution is supposed to be close enough or equal to
the known global optimum (Hansen and Kern, 2004),
(Zhong et al., 2004), (Tsai et al., 2004) and (Ong
et al., 2006).

K-iterations. The K-iterations termination criterion
is fulfilled if there is no improvement in the best fit-
ness values through a K number of consecutive iter-
ations. The user has to select a proper value for K
by assuming that it is impossible to obtain better re-
sult after K consecutive iterations (Leung and Wang,
2001) and (Bhandari et al., 2012).

3.2 Derived Termination Criteria

Contrary to direct termination criteria, derived termi-
nation criteria calculate auxiliary values using under-
lying data obtained from the current generation of the
evolutionary search process (Jain et al., 2001). They
have also been used as a measure of the state of con-
vergence (Jain et al., 2001).



Running Mean. The running mean termination cri-
terion is fulfilled if the difference between the best ob-
jective value of the current generation and the average
of the best objective values of the last tlast generations
is equal to or less than a given threshold ε ≥ 0 (Jain
et al., 2001).

Standard Deviation. The standard deviation termi-
nation criterion is fulfilled if the standard deviation of
all objective values of the current generation is equal
to or less than a given threshold ε ≥ 0 (Jain et al.,
2001).

Best-Worst. The best-worst termination criterion is
fulfilled if the difference between the best and the
worst objective value of the current generation is
equal to or less than a given threshold ε ≥ 0 (Jain
et al., 2001).

Phi. The Phi termination criterion is fulfilled if the
quotient of the best objective value and the mean of all
objective values of the current generation is equal to
or greater than a given threshold 1 - ε with 1� ε≥ 0
(Jain et al., 2001).

Kappa. The Kappa termination criterion is fulfilled
if the quotient of sum of all normalized distances be-
tween all individuals of the current population and
kmax =

µ2−µ
2 is equal to or less than a given thresh-

old ε≥ 0 where µ is the number of individuals known
as population size (Jain et al., 2001).

POP-Var. The POP-Var termination criterion is ful-
filled if the variance of fitness values of all the individ-
uals in the current population is equal to or less than
a given threshold 1� ε≥ 0 (Bhandari et al., 2012).

ε-Variance. The ε-Variance termination criterion is
an extended version of a termination criterion similar
to the K-iterations and POP-Var termination criteria
(Bhandari et al., 2012). This criterion considers the
concept of elitism by preserving the fittest individu-
als over the generations. The ε-Variance termination
criterion is fulfilled if the variance of the best solu-
tions over generations is equal to or less than a given
threshold ε with 1� ε≥ 0 (Bhandari et al., 2012).

3.3 Cluster-based Termination Criteria

Cluster-based termination criteria use clustering tech-
niques to examine the distribution of individuals in
the search space at a given generation. Individuals

usually form clusters in the search space after a few
generations of stagnation (Jain et al., 2001). The
search process is terminated when the clusters show
the convergence of the evolutionary search. In this
case, the fittest individuals are concentrated in few
small regions of the search space.

ClusTerm. The ClusTerm termination criterion is
fulfilled if the change of the average of the aggregate
size of elitist clusters averaged over the last tlast gener-
ations is equal to or less than a given threshold ε with
1� ε ≥ 0 where tlast is the maximal number of the
last generations to be considered (Jain et al., 2001).

3.4 Operator-based Termination
Criteria

In EA, fine-tuning of parameters is normally done in
an empirical way, and usually has a significant im-
pact on their performance (Zapotecas Martı́nez et al.,
2011).

Over the past two decades, there has been an in-
creasing amount of literature on emphasizing the ef-
fects of genetic operators on the stopping time. One
of the first systematic study was reported by Murthy
et al. in 1998. The authors introduced a new termi-
nation criterion known as ε-Optimal Stopping Time.
Based on this research, investigations are necessary
to judge theoretically the effect of selection, muta-
tion and crossover operators on the stopping time.
Even though the obtained stopping times are valid for
Elitism GA (EGA) with selection, crossover and mu-
tation operators (Murthy et al., 1998). In this work,
behavior of GA is studied with different values for the
probability of mutation by calculating the hamming
distance between the found solution and the optimal
solution. The ε-Optimal Stopping Time termination
criterion fulfills when the distance between the found
solution and the optimal solution is equal to or less
than a given threshold ε. Nevertheless, the concept of
elitism helps the algorithm not to suffer from finding
the sub-optimal solutions like ε-Variance termination
criterion discussed earlier in section 3.2.

Later in 2000, Greenhalgh and Marshall discussed
about the convergence properties for genetic algo-
rithms by looking at the effect of mutation on con-
vergence (Greenhalgh and Marshall, 2000). They
showed that by running the genetic algorithm for a
sufficiently long time, convergence to a global opti-
mum with any specified level of confidence, is guar-
anteed. Experimental results showed that the algo-
rithm is able to obtain an upper bound for the number
of iterations necessary to ensure convergence, which
improved the previous results.



More attention has focused on improving the evo-
lutionary operators which go further than modify-
ing their genetics to use the estimation of distribu-
tion algorithms in generating the offspring (Lee and
Yao, 2004), (Lozano et al., 2006) and (Hedar et al.,
2007). A recent study involved domain specific oper-
ators to enhance state-of-the-art MOEAs (Ghoreishi
et al., 2015). This work presents an evolutionary
algorithm CONTROLEUM-GA that applies domain
specific variables and operators to solve a real dy-
namic MOEA for a greenhouse climate control prob-
lem. By that, the domain specific operators only en-
code existing knowledge about the environment. In
CONTROLEUM-GA, domain specific operators are
combined with two other direct termination criteria
such Maximal Time budget and Maximal Number of
Generations to terminate the search process. Exper-
imental results shows improvements in convergence
time without compromising the quality of the final so-
lutions compared to other state-of-art algorithms.

3.5 Performance Indicator Termination
Criteria

The criterion will be a local termination criterion if it
is calculated by using properties of the solutions be-
long to the current generation, which we discussed
earlier. Local criteria require the prior knowledge of
optimal solutions to some extent, which may not be
always available. On the other hand, global crite-
ria are those that compute the progress of evolution
through numbers of consecutive generations (Wagner
et al., 2011). Based on the definition, short-term char-
acteristics of the evolution can be drawn from local
termination criteria, whereas global termination cri-
teria show the long-term nature of the evolution. To
design a better termination criteria, it is preferable to
apply a global criteria that will not only terminate the
evolution at the appropriate time, but also guarantee
the quality of the solutions (Bhuvana and Aravindan,
2016b).

To measure the performance of the MOEAs, a
standard procedure introduced by Coello using per-
formance indicators (Coello et al., 2006). The
most commonly used performance indicators are Hy-
pervolume, Generational Distance, Inverted Genera-
tional Distance, Spacing, Additive-ε Indicator, Con-
tribution or Set Coverage Metric, R1-Indicator, R2-
Indicator, R3-Indicator and Maximum Pareto Front
Error (Zitzler et al., 2003) and (Coello et al., 2006).
Performance indicators use the concept of Pareto op-
timality to evaluate the performance of MOEA; the
same measures can be used to check the convergence
of the population. In this case, when the population

is converged, evolution can be terminated. In the fol-
lowing, two categories of performance indicator ter-
mination criteria are discussed.

3.5.1 Single Performance Indicator Termination
Criteria

In general, to stop the evolutionary search process,
it is needed to predefine a desired value for a per-
formance indicator (Wagner et al., 2011). Termina-
tion criterion is fulfilled when the predefined value is
triggered. In this section, the performance indicators
which have been used as termination criteria are dis-
cussed in a simplified way.

Hypervolume Metric. Hypervolume metric calcu-
lates the volume of the approximation set at genera-
tion t with respect to nadir point or the reference set
(Coello et al., 2006). Hypervolume metric is one of
the most widely used performance indicator. Hyper-
volume has been used as one of the metrics to de-
termine the stopping generation in (Trautmann et al.,
2009), (Guerrero et al., 2009) and (Guerrero et al.,
2010).

Additive Epsilon Indicator. Additive epsilon indi-
cator is known as one of quality indicators to mea-
sure the performance MOEAs. This indicator uses the
concept of domination to calculate the additive min-
imum distance in which the solution set covers ev-
ery solution towards the reference set (Zitzler et al.,
2003). (Trautmann et al., 2009), (Guerrero et al.,
2009) and (Guerrero et al., 2010) used additive ep-
silon indicator as termination criteria in their respec-
tive works.

Mutual Domination Rate Metric. Set coverage
metric or contribution percentage gives a percentage
with respect to the number of solutions from the ap-
proximation set at generation t which belong to the
reference set (Zitzler et al., 2000). Mutual domina-
tion rate metric is a customized version of set cov-
erage metric to show the number of non-dominated
solutions of generation t which can be dominated by
at least one solution belongs to non-dominated solu-
tions of generation t−1. Mutual domination rate met-
ric is used as a termination criteria in a work done by
(Guerrero et al., 2009)

3.5.2 Multiple Performance Indicator
Termination Criteria

Regarding to the characteristics of performance in-
dicators, the quality of approximation set cannot



be evaluated using only one performance indicator.
Therefore, it is recommended to apply multiple per-
formance indicators to measure the convergence of a
MOEA in terms of diversity and coverage (Hadka and
Reed, 2012) and (Ghoreishi et al., 2015).

Historically, the idea of using performance indica-
tors over the run of MOEA was first presented in 2002
in a joint work by Deb and Jain (Deb and Jain, 2002).
They applied two performance indicators to compute
the convergence and the diversity of the approxima-
tion set at generation t.

Later, in another work performed by Trautmann
et al., an offline convergence analysis has been pre-
sented (Trautmann et al., 2008). Three performance
indicators generational distance, spread and hypervol-
ume are calculated in each generation. Then Kol-
mogorow Smirnov test is applied on the performance
indicators of the current and past five consecutive gen-
erations. The termination criterion is fulfilled if the
distribution of indicators value has no change, other-
wise the evolution is allowed to continue (Trautmann
et al., 2008).

3.6 Progress Indicator Termination
Criteria

As the previous sections describe, termination of
MOEA is often decided based on heuristic stopping
criteria, such as the maximum number of evalua-
tions or a desired value of a performance indicator.
Whereas the termination criteria are suitable for de-
fined benchmark problems, where the optimal indi-
cator value is known, their applicability to the real-
world problems is still questionable (Wagner et al.,
2011). The challenge raises in cases where the eval-
uation budget or the desired indicator level is inap-
propriately specified, so the MOEA can either waste
computational resources or can be stopped although
the approximation still shows a significant improve-
ment. For that reason, heuristic stopping criteria
for the online detection of the generation, where the
expected improvement in the approximation quality
does not justify the costs of additional evaluations,
provide an important contribution to the efficiency of
MOEA (Wagner et al., 2011).

Performance indicators described in section 3.6
are known as unary performance indicators computed
by comparing the approximation set at generation t
with the reference set. Unary performance indicators
except spacing, require the knowledge of known op-
timal solutions which is not always available. In or-
der to use performance indicators independent of the
reference set, a customized version of the indicator
is calculated considering two consecutive generations

t and t − 1. These indicators are known as binary
performance indicators or progress indicators which
measure the performance improvement of MOEA.

In recent years, research on sophisticated heuris-
tic Online Stopping Criteria (OSC) has became exten-
sively popular (Martı́ et al., 2009), (Trautmann et al.,
2009), (Wagner and Trautmann, 2010), (Goel and
Stander, 2010) and (Wagner et al., 2009). OSC com-
pute the progression of single or multiple Progress In-
dicators (PI) during the run of the MOEA. At conver-
gence time, the expected improvement for considered
indicators seems to be lower than a specified threshold
and the MOEA is terminated in order to avoid need-
less computations. OSC are supposed to detect that
further improvements are unlikely, or are expected to
be too small even if no formal convergence is obtained
(Wagner et al., 2011).

In general, the procedure of OSC can be divided
into two main steps: 1. The progress improvement of
the MOEA is evaluated using progress indicators. 2.
Given a predefined threshold and the value obtained
from PIs, a decision about termination of the MOEA
is made (Wagner et al., 2011). In the following, single
PI termination criteria and aggregated PI termination
criteria are presented in more details.

3.6.1 Single PI Termination Criteria

Single performance Indicator termination criteria re-
fer to a class of termination criteria in which one of
the binary performance indicators are used for calcu-
lation of termination time. In the following, single
progress indicator termination criteria are described
in details.

Hypervolume Metric. Customized version of hy-
pervolume metric as a binary performance indica-
tor is calculated by using non-dominated solution set
obtained at two consecutive generations t and t − 1
(Guerrero et al., 2009).

Additive Epsilon Metric. Similar to hypervolume
metric, Additive Epsilon Metric can be customized to
work upon solution sets of two consecutive genera-
tions, t and t−1. It has been used as termination cri-
terion in two works done by (Guerrero et al., 2009)
and (Trautmann et al., 2009).

Mutual Domination Rate Metric. This metric is
derived from set coverage metric which gives either 1
or 0 to check the number of non-dominated solutions
at generation t which dominate the non-dominated
solutions at generation t − 1 (Guerrero et al., 2009).



MDR equals to 1 indicates that the entire approxi-
mation set at generation t is better than its predeces-
sor. For MDR equals to 0, no substantial progress has
been achieved. MDR<0 indicates a deterioration of
the current population.

Dominance-based Quality of Pareto Front. Bui et
al. introduced the dominance-based quality of Pareto
front metric (DQP) for an approximation set at gener-
ation t (Bui et al., 2009). For each solution in the ap-
proximation set at generation t, the ratio of dominat-
ing individuals in the neighborhood of this solution is
calculated by performing Monte Carlo sampling sim-
ulation with 500 evaluations. DQP equals to 0 indi-
cates that no improved solutions can be found in the
neighborhood of the current solutions in the approxi-
mation set at generation t.

Consolidation Ratio. The Consolidation Ratio
(CR) is introduced by (Goel and Stander, 2010) as
a dominance-based convergence metric. To calculate
this metric, an external archive of all non-dominated
solutions found during the run of the MOEA is
needed. Given the archive, CR is defined as the rela-
tive amount of the archive members in generation tmem
which are still contained in the archive of the current
generation t.

3.6.2 Aggregated PI Termination Criteria

In single PI termination criteria, the value of the PI
calculated for generation t and used directly to de-
cide on termination time. However, a single PI evalu-
ation usually cannot provide enough information for a
robust conclusion. Because of the non-deterministic
nature of EAs, it can be advantageous to define an
evidence gathering process (EGP) to incorporate dif-
ferent values for PI (Wagner et al., 2011). EGP is
designed to store the calculations of more than one
PI for previous generations. Descriptive statistics
justifies the need for aggregating different PIs ie.,
the standard deviation of PI values can evaluate the
variability within the PI values(Rudenko and Schoe-
nauer, 2004), (Wagner et al., 2009) and (Wagner and
Trautmann, 2010). In most known aggregated PI ap-
proaches, MOEA terminates when the current value
of the EGP triggers a threshold or a given probabil-
ity limit (Rudenko and Schoenauer, 2004), (Bui et al.,
2009) and (Goel and Stander, 2010).

In the following of this section, the most known
and common approaches for aggregated PI are pre-
sented in a chronological order. For simplicity, we
describe the approaches by presenting the structure of
EGP and the final decision making for termination of

the MOEA without the mathematical representation
of each approach.

Running Metrics. In a joint work done by Deb and
Jain performance indicators are used to evaluate con-
vergence and diversity of the approximation set at
generation t known as convergence metric (CM) and
diversity metric (DVM). By this, all objective vectors
of the approximation set at generation t are projected
onto a dimensional hyperplane presented as discrete
grid cells (Deb and Jain, 2002). The convergence
metric (CM) calculates the average of the smallest
normalized euclidean distance from each individual
in the approximation set at generation t to a known
reference set. Whereas DVM tracks the number of at-
tained grid cells and computes the distribution by as-
signing different scores for predefined neighborhood
patterns. In this approach, EGP is a visual investiga-
tion of the progression of CM and DVM done by user
which leads to the final decision for termination of the
MOEA (Deb and Jain, 2002).

Stability Measure. According to the work done by
Rudenko and Schoenauer in 2004, the stagnation of
the maximum crowding distance (maxCD) within the
approximation set at generation t can be used as an in-
dicator to detect convergence of NSGA-II algorithm
(Rudenko and Schoenauer, 2004). After each gener-
ation, maxCD and standard deviation (STD) over ap-
proximation set is computed. In this approach, EGP
stores STD of the values of maxCD. The stability
measure termination criterion is fulfilled once SDT
falls below a user-defined threshold ε.

MBGM Termination Criterion. MBGM Termina-
tion Criterion (according to the authors’ last names)
uses combination of the mutual domination rate
(MDR) and a simplified version of Kalman filter
(Martı́ et al., 2007). For each generation, MDR in-
dicator is applied to the approximation set obtained
from two last consecutive generations t and t − 1.
EGP stores all MDR values. After that Kalman fil-
ter is applied on EGP and the corresponding esti-
mated error is calculated. MBGM Termination Cri-
terion is fulfilled when the confidence interval of
the a-posteriori estimation falls below the predefined
threshold ε (Martı́ et al., 2009).

Classic On-line Convergence Detection. In 2009,
Naujoks and Trautmann presented a new approach
called On-line Convergence Detection (OCD) to solve
a multi-objective optimization in an aerodynamic ap-
plication. This approach is known as classic OCD



because it is considered as original version of OCD
for further studies. In OCD approach, PI is incorpo-
rated three performance indicators hypervolume, R2-
Indicator and additive ε-indicator (Naujoks and Traut-
mann, 2009), (Wagner et al., 2009) and (Wagner and
Trautmann, 2010). At each generation, the approx-
imation set at generation t is considered as the ref-
erence set to update PI values stored in EGP. Later
for each PI, different variance tests, corresponding p-
values and standard errors are computed and stored in
EGP. Moreover, after standardizing the values stored
in EGP individually, a least-squares fit of a linear
model with slope parameter β is performed. Finally,
the termination decision is made when the p-values of
two consecutive generations are below the confidence
level α for one of the variance tests where α = 0.05.

ODC-Hypervolume. Later in 2010, Wagner and
Trautmann proposed a new version of classic ODC
for Multi-objective selection based on dominated hy-
pervolume to create PI. Since the hypervolume is a
unary indicator, only the absolute values for hyper-
volume have to be stored in EGP. Compared to ODC,
the complexity of OCD-Hypervolume is reduced by
concentrating on the variance test for one specific PI.
The termination decision is similar to the classic OCD
approach.

Least Squares Stopping Criterion. In 2010, Guer-
rero et al. presented a light version of classic ODC
which simplifies PI computation, EGP, and termina-
tion criterion. Similar to classic OCD, generation t
as the reference set is considered to update PI val-
ues and EGP stores a regression analysis performed
on PI values. In contrast, in Least Squares Stopping
Criterion (LSSC), only one PI is considered while the
variance tests stored in EGP to make the termination
decision are omitted (Guerrero et al., 2010). In addi-
tion, in LSSC, PI values are not standardized in or-
der to be able to observe the expected improvement
by means of the slope β. Consequently, the analy-
ses performed in OCD and LSSC are different. The
termination decision is made when β falls below the
predefined threshold ε. Interested audiences can read
more about the details of implementation of classic
ODC and LSSC in (Naujoks and Trautmann, 2009)
and (Guerrero et al., 2010), respectively.

Non-dominance-based Convergence Metric. An-
other work is done in 2010 by Goel and Standerto
present a non-dominance-based on-line termina-
tion criterion for MOEAs. This approach uses a
dominance-based PI based on an external archive of
non-dominated solutions which is updated in each

generation. In addition to that, utility is defined as
a parameter to compute the difference in value of CR
between the approximation set at generations t and
the external archive of non-dominated solutions. In
this approach, EGP is designed as a moving aver-
age as utility Ut to increase the robustness of the ap-
proach. The termination decision is made when the
utility falls below an adaptively computed threshold
called εadaptive.

3.7 Termination Criteria in Hybrid
MOEA

Research on termination criteria in MOEAs has high-
lighted several approaches to identify the termina-
tion of evolution process. However previous stud-
ies have not dealt with hybrid MOEAs and it is not
certain whether the existing termination criteria are
suitable for hybrid MOEAs and whether they are ad-
equate enough to identify convergence in such al-
gorithms (Bhuvana and Aravindan, 2016b). Previ-
ous research has established that incorporating addi-
tional knowledge during search process can improve
the performance of evolutionary algorithms. The ad-
ditional knowledge is gained by applying a local re-
finement procedure in the evolution process (Bhuvana
and Aravindan, 2016b). The main advantage of hy-
brid MOEAs is to incorporate local refinement proce-
dures to prevent premature convergence of the search
process (El-mihoub et al., 2006).

In a worked done by Bhuvana and Aravindan in
2016, a hybrid MOEA has been proposed in which the
termination happens respect to the maximum num-
ber of functional evaluations known as MAPLSAW
(Bhuvana and Aravindan, 2016a). The experimental
results show that fixing an upper bound for number of
objective function evaluations or number of genera-
tions will not be an appropriate termination condition
in all cases (Bhuvana and Aravindan, 2016a). More-
over, another recent work is done by Bhuvana and Ar-
avindan in 2016, to develop a new termination crite-
ria for hybrid MOEAs. They proposed a termination
scheme including five termination criteria which two
of them are new termination criteria proposed for a
hybrid MOEA called MAPLS-AW (Bhuvana and Ar-
avindan, 2016b).

The termination scheme relies on three perfor-
mance indicators, hypervolume, mutual domination
metric and additive-ε indicator together with the con-
cept of maintaining the elites in the population over
generations. In the proposed schema, two new ter-
mination criteria derived based on the features of
MAPLS-AW to detect the convergence of the popula-
tion, named Preferential Local Search (PLS) and Elite



Average Fitness (EAF). In each generation, PLS and
EAF are computed and compared with the values ob-
tained in the previous generations. In the following
of this section, PLS and EAF are explained in more
details.

Preferential Local Search. In hybrid MOEA pre-
sented by In MAPLS-AW implementation presented
in Bhuvana and Aravindan, the local refinement pro-
cedure relies on elite solutions identified at every gen-
eration (Bhuvana and Aravindan, 2016b). Over gen-
erations, PLS deepens on the elites iteratively until
such elite solutions become locally optimal. Locally
optimized elites are considered as the measure of con-
vergence to calculate the stopping criteria, SCPLS.

In order to calculate SCPLS, a local termination cri-
terion, LPLS is needed. LPLS is computed using the
current optimized elites and the total number of elites
at every generation and compared with its previous
generation to derive SCPLS. Termination decision is
made when TCPLS equal to 0 which means the value
of LPLS is not changed over last two generations, t and
t−1. SCPLS equal to −1 shows that no improvement
have been observed from generation t to generation
t − 1. SCPLS is equal to 1 indicates that the popula-
tion is still evolving and the current generation has
progress toward optimal solutions (Bhuvana and Ar-
avindan, 2016b).

Elite Average Fitness. Similar to PLS, Elite Aver-
age Fitness stopping criterion SCEAF is proposed in
the same work by Bhuvana and Aravindan for the hy-
brid algorithm, MAPLS-AW (Bhuvana and Aravin-
dan, 2016b). EAF incorporates elite’s average fitness
value at every generation using a local measure called
LEAF . Calculating IEAF is a challenging task in a
multi-objective problem when multiple objectives are
not combined into a single objective. For dealing with
this challenge, MAPLS-AW has proposed an adaptive
weight (AW) objectives by considering their positions
in the objective space. IEAF of two consecutive gener-
ations t and t−1 are used to compute SCEAF . Termi-
nation decision is made if no improvement have been
observed by SCEAF .

4 DISCUSSION

Recalling the research questions in section 2.1, the
most frequent termination criteria and their main
characteristics explained in details in seven different
categories. We distinguished the categories by con-
sidering functionality and applicability of the termi-
nation criteria and the way they have been evolved

over time. Applying all aforementioned termination
criteria in different test cases is out of the scope of this
work. But nevertheless, we discuss on strengths and
weaknesses of termination criterion belong to each
category in the following section.

In overall, even though direct termination crite-
ria are easy to implement but determining the fixed
value for termination condition is again a challenge.
Moreover, finding optimal values requires a good and
a-priori knowledge about the behavior of the GA for
the specific problem and the global optimal solution
which are not always available (Bhandari et al., 2012).

In 2001, Jain et al. evaluated direct and derived
termination criteria from two main aspects, reliabil-
ity and performance (Jain et al., 2001). They con-
cluded that all direct termination criteria except the
hitting a bound, are reliable criteria which guarantee
termination of EA within finite number of iterations
or finite time. One major drawback for the hitting a
bound termination criterion is that it does not termi-
nate the algorithm if it converges to a sub-optimal so-
lution because in this case the objective value of the
sub-optimal solution is always worst than the required
bound (Jain et al., 2001). In order to guarantee ter-
mination, it is suggested to apply the hitting a bound
condition in combination of any other direct termina-
tion criteria (Jain et al., 2001). Other finding of the
same work shows selecting suitable values for the pa-
rameters of the corresponding criteria has direct in-
fluence on performance of direct termination criteria
which can be found by trial-and-error method while
setting a default value is not recommended (Jain et al.,
2001).

The reliability and performance of derived termi-
nation criteria has been analyzed and evaluated in
a research done by (Jain et al., 2001). Among all,
running means termination criterion is a reliable one
which assures the termination of the algorithm after
finite number of iterations. In contrast, four termina-
tion criteria presented in sections 3.2-3.2 can only ter-
minate the search process if the objective values of all
individuals at the current generation are sufficiently
similar. This means that termination is not guaranteed
and can be postponed if few outliers are existed in the
population. To avoid prevention of termination, it is
suggested to combine these criteria with other direct
termination criteria discussed earlier in section 3.1.

Bhandari et al. proposed ε-Variance termination
criterion which is similar to both K-Variance and
POP-Var termination criteria in some extents (Bhan-
dari et al., 2012). The main difference between the
ε-Variance and K-Variance termination criteria is that
the user does not need to predefine the number of it-
erations in ε-variance termination criterion. By pre-



defining K, user assumes that it is impossible to ob-
tain a better solution after K consecutive iterations.
But the main challenge for using K-Variance termi-
nation criterion is that, it is proven that given a finite
value for K, there is always a positive probability of
obtaining K consecutive equal sub-optimal solutions
(Bhandari et al., 2012).

On the other hand, in POP-Var termination crite-
rion, the variance is calculated using the individuals
in the current population while in ε-Variance termina-
tion criterion, the variance of the best solutions over
generations is used as termination condition. How-
ever, ε-Variance still has two main limitations. The
first one is the necessity to have a prior knowledge
about the global optimal solution which makes it in-
applicable when the optimal solution is unknown or
not available. And the second is to choose the optimal
value for ε. A challenge to apply this criterion is that
no automatic way of choosing the value ε is suggested
(Bhandari et al., 2012). Experimental results show
that the value of ε varies in different problems with
the same size of search space to obtain global optimal
solution (Bhandari et al., 2012). Smaller number of ε
close to 0 leads to higher accuracy. This means that
the choice of ε is dependent on the level of accuracy
that the user desires.

In a similar way, in CLusTerm termination crite-
rion, selecting an appropriate value for ε is impor-
tant to obtain a proper termination. The parameter
ε controls the duration of stagnation until termina-
tion. Hence, smaller values of ε prolongs stagnation
phase without termination and vice versa. In prac-
tical use, it is recommended to employ ClusTerm or
running mean termination criterion presented in 3.2,
together with one of the four approaches provided in
sections 3.1 and 3.2-3.2, to prevent needless compu-
tations (Jain et al., 2001).

It is worthy to mention that operator-based ap-
proaches may not focus directly on proposing a new
termination criterion but they are designed mostly to
accelerate the convergence of the EA in an automatic
way to avoid unnecessary computations (Ghoreishi
et al., 2015). Operator-based approaches are varies
based on the implementation specifications. For in-
stance, as discussed earlier, CONTROLEUM-GA ap-
plies domain specific genetic operators to avoid gen-
erating new solutions that are not valid based on the
existing knowledge about the problem and environ-
mental measurements (Ghoreishi et al., 2015). The
strength point about domain specific approach is the
automatic way of accelerating the search process.

Other approaches such as ε-Optimal Stopping
Time termination criterion, has still two main draw-
backs. The first one is a prior knowledge requires

about the optimal solution which is not always avail-
able for many real world problems. And the second
one is that it is proven that with existing operations
in GA, whatever value decided for the number of it-
erations, there is always a positive probability of not
obtaining an optimal solution if ε is not small enough
(Bhandari et al., 2012).

The main purpose of applying performance indi-
cators is to measure the convergence and diversity
of the solutions without compromising the quality.
Unary performance indicators (both single and multi-
ple termination criteria) except spacing are computed
by comparing the approximation set at generation t
towards the reference set which requires the knowl-
edge of known optimal solutions. But on the con-
trary, binary performance indicators are independent
of the reference set. Binary performance indicators
are known as progress indicators (PIs). They are cus-
tomized in a way that they consider two consecutive
generations t and t − 1 instead of using the approxi-
mation set and the reference set for the measurements.

Among all single PIs, DQP is the only PI that re-
quires many additional evaluations of the objective
functions for computing the ratio of dominating so-
lutions in the neighborhood of a specific solution.
Consequently, DQP is a very expensive, but power-
ful measure and it is only applicable if many addi-
tional evaluations of the objective functions can be
performed. In contrast, MDR is capable of measur-
ing the progress of the optimization with almost no
additional computational cost by reusing the compu-
tations done to apply Pareto-optimality. Therefore it
is suitable for solving large-scale or many-objective
problems with large population sizes. In addition, CR
is also not an efficient metric for problems with many
objectives, due to the large archive size.

In single PI termination criteria, only the last value
of PI is used to decide on termination time which can-
not always provide enough information for a robust
conclusion due to the non-deterministic nature of EAs
(Wagner et al., 2011). For this reason, it can be ben-
eficial to incorporate different values of PI for previ-
ous generations using an evidence gathering process
(EGP) in aggregated PI approaches.

One of the important issues in designing aggre-
gated PI approaches is concerning about using the sta-
tistical tests and confidence intervals which make the
termination decision robust compared to monitoring
random variables overtime. In addition, parameter-
ization of aggregated PI approaches plays important
role in obtaining the desired results with respect to the
trade-off between runtime and approximation quality
(Wagner et al., 2011). One of the limitations with ag-
gregated PI approaches is that there is no clear guide-



line for parameterization and visualized analysis (Deb
and Jain, 2002) and (Bui et al., 2009). One of the
only guideline is proposed by Wagner and Trautmann
for parameterization of ODC approach based on sta-
tistical analysis of experimental results (Wagner and
Trautmann, 2010).

Discussion on termination criteria in hybrid ap-
proaches is a challenging task because most studies
in the field of EA have focused on termination crite-
ria in single MOEA. Nevertheless, the experimental
results indicate that PLS and EAF together with three
performance indicators are promising approaches for
predicting the convergence of population by consider-
ing additional knowledge about the number of locally
optimized elites in the population and their average
fitness (Bhuvana and Aravindan, 2016b).

5 CONCLUSION

The study was conducted in the form of a survey to
provide a concise categorization of prominent termi-
nation criteria in EA. This research will serve as a
base for future studies targeting termination criteria
in EA and makes several noteworthy contributions to
the current existing literature. This work extends our
knowledge about the existing termination criteria and
can be used to improve the development of such ap-
proaches in terms of convergence speed, computation
cost and assessment of the quality of approximation
set with or without known reference set. In addi-
tion to principal theoretical implication of this study,
strengths and weaknesses of the approaches are high-
lighted and discussed.

A key strength of the present study was to high-
light the role of combination of direct termination cri-
teria and threshold-based termination criteria in or-
der to guarantee the convergence of EA in a reliable
manner. Whilst the main focus of this study was not
the evaluation of aforementioned termination crite-
ria, rigorous and comprehensive set of experiments is
still needed. Therefore, it would be interesting to as-
sess the effects of selecting different termination crite-
ria and evaluating their impacts on different problem
domains with various number of objectives and also
their applicability to use in real-world applications.

It is worthy to note that, the termination criteria in
this survey are the most commonly used ones and the
reader can investigate about the details of implemen-
tation and mathematical formulations in the respec-
tive references.
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