
Solving Fuzzy Answer Set Programs in Product Logic

Ivor Uhliarik
Department of Applied Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic

Keywords: Fuzzy ASP, Fuzzy Logic, Answer Set Programming, Product Logic, Stable Models, DPLL.

Abstract: In recent years, foundations have been laid for a turn in logic programming paradigms in continuous domains.
Fuzzy answer set programming (FASP) has emerged as a combination of a tool for non-monotonic reasoning
and solving combinatorial problems (ASP) and a knowledge representation formalism that allows for modeling
partial truth (fuzzy logic). There have been various attempts at designing a solver for FASP, but they either
make use of transformations into optimization programs with scaling problems, operate only on finite-valued
Łukasiewicz logic, or yield only approximate answer sets. Moreover, there has been no research focused on
the product logic semantics in FASP. In this work we investigate the methods used in state-of-the-art classical
ASP solvers with the aim of designing a FASP solver for product propositional logic. In particular, we base
our approach on the conversion into fuzzy SAT (satisfiability problem) and the fuzzy generalization of the
DPLL algorithm. Since both Łukasiewicz and (extended) Gödel logic can be embedded into product logic, the
resulting system should be able to operate on all three logics uniformly.

1 INTRODUCTION

Answer set programming (ASP) is a well-known
and popular logic programming paradigm based on
the stable model semantics (Gelfond and Lifschitz,
1988). The solid theory behind ASP (Lifschitz, 1999)
has allowed a range of effective solvers to become
well-established, such as the Potassco suite (Geb-
ser et al., 2012), smodels (Simons et al., 2002), or
DLV (Leone et al., 2006).

The main use of ASP is in modeling and solv-
ing combinatorial search problems. However, to for-
malize a problem requiring several grades of truth, or
solve a continuous optimization problem, it is desir-
able to use a system operating with real values.

One of the ideas to extend the capabilities of ASP
to continuous domains is the combination of fuzzy
logic and ASP (Van Nieuwenborgh et al., 2007b).
Thus, fuzzy answer set programming (FASP) was
born, where atoms may be assigned graded levels of
truth. The area is rather new; the most recent solver
was developed by (Mushthofa et al., 2015a) and
a real-world application was shown in (Mushthofa
et al., 2016) which focused on modeling biological
networks.

Despite numerous proposals of FASP solvers, the
design and implementation of available tools are
still far from reaching the maturity of classical ASP

solvers. One approach of solving FASP relies on
the reduction of programs into fuzzy SAT (Janssen
et al., 2011) using fuzzy extensions of Clark’s com-
pletion (Clark, 1978) and loop formulas (Lin and
Zhao, 2004). However, the definition of loop formu-
las in FASP relies on the properties of Łukasiewicz
logic and, to our knowledge, no implementation of
this approach is available.

Another approach (Blondeel et al., 2012) ana-
lyzes the complexity of inference in FASP and pro-
poses a reduction of FASP programs to bilevel linear
programming problems. The approach is limited to
Łukasiewicz logic and has been implemented in (Al-
viano and Pealoza, 2013).

There also exists a group of solver proposals that
focus on searching finite many-valued domains, such
as (Van Nieuwenborgh et al., 2007a) or (Mushthofa
et al., 2014), refined in (Mushthofa et al., 2015b),
where only the latter two support disjunctive FASP
programs and have available implementations.

A method has been proposed that finds approxi-
mations of fuzzy answer sets (Alviano and Pealoza,
2013), which has also been implemented, but it oper-
ates only on normal programs and yields exact results
only in the case of positive and stratified programs.
Note that to date, this is the only implemented ap-
proach where any of Łukasiewicz, Gödel, and product
t-norms may be used.

Uhliarik I.
Solving Fuzzy Answer Set Programs in Product Logic.
DOI: 10.5220/0006518303670372
In Proceedings of the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), pages 367-372
ISBN: 978-989-758-274-5
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



It is clear that the furthest developed proposals are
those based on Łukasiewicz logic. Overall, to the best
of our knowledge, there is no ad-hoc design or imple-
mentation of an exact FASP solver for programs with
Gödel or product t-norms, i.e. the only existing solver
is limited to stratified negation and relies on black-box
optimization techniques.

A promising way to fill this gap is to adopt the
mentioned approach of reducing the FASP program
into a fuzzy SAT problem (Janssen et al., 2011). How-
ever, we focus on solving programs with product t-
norms, as both Łukasiewicz and (extended) Gödel
logics have a faithful interpretation in (extended)
product logic (Baaz et al., 1998). Hence, the solver
would be able to uniformly process all three seman-
tics. The steps in the reduction of the FASP pro-
gram need to be generalized to comply with the prop-
erties of product logic. Having available the result
of the reduction, we do not rely on the potential ex-
istence of a fuzzy SAT solver—instead, the fuzzy
theory is then translated into clausal form accord-
ing to (Guller, 2013) and we make use of the Davis-
Putnam-Logemann-Loveland (DPLL) procedure for
propositional product logic (also suggested by Guller)
with modifications.

Note that this is a work in progress: we describe
our aim and the key concepts and identify the prob-
lems that need to be solved, but we omit the proofs
and implementation details.

2 FUZZY ANSWER SET
PROGRAMMING

In this section we describe the syntax and semantics
of fuzzy answer set programs. We focus on prod-
uct logic semantics, but otherwise we use the defi-
nitions from (Janssen et al., 2012) and the notation
from (Guller, 2013).

2.1 Syntax

Let L be a lattice. In this work we will focus on the
lattice L = 〈[0,1],≤〉. Let PropAtom be the set of
propositional atoms of product logic over L .

Next, let C= {c|c ∈C} be a set of truth constants
where {0,1} ⊆ C ⊆ [0,1] and C is a countable set;
0,1 ∈ PropAtom are true and false in product logic,
respectively. A (classical) literal is either a constant
symbol c∈C, an atom a or a classical negation literal
¬a. An extended literal is either a classical literal a or
a default negation literal not a.

FASP rules are expressions of the form
r ≡ a← f (b1, ...,bn;c1, ...,cm)

where a,bi,c j ∈PropAtom for all 1≤ i≤ n,1≤ j≤m,
f is a function symbol representing a total mapping
Ln+m → L increasing in its n first and decreasing in
its m last arguments. Thus, the atom a is either a
constant or a classical literal, the atoms b1, ...,bn are
classical literals, and the atoms c1, ...,cm are default
negation literals. The head/body of the rule r, rh/rb
(also H(r) / B(r)) is the left-hand/right-hand side of
the rule. The Herbrand base of a rule r, Br, is the set
of atoms occurring in r. A rule of the aforementioned
form is called

• a constraint if a ∈ C,

• a fact if all bi,c j ∈ C for 1≤ i≤ n, 1≤ j ≤ m,

• positive if m = 0 or c j ∈ C for 1≤ j ≤ m1,

• simple if it is positive and not a constraint.

A FASP program is a finite set of FASP rules.
Given a FASP program P, the Herbrand base BP is
BP =

⋃{Br|r ∈ P}. A program is called

• constraint-free if it does not contain constraints,

• positive if all rules occurring in it are positive,

• simple if all rules occurring in it are simple.

2.2 Semantics

We interpret product logic by the Π-algebra

Π = ([0,1],≤,∨∨∨,∧∧∧, ·,⇒⇒⇒,∼∼∼,0,1)
where∨∨∨ is the supremum and∧∧∧ the infimum operator
on [0,1]; · is the standard multiplication of reals;

a⇒⇒⇒b =

{
1 if a≤ b,
b
a else;

∼∼∼ a =

{
1 if a = 0,
0 else.

Hence, the mapping f in the rule

a← f (b1, ...,bn;c1, ...,cm)

constructs a body expression recursively:

• a constant c ∈ C and an extended literal are body
expressions,

• if α and β is a body expression, then α�β is also
a body expression for � ∈ {∧,&,∨,→,↔}

where ∧, ∨,→,↔ are standard propositional connec-
tives and & is strong conjunction.

An interpretation of a FASP program P is a
BP → L mapping I = {al1

1 , ...,a
ln
n } defined as I(ai) =

li if 1≤ i≤ n and I(a) = 0 otherwise. We extend I to
constants and expressions as follows:

1If the rule has no negative part or consists of constants.



• I(c) = c if c ∈ C
• I(not α) =∼∼∼ I(α)
• I(α&β) = I(α) · I(β)
• I(α�β) = I(α)��� I(β) for � ∈ {∧,∨,→}
• I(α↔ β) = I(α)⇒⇒⇒ I(β) · I(β)⇒⇒⇒ I(α)

for expressions α and β. Recall that Π is a complete
linearly ordered lattice algebra; ∨∨∨, ∧∧∧ is commutative,
associative, idempotent, monotone; 0, 1 is its neutral
element; · is commutative, associative, monotone; 1
is its neutral element; the residuum operator⇒⇒⇒ of ·
satisfies the condition of residuation:

for all a,b,c ∈Π, a ·b≤ c⇐⇒ a≤ b⇒⇒⇒c; (1)

A rule (r : a ← α) ∈ P is satisfied by an inter-
pretation I of P iff I(a) ≥ I(α)2. An interpretation
I of program P is a model of P iff every rule r ∈ P
is satisfied by I. For interpretations I and J of P we
define I ⊆ J iff ∀a ∈ BP : I(a) ≤ J(a) and I ⊂ J iff
(∀a ∈BP : I(a)≤ J(a))∧ (I 6= J). Given this ordering
on interpretations, we say a model I of P is minimal
iff no model J exists such that J ⊂ I.

Let P be a positive FASP program. An interpre-
tation A of P is called the answer set of P iff A is
the minimal model of P. For non-positive programs
we use the fuzzy generalization of the GL reduct.
For a non-positive program P, the reduct of a rule
(r : a← f (b1, ...,bn;c1, ...,cm)) ∈ P w.r.t. an interpre-
tation I of P is the positive rule rI defined as

rI = r : a← f (b1, ...,bn; I(c1), ..., I(cm))

i.e. the occurrences of default negation literals not a
are replaced by the constants I(not a)∈L . The reduct
of P is the set of rules PI defined as PI = {rI |r ∈ P}.
An interpretation A of a program P is an answer set
of P iff A is the answer set of PA.

A simple FASP program has exactly one fuzzy an-
swer set. A positive FASP program may have no, one,
or several fuzzy answer sets.

3 SOLVING FASP

In the introduction we have briefly covered a number
of approaches to solving FASP programs. We have
suggested an approach that would make use of the
reduction of a FASP program into a fuzzy SAT in-
stance (Janssen et al., 2011), but (1) we aim to cover
product (instead of Łukasiewicz) propositional logic
semantics, as there exist embeddings of Łukasiewicz
and extended Gödel logics in product logic (Baaz

2This is because we can regard rules as residual impli-
cators.

et al., 1998); (2) we do not rely on the existence of a
potential fuzzy SAT solver—instead, we modify and
integrate the proposed DPLL procedure for product
logic (Guller, 2013); and (3) we study how the em-
beddings could be integrated to lay foundations for a
uniform solver.

The pipeline of the full system shall consist of:
1. reduction of the input FASP program into product

propositional fuzzy logic theory,
2. translation of the theory into clausal form,
3. performing the DPLL procedure for product logic

to find a valuation of the atoms which corresponds
to an answer set of the program.

In this section we describe the steps above and iden-
tify the problems that need to be solved in order for
such system to be integrated.

3.1 Reducing FASP to Fuzzy SAT

A theory has been developed (Janssen et al., 2011)
with the idea to translate FASP programs into proposi-
tional fuzzy logic theories whose models correspond
to the answer sets of the original programs. This ap-
proach assumes the availability of a fuzzy SAT solver.

The work generalizes the popular methods used in
classical ASP solvers to the fuzzy case, specifically
those introduced in (Lin and Zhao, 2004), known as
the ASSAT method. In particular, the contributions of
the approach are the following:
1. The definition of the completion of a FASP pro-

gram, where the authors also show that the answer
sets of FASP programs without loops are exactly
the models of its completion.

2. The generalization of loop formulas from (Lin
and Zhao, 2004) allowing for the computation
of answer sets of arbitrary FASP programs. The
authors also generalize the ASSAT procedure to
overcome the problem with an exponential num-
ber of loops.
While loop formulas in FASP are formulated us-

ing the unfounded-set semantics, the generalization of
the ASSAT procedure is based on the fixpoint seman-
tics. Hence, the paper also shows that these two coin-
cide in FASP.

The approach in (Janssen et al., 2011) introduces a
flexible framework, as in theory, the only limitations
imposed on the input FASP program P are that (1)
P has to be normal (disjunction cannot appear in the
head of any rule), and (2) the only connectives occur-
ring in P are t-norms. However, in the definition of
the loop formula in the fuzzy case, an equivalence is
used that is preserved in Łukasiewicz logic, but not in
Gödel or product logic:



Definition 1. (Janssen et al., 2012)
(Loop Formula). Let P be a FASP program and
L = {l1, ..., lm} a loop of P. Suppose that R−P (L) =
{r1, ...,rn}. Then the loop formula induced by loop
L, denoted by LF(L,P), is the following fuzzy logic
formula:

I (max(l1, ..., lm),max((r1)b, ...,(rn)b)) (2)

where I is an arbitrary residual implicator. If
R−P (L) = /0, then loop formula becomes

I (max(l1, ..., lm),0)

Proposition 1. (Janssen et al., 2012)
The loop formula proposed for boolean answer set
programs is of the form

¬(
∧

(r1)b∨ ...∨
∧

(rn)b)⇒ (¬l1∨ ...∨¬lm) (3)

which is equivalent to3

(l1∨ ...∨ lm)⇒ (
∧

(r1)b∨ ...∨
∧

(rn)b) (4)

This equivalence is preserved in Łukasiewicz logic,
but not in Gödel or product logic.

To extend the definition to be fully flexible, further
research into generalizing the notion of loop formulas
is required.

3.2 Solving Fuzzy SAT

The reduction approach implies the necessity to
use a solver for the fuzzy SAT problem. For
each logic, however, only few such solvers ex-
ist. According to (Janssen et al., 2012), for
Gödel logic we can use boolean SAT solvers, for
Łukasiewicz logic we can use mixed integer program-
ming (MIP) (Hähnle, 1994), and for product logic the
bounded mixed integer quadratically constrained pro-
gramming (bMICQP) used for fuzzy description log-
ics (Bobillo and Straccia, 2007). According to (Al-
viano and Pealoza, 2013), these approaches introduce
many auxiliary variables that may negatively affect
the performance. Moreover, the optimization pro-
grams run as black boxes without any ad-hoc opti-
mizations suitable for the given propositional logic.

Another numerical approach to solving fuzzy SAT
is based on the state-of-the-art black-box optimiza-
tion algorithm on a continuous domain, Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) and
its extension resulting from landscape analysis (Brys
et al., 2013). The approach focuses on Łukasiewicz
logic, but the paper also benchmarks the case for
product logic semantics. The downside of this ap-
proach is the stochastic nature of the algorithm that is
prone to converging to local optima (Hansen, 2006).

3Formula (2) in definition 1 is the fuzzy generalization
of formula (4) in proposition 1.

3.2.1 DPLL-based SAT Solver

A different approach to solving the fuzzy SAT prob-
lem (Guller, 2013) proposes a variant of the DPLL
procedure operating over order product clausal the-
ories. The paper introduces the transformation of a
product propositional theory to order clausal form, es-
tablishes the inference (branching) rules and proposes
a method to compute the valuation of atoms. The pro-
cedure is proved to be refutation sound and complete
for finite order clausal theories.

The problem with this approach is that it lacks
the notion of intermediate constants, i.e. the terms
of the input theory are limited to propositional atoms,
the constants 0, 1, and expressions built from these
terms using logical connectives—there is no support
for intermediate truth constants4 which are present in
most practical applications of FASP. To incorporate
this notion into the fuzzy DPLL procedure, we would
need to modify the theory (branching rules, valuation,
and associated proofs) and study the properties under
which the modifications are admissible.

Another calculus used for automated deduction
in (Gödel) fuzzy logics is hyperresolution (Guller,
2017). Although the work is concerned with the
Gödel t-norm, the paper extends the translation of a
fuzzy propositional theory to clausal form and the hy-
perresolution calculus by incorporating intermediate
truth constants, therefore the notions serve as motiva-
tion for the enhancement of the DPLL procedure for
the product case.

4 EMBEDDINGS

A key concept that is to be explored is the embedding
of Łukasiewicz and (extended) Gödel logics in (ex-
tended) product logic driven by the motivation that
once a solver for extended product FASP is imple-
mented, we would be able to uniformly process all
three popular semantics. In this section we define the
extension of product propositional logic, extend the
axioms of product logic, and cite the theorem stating
that Łukasiewicz logic is a sublogic of extended prod-
uct logic.

4.1 Extended Product Logic

The extended product logic is interpreted by the stan-
dard Π-algebra augmented by the operators PPP, ≺≺≺, ∆∆∆
for the connectives P, ≺, ∆, respectively.

Π∆ = ([0,1],≤,∨∨∨,∧∧∧, ·,⇒⇒⇒,∼∼∼,PPP,≺≺≺,∆∆∆,0,1)
4Constants in the open interval (0,1).



where∨∨∨ is the supremum and∧∧∧ the infimum operator
on [0,1];

x⇒⇒⇒y =
{

1 if x≤ y,
y
x else;

∼∼∼ x =
{

1 if x = 0,
0 else;

xPPPy =
{

1 if x = y,
0 else;

x≺≺≺y =
{

1 if x < y,
0 else;

∆∆∆x =
{

1 if x = 1,
0 else.

Similarly to section 2.2, recall that Π is a complete
linearly ordered lattice algebra; ∨∨∨, ∧∧∧ is commutative,
associative, idempotent, monotone; 0, 1 is its neutral
element; · is commutative, associative, monotone; 1
is its neutral element; the residuum operator⇒⇒⇒ of ·
satisfies the residuation principle. Gödel negation ∼∼∼
satisfies the condition:

for all x ∈Π∆, ∼∼∼ x = x⇒⇒⇒0;

∆∆∆ satisfies the condition:5

for all x ∈Π∆, ∆∆∆x = xPPP1.

4.2 Embeddings

In this section, we shall use the notation from (Hájek,
2001). We extend the axioms of product logic by the
following axioms:

∆ϕ∨¬∆ϕ (∆1)

∆(ϕ∨ψ)→ (∆ϕ∨∆ψ) (∆2)
∆ϕ→ ϕ (∆3)

∆ϕ→ ∆∆ϕ (∆4)
∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ) (∆5)

(Baaz et al., 1998) define how Łukasiewicz logic
can be embedded in this extended product logic, i.e.
how the Łukasiewicz t-norm can be isomorphically
transformed to restricted product on [a,1] for arbitrary
fixed 0 < a < 1. For each formula ϕ with proposi-
tional variables in {p1, ..., pn} a translation ϕ∗ is de-
fined using one new propositional variable p0. Let:

0∗ ≡ p0

p∗i ≡ p0∨ pi

(ϕ∧ψ)∗ ≡ p0∨ (ϕ∗∧ψ∗)
(ϕ∧ψ)∗ ≡ ϕ∗→ ψ∗

(¬ϕ)∗ ≡ ϕ∗→ p0

for i ∈ {1, ...,n}.
Then, the following theorem holds:

5We assume a decreasing operator precedence: ∼∼∼, ∆∆∆, ·,
PPP,≺≺≺, ∧∧∧, ∨∨∨,⇒⇒⇒.

Theorem 1. (Baaz et al., 1998)
Let ϕ† denote the formula ¬¬p0 → ϕ∗. For each
formula ϕ not containing p0, ϕ is 1-tautology of
Łukasiewicz logic iff ϕ† is a 1-tautology of product
logic.

As such, Łukasiewicz logic has a faithful interpre-
tation in product logic. Similarly, it is also shown how
to embed Gödel (extended by ∆) logic into product
logic (Baaz et al., 1998).

5 CONCLUSIONS

Our solution is based on product propositional logic
extended by the operation ∆. As we have described
in section 4.2, we have that Łukasiewicz and Gödel
logic are both sublogics of the extended product logic
Π∆. Given this, we shall define Π∆-FASP programs
and corresponding answer set semantics. With the
aim of developing a FASP solver based on this logic,
the final system should be able to uniformly handle
Łukasiewicz, Gödel, and product logics.

As shown in (Guller, 2017), another non-trivial
problem is that of the incorporation of intermediate
truth constants belonging to a countable subset of the
open interval (0,1), the possibility to use them in the
bodies and heads of rules of product FASP programs,
and their handling in the computation of answer sets.
The occurrence of these truth constants in fact or con-
straint rules is a trivial matter to a FASP solver (as
such, it is merely a condition in the problem of opti-
mization). However, the properties of product logic
will have to be reviewed for possible violations and
required modifications and proofs.

We shall base the product fuzzy answer set pro-
gramming solver on the reduction of a program to
a fuzzy theory as described in (Janssen et al., 2011)
and formulate the notion of loop formulas for prod-
uct logic. Next, we transform the theory into clausal
form as proposed in (Davis et al., 1962) and find
a model satisfying the fuzzy theory using the well-
known DPLL procedure extended with intermediate
constants. That is, we formalize the fuzzy generaliza-
tion of DPLL for product logic and enhance it to allow
for ad-hoc computation of stable models in product
FASP.

ACKNOWLEDGEMENTS

The research reported in this paper was supported by
the grant UK/367/2017.



REFERENCES

Alviano, M. and Pealoza, R. (2013). Fuzzy answer sets
approximations. Theory and Practice of Logic Pro-
gramming, 13(4-5):753767.

Baaz, M., Hájek, P., Švejda, D., and Krajı́ček, J. (1998).
Embedding logics into product logic. Studia Logica,
61(1):35–47.

Blondeel, M., Schockaert, S., De Cock, M., and Vermeir,
D. (2012). NP-completeness of fuzzy answer set pro-
gramming under Lukasiewicz semantics, pages 43–50.

Bobillo, F. and Straccia, U. (2007). A fuzzy description
logic with product t-norm. In 2007 IEEE International
Fuzzy Systems Conference, pages 1–6.

Brys, T., Drugan, M. M., Bosman, P. A., De Cock, M., and
Nowé, A. (2013). Solving satisfiability in fuzzy log-
ics by mixing cma-es. In Proceedings of the 15th An-
nual Conference on Genetic and Evolutionary Com-
putation, GECCO ’13, pages 1125–1132, New York,
NY, USA. ACM.

Clark, K. L. (1978). Negation as Failure, pages 293–322.
Springer US, Boston, MA.

Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem-proving. Commun. ACM,
5(7):394–397.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T.
(2012). Answer Set Solving in Practice. Synthe-
sis Lectures on Artificial Intelligence and Machine
Learning. Morgan and Claypool Publishers.

Gelfond, M. and Lifschitz, V. (1988). The stable model
semantics for logic programming. pages 1070–1080.
MIT Press.

Guller, D. (2013). A dpll procedure for the propositional
product logic. In Proceedings of the 5th International
Joint Conference on Computational Intelligence - Vol-
ume 1: FCTA, (IJCCI 2013), pages 213–224. IN-
STICC, SciTePress.

Guller, D. (2017). Expanding Gödel Logic with Truth Con-
stants and the Equality, Strict Order, Delta Opera-
tors, pages 241–269. Springer International Publish-
ing, Cham.

Hähnle, R. (1994). Many-valued logic and mixed integer
programming. Annals of Mathematics and Artificial
Intelligence, 12(3):231–263.

Hájek, P. (2001). Metamathematics of Fuzzy Logic. Trends
in Logic. Springer.

Hansen, N. (2006). The CMA Evolution Strategy: A Com-
paring Review, pages 75–102. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

Janssen, J., Schockaert, S., Vermeir, D., and Cock, M. D.
(2011). Reducing fuzzy answer set programming to
model finding in fuzzy logics. CoRR, abs/1104.5133.

Janssen, J., Schockaert, S., Vermeir, D., and De Cock, M.
(2012). Answer Set Programming for Continuous Do-
mains: A Fuzzy Logic Approach. Atlantis Computa-
tional Intelligence Systems. Atlantis Press.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,
Perri, S., and Scarcello, F. (2006). The dlv system for
knowledge representation and reasoning. ACM Trans.
Comput. Logic, 7(3):499–562.

Lifschitz, V. (1999). Action languages, answer sets and
planning. In The Logic Programming Paradigm: a
25-Year Perspective, pages 357–373. Springer Verlag.

Lin, F. and Zhao, Y. (2004). Assat: computing answer sets
of a logic program by sat solvers. Artificial Intelli-
gence, 157(1):115 – 137.

Mushthofa, M., Schockaert, S., and Cock, M. D. (2014).
A finite-valued solver for disjunctive fuzzy answer set
programs. In Proceedings of the Twenty-first Euro-
pean Conference on Artificial Intelligence, ECAI’14,
pages 645–650, Amsterdam, The Netherlands, The
Netherlands. IOS Press.

Mushthofa, M., Schockaert, S., and De Cock, M. (2015a).
Solving disjunctive fuzzy answer set programs. In In-
ternational Conference on Logic Programming and
Nonmonotonic Reasoning, pages 453–466. Springer
International Publishing.

Mushthofa, M., Schockaert, S., and De Cock, M. (2015b).
Solving Disjunctive Fuzzy Answer Set Programs,
pages 453–466. Springer International Publishing,
Cham.

Mushthofa, M., Schockaert, S., and De Cock, M. (2016).
Computing attractors of multi-valued gene regulatory
networks using fuzzy answer set programming. In
Proceedings of the 2016 IEEE International Con-
ference on Fuzzy Systems FUZZ-IEEE’2016, pages
1955–1962. IEEE.

Simons, P., Niemel, I., and Soininen, T. (2002). Extending
and implementing the stable model semantics. Artifi-
cial Intelligence, 138(1):181 – 234. Knowledge Rep-
resentation and Logic Programming.

Van Nieuwenborgh, D., De Cock, M., and Vermeir, D.
(2007a). Computing Fuzzy Answer Sets Using dlvhex,
pages 449–450. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Van Nieuwenborgh, D., De Cock, M., and Vermeir, D.
(2007b). An introduction to fuzzy answer set pro-
gramming. Annals of Mathematics and Artificial In-
telligence, 50(3):363–388.


